CS51031

Fast P-Ch FET Buck Controller

The CS51031 is a switching controller for use in DC–DC converters. It can be used in the buck topology with a minimum number of external components. The CS51031 consists of a V_{CC} monitor for controlling the state of the device, 1.0 A power driver for controlling the gate of a discrete P–Channel transistor, fixed frequency oscillator, short circuit protection timer, programmable Soft–Start, precision reference, fast output voltage monitoring comparator, and output stage driver logic with latch.

The high frequency oscillator allows the use of small inductors and output capacitors, minimizing PC board area and systems cost. The programmable Soft–Start reduces current surges at startup. The short circuit protection timer significantly reduces the duty cycle to approximately 1/30 of its cycle during short circuit conditions.

Features

- 1.0 A Totem Pole Output Driver
- High Speed Oscillator (700 kHz max)
- No Stability Compensation Required
- Lossless Short Circuit Protection
- V_{CC} Monitor
- 2.0% Precision Reference
- Programmable Soft–Start
- Wide Ambient Temperature Range:
 - Industrial Grade: −40°C to 85°C
 - Commercial Grade: 0°C to 70°C
- Pb–Free Packages are Available

Figure 1. Typical Application Diagram
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Operating Temperature Range</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS51031YD8</td>
<td>−40°C < TA < 85°C</td>
<td>SOIC−8</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>CS51031YD8G</td>
<td></td>
<td>SOIC−8 (Pb−Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>CS51031YDR8</td>
<td></td>
<td>SOIC−8</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>CS51031YDR8G</td>
<td></td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>CS51031GD8</td>
<td>0°C < TA < 70°C</td>
<td>SOIC−8</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>CS51031GD8G</td>
<td></td>
<td>SOIC−8 (Pb−Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>CS51031GDR8</td>
<td></td>
<td>SOIC−8</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>CS51031GDR8G</td>
<td></td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage, V_CC</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Driver Supply Voltage, V_C</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Driver Output Voltage, V_GATE</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>C_OSC, CS, V_FB (Logic Pins)</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Steady State Output Current</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Junction Temperature, T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature Range, T_A</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range, T_S</td>
<td>−65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>ESD (Human Body Model)</td>
<td>2.0</td>
<td>kV</td>
</tr>
<tr>
<td>Wave Soldering: (through hole styles only) (Note 1)</td>
<td>260 peak</td>
<td>°C</td>
</tr>
<tr>
<td>Reflow (SMD styles only) (Note 2)</td>
<td>230 peak</td>
<td>°C</td>
</tr>
</tbody>
</table>

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
1. 10 sec. maximum.
2. 60 sec. max above 183°C.

PACKAGE LEAD DESCRIPTION

<table>
<thead>
<tr>
<th>Package Pin Number</th>
<th>Pin Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_GATE</td>
<td>Driver pin to gate of external P−Ch FET.</td>
</tr>
<tr>
<td>2</td>
<td>PGND</td>
<td>Output power stage ground connection.</td>
</tr>
<tr>
<td>3</td>
<td>C_OSC</td>
<td>Oscillator frequency programming capacitor.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Logic ground.</td>
</tr>
<tr>
<td>5</td>
<td>V_FB</td>
<td>Feedback voltage input.</td>
</tr>
<tr>
<td>6</td>
<td>V_CC</td>
<td>Logic supply voltage.</td>
</tr>
<tr>
<td>7</td>
<td>CS</td>
<td>Soft−Start and fault timing capacitor.</td>
</tr>
<tr>
<td>8</td>
<td>V_C</td>
<td>Driver supply voltage.</td>
</tr>
</tbody>
</table>
Electrical Characteristics

(Specifications apply for $4.5 \leq V_{CC} \leq 16$ V, $3.0 \leq V_C \leq 16$ V;
Industrial Grade: $-40^\circ C < T_A < 85^\circ C$; $-40^\circ C < T_J < 125^\circ C$; Commercial Grade: $0^\circ C < T_A < 70^\circ C$; $0^\circ C < T_J < 125^\circ C$, unless otherwise specified.)

Oscillator

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>$V_{FB} = 1.2$ V</td>
<td>$C_{OSC} = 470$ pF</td>
<td>160</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>Charge Current</td>
<td>$1.4 \leq V_{COSC} < 2.0$ V</td>
<td>–</td>
<td>110</td>
<td>–</td>
<td>μA</td>
</tr>
<tr>
<td>Discharge Current</td>
<td>$2.7 \leq V_{COSC} > 2.0$ V</td>
<td>–</td>
<td>660</td>
<td>–</td>
<td>μA</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>$1 - (I_{OFF}/I_{ON})$</td>
<td>80.0</td>
<td>83.3</td>
<td>–</td>
<td>%</td>
</tr>
</tbody>
</table>

