October 05, 2023

Share:

Green forest with a road in the middle and icons showing EV charging.

Some of the newest applications are the most exciting for the future of our planet, but also among the biggest technical challenges we face. For example, solar power gives access to an unlimited source of energy but, for commercial success, designers must deliver greater power capability and increased efficiency without allowing costs or size to increase.

In the automotive world, electric vehicles (EVs) are now commonplace, yet uptake remains stifled due to concerns over available charging infrastructure, time taken to charge and the limited range. Here, designers are challenged with improving the electrical efficiency, size, and weight of the powertrain, including elements such as traction inverters and onboard chargers (OBC) – at an ever-reducing cost.


The Benefits of Silicon Carbide Devices

Since their invention, silicon-based semiconductor devices have been the mainstay of power applications. Improvements in performance, combined with innovation in power conversion topologies have ensured that efficiency levels have continued to advance, meeting the requirements of most applications.

However, there is little scope for further advances to meet the ongoing need for increased performance, leading to greater adoption of wide bandgap (WBG) semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) in new applications.


Multiple applications can benefit from the features of SiC Devices. Image is showing Solar Solutions, Energy Storage, EV Charging as well as EV DC-DC, On Board Charger and Traction inverter in automotive electric vehicles.
Multiple Applications Can Benefit From the Features of SiC Devices


SiC power semiconductors have inherently higher electron mobility and saturation velocity allowing relatively low loss operation at higher frequencies, which reduces the size and cost of bulky magnetic components in switching applications.


Multiple benefits to Power Systems.
SiC Brings Many Benefits to Power Systems


WBG devices also exhibit lower conduction losses which contribute to enhanced efficiency. This allows chargers to replenish batteries more quickly and reduces the cooling requirements, meaning that heatsinking can be smaller and cheaper. The need for heatsinking is further reduced by the ability of SiC to work at junction temperatures (Tj) as high as 175°C.

In the continued push for greater efficiency, applications are moving to higher voltages that reduce currents, with a corresponding reduction in losses. For example, the DC bus voltage in solar applications has increased from 600 V to 1500 V in the past few years. Similarly, the 400 VDC bus (based upon battery voltage) in EVs has migrated to 800 V or even 1000 V.

Until these changes, 750 V-rated silicon power semiconductors were adequate for almost all applications. However, devices with 1200 V or 1700 V ratings are necessary to ensure there is sufficient voltage withstanding for safe and reliable operation. Fortunately, a further benefit of SiC is its ability to operate at these voltages.


Modern Switching Devices Based on SiC Technology

Addressing this need for higher breakdown voltages in key applications such as automotive and solar, onsemi recently released their 1700V M1 planar EliteSiC MOSFET devices that are ideally suited to fast-switching, high-efficiency operation.

Among the first devices to be commercially available, the NTH4L028N170M1 has a VDSS of 1700 V, an extended VGS of -15/+25 V, and a typical RDS(ON) value of just 28 mÙ, making it suitable for the highest battery voltages currently in use.  The ability to operate continuously at junction temperatures up to 175°C, reduces the need for cooling measures such as fans (which can be unreliable) or heatsinks. In some applications, the need for additional cooling can be eliminated entirely.

Another useful feature of the NTH4L028N170M1 is the Kelvin source connection within the TO-247-4L package that improves power dissipation and reduces noise on the gate pin.


New 1700 V EliteSiC MOSFETs from onsemi. NTHL1000N170M1, NTH4L028N170M1, NTBG028N170M1 and NTBG1000N170M1
New 1700 V EliteSiC MOSFETs from onsemi


To support the new MOSFETs, onsemi has also released their D1 range of 1700 V SiC Schottky diodes, including the NDSH25170A and NDSH10170A. The high voltage rating allows designs to benefit from additional voltage margin between VRRM and the peak repetitive reverse voltage which enhances reliability. Additionally, D1 Schottky diodes exhibit reduced values of maximum forward voltage (VFM) and excellent reverse leakage current which ensures reliable high-voltage operation, even at high temperatures.


Table of new 1700 V Schottky diodes from onsemi.
New 1700 V Schottky diodes from onsemi


The new diodes are available in a TO-247-2 package or as a bare die to suit the mechanical constraints of all applications.


Ensuring Supply of SiC Devices

Given the performance and popularity of SiC devices in high-volume and high-growth applications such as solar and EVs, it is not surprising that the global supply chain is somewhat stretched. In some cases, this has capped the number of solar installations or EVs that can be shipped, meaning that a manufacturer’s ability to supply is key in the component selection process.

onsemi recently acquired GT Advanced Technology (GTAT),  and as a result, we are  a  large-scale SiC supplier with end-to-end capability, including volume boule growth, substrate, epitaxy, device fabrication, best-in-class integrated modules and discrete packaging solutions.

To meet the ongoing need for SiC devices, onsemi’s roadmap features significant increases in substrate, device and module capacity by 2024 – with even more ambitious plans for the medium term.

Featured

Automotive

The evolution of automotive with advancements in autonomous driving, ADAS, vehicle electrification, and the exponential increase in electronics content for vehicle platforms, including crucial semiconductor technologies, is altering the boundaries of personal transportation. Vehicle occupants are safer with high-performance CMOS imaging, LIDAR, radar, and semiconductor technologies, allowing sensor fusion algorithms the ability to detect critical details for immediate action.

[read_more]

This integration of semiconductors plays a pivotal role in enhancing the overall functionality and safety features of modern vehicles. Electrified powertrains reduce the overall CO2 output of the transportation sector while providing improved range and broadening the options for vehicle platforms traditionally based on the internal combustion engine (ICE).

Lighting is becoming more intelligent to supplement ADAS systems and to provide brand customization. LED-based applications provide higher-intensity illumination while reducing electrical loading and improving the driving experience.

With over 20 years of supporting the automotive sector and a complete portfolio of AEC-qualified products, onsemi enables customers to design high-reliability applications that create value for the end-user while delivering peak performance.

Industrial

Within the industrial space, onsemi helps OEMs develop innovative products and navigate the ongoing transformation across Energy Infrastructure, Industrial Automation, Smart Buildings and Power Conversion.

From wide-bandgap technologies (SiC and GaN), power MOSFETs, IGBTs and gate drivers to state-of-the-art imaging, depth sensing and connectivity devices, our versatile portfolio helps OEMs tailor their designs to fulfill the needs of every application.

With decades of experience in power conversion and management, motion and a variety of sensing and connectivity solutions, onsemi brings the expertise and technologies necessary to address present and future environmental challenges and to support the opportunities of e-mobility and the fourth industrial revolution.

Silicon Carbide (SiC) MOSFETs
These products are designed to be fast and rugged and include system benefits from high efficiency to reduced system size and cost.
Silicon Carbide (SiC) Diodes
These products use a completely new technology that provides superior switching performance and higher reliability to silicon.
Silicon Carbide (SiC) Modules
SiC Modules contain SiC MOSFETs and SiC diodes. The boost modules are used in the DC-DC stages of solar inverters. These modules use SiC MOSFETs and SiC diodes with voltage ratings of 1200 V.