Short Circuit Timer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Current</td>
<td>$1.0 \leq V_C < 2.0$ V</td>
<td>–</td>
<td>175</td>
<td>264</td>
<td>325</td>
</tr>
<tr>
<td>Fast Discharge Current</td>
<td>$2.55 \leq V_C > 2.4$ V</td>
<td>40</td>
<td>66</td>
<td>80</td>
<td>μA</td>
</tr>
<tr>
<td>Slow Discharge Current</td>
<td>$2.4 \leq V_C > 1.5$ V</td>
<td>4.0</td>
<td>6.0</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Start Fault Inhibit Time</td>
<td>$0 \leq V_C < 2.5$ V</td>
<td>0.70</td>
<td>0.85</td>
<td>1.40</td>
<td>ms</td>
</tr>
<tr>
<td>Valid Fault Time</td>
<td>$2.6 \leq V_C > 2.4$ V</td>
<td>0.2</td>
<td>0.3</td>
<td>0.45</td>
<td>ms</td>
</tr>
<tr>
<td>GATE Inhibit Time</td>
<td>$2.4 \leq V_C > 1.5$ V</td>
<td>9.0</td>
<td>15</td>
<td>23</td>
<td>ms</td>
</tr>
<tr>
<td>Fault Duty Cycle</td>
<td>–</td>
<td>2.5</td>
<td>3.1</td>
<td>4.6</td>
<td>%</td>
</tr>
</tbody>
</table>

CS Comparator

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Enable CS Voltage</td>
<td>–</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Max CS Voltage</td>
<td>$V_{FB} = 1.5$ V</td>
<td>–</td>
<td>2.6</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Fault Detect Voltage</td>
<td>V_C when GATE goes high</td>
<td>–</td>
<td>2.4</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Fault Inhibit Voltage</td>
<td>Minimum V_C</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Hold Off Release Voltage</td>
<td>$V_{FB} = 0$ V</td>
<td>0.4</td>
<td>0.7</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>Regulator Threshold Voltage Clamp</td>
<td>$V_C = 1.5$ V</td>
<td>0.725</td>
<td>0.866</td>
<td>1.035</td>
<td>V</td>
</tr>
</tbody>
</table>

V_{FB} Comparators

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator Threshold Voltage</td>
<td>$T_J = 25^\circ C$ (Note 3)</td>
<td>1.225</td>
<td>1.250</td>
<td>1.275</td>
<td>V</td>
</tr>
<tr>
<td>Fault Threshold Voltage</td>
<td>$T_J = -40$ to $125^\circ C$</td>
<td>1.210</td>
<td>1.250</td>
<td>1.290</td>
<td>V</td>
</tr>
<tr>
<td>Threshold Line Regulation</td>
<td>$4.5 \leq V_{CC} \leq 16$ V</td>
<td>–</td>
<td>6.0</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$V_{FB} = 0$ V</td>
<td>–</td>
<td>1.0</td>
<td>4.0</td>
<td>μA</td>
</tr>
<tr>
<td>Voltage Tracking</td>
<td>(Regulator Threshold – Fault Threshold Voltage)</td>
<td>70</td>
<td>100</td>
<td>120</td>
<td>mV</td>
</tr>
<tr>
<td>Input Hysteresis Voltage</td>
<td>–</td>
<td>–</td>
<td>4.0</td>
<td>20</td>
<td>mV</td>
</tr>
</tbody>
</table>

Power Stage

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATE DC Low Saturation Voltage</td>
<td>$V_{COSC} = 1.0$ V; $V_{CC} = 10$ V; $V_{FB} = 1.2$ V</td>
<td>–</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>GATE DC High Saturation Voltage</td>
<td>$V_{COSC} = 2.7$ V; $V_{CC} = 200$ mA Source: $V_C = V_{GATE}$</td>
<td>–</td>
<td>1.5</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>Rise Time</td>
<td>$C_{GATE} = 1.0$ nF; $1.5 \leq V_{GATE} < 9.0$ V</td>
<td>–</td>
<td>25</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>$C_{GATE} = 1.0$ nF; $9.0 \leq V_{GATE} > 1.5$ V</td>
<td>–</td>
<td>25</td>
<td>60</td>
<td>ns</td>
</tr>
</tbody>
</table>

V_{CC} Monitor

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn–On Threshold</td>
<td>–</td>
<td>4.200</td>
<td>4.400</td>
<td>4.600</td>
<td>V</td>
</tr>
<tr>
<td>Turn–Off Threshold</td>
<td>–</td>
<td>4.085</td>
<td>4.300</td>
<td>4.515</td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>65</td>
<td>130</td>
<td>200</td>
<td>mV</td>
</tr>
</tbody>
</table>

Current Drain

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>$4.5 \leq V_{CC} < 16$ V, Gate switching</td>
<td>–</td>
<td>4.5</td>
<td>6.0</td>
<td>mA</td>
</tr>
<tr>
<td>I_C</td>
<td>$3.0 \leq V_{CC} < 16$ V, Gate non–switching</td>
<td>–</td>
<td>2.7</td>
<td>4.0</td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown I_{CC}</td>
<td>$V_{CC} = 4.0$ V</td>
<td>–</td>
<td>500</td>
<td>900</td>
<td>μA</td>
</tr>
</tbody>
</table>

3. Guaranteed by design, not 100% tested in production.
CIRCUIT DESCRIPTION

THEORY OF OPERATION

Control Scheme

The CS51031 monitors the output voltage to determine when to turn on the P−Ch FET. If VFB falls below the internal reference voltage of 1.25 V during the oscillator’s charge cycle, the P−Ch FET is turned on and remains on for the duration of the charge time. The P−Ch FET gets turned off and remains off during the oscillator’s discharge time with the maximum duty cycle to 80%. It requires 7.0 mV typical, and 20 mV maximum ripple on the VFB pin is required to operate. This method of control does not require any loop stability compensation.
Startup

The CS51031 has an externally programmable Soft−Start feature that allows the output voltage to come up slowly, preventing voltage overshoot on the output. At startup, the voltage on all pins is zero. As V_{CC} rises, the V_{C} voltage along with the internal resistor R_G keeps the P-Ch FET off. As V_{CC} and V_C continue to rise, the oscillator capacitor (C_{OSC}) and the Soft−Start/Fault Timing capacitor (CS) charges via internal current sources. C_{OSC} gets charged by the current source IC and CS gets charged by the I_T source combination described by:

$$I_{CS} = I_T - \left(\frac{I_T}{55} + \frac{I_T}{5} \right)$$

The internal Holdoff Comparator ensures that the external P−Ch FET is off until $V_{CS} > 0.7\, V$, preventing the GATE flip−flop (F2) from being set. This allows the oscillator to reach its operating frequency before enabling the drive output. Soft−Start is obtained by clamping the V_{FB} comparator’s (A6) reference input to approximately 1/2 of the voltage at the CS pin during startup, permitting the control loop and the output voltage to slowly increase. Once the CS pin charges above the Holdoff Comparator trip point of 0.7 V, the low feedback to the V_{FB} Comparator sets the GATE flip−flop during C_{OSC}’s charge cycle. Once the GATE flip−flop is set, V_{GATE} goes low and turns on the P−Ch FET. When V_{CS} exceeds 2.3 V, the CS charge sense comparator (A4) sets the V_{FB} comparator reference to 1.25 V completing the startup cycle.

Lossless Short Circuit Protection

The CS51031 has “lossless” short circuit protection since there is no current sense resistor required. When the voltage at the CS pin (the fault timing capacitor voltage) reaches 2.5 V during startup, the fault timing circuitry is enabled by A2. During normal operation the CS voltage is 2.6 V. During a short circuit or a transient condition, the output voltage moves lower and the voltage at V_{FB} drops. If V_{FB} drops below 1.15 V, the output of the fault comparator goes high and the CS51031 goes into a fast discharge mode. The fault timing capacitor, CS, discharges to 2.4 V. If the V_{FB} voltage is still below 1.15 V when the CS pin reaches 2.4 V, a valid fault condition has been detected. The slow discharge comparator output goes high and enables gate G5 which sets the slow discharge flip−flop. The V_{GATE} flip−flop resets and the output switch is turned off. The fault timing capacitor is slowly discharged to 1.5 V. The CS51031 then enters a normal startup routine. If the fault is still present when the fault timing capacitor voltage reaches 2.5 V, the fast and slow discharge cycles repeat as shown in figure 3.

If the V_{FB} voltage is above 1.15 V when CS reaches 2.4 V a fault condition is not detected, normal operation resumes and CS charges back to 2.6 V. This reduces the chance of erroneously detecting a load transient as a fault condition.

![Figure 3. Voltage on Start Capacitor (V_{GS}), the Gate (V_{GATE}), and in the Feedback Loop (V_{FB}), During Startup, Normal and Fault Conditions](image-url)
Buck Regulator Operation

A block diagram of a typical buck regulator is shown in Figure 4. If we assume that the output transistor is initially off, and the system is in discontinuous operation, the inductor current \(I_L\) is zero and the output voltage is at its nominal value. The current drawn by the load is supplied by the output capacitor \(C_O\). When the voltage across \(C_O\) drops below the threshold established by the feedback resistors \(R_1\) and \(R_2\) and the reference voltage \(V_{REF}\), the power transistor \(Q_1\) switches on and current flows through the inductor to the output. The inductor current rises at a rate determined by \((V_{IN} - V_{OUT})/L\). The duty cycle (or “on” time) for the CS51031 is limited to 80%. If output voltage remains higher than nominal during the entire \(C_{OSC}\) change time, the \(Q_1\) does not turn on, skipping the pulse.

![Figure 4. Buck Regulator Block Diagram](image)

APPLICATIONS INFORMATION

CS51031 DESIGN EXAMPLE

Specifications 12 V to 5.0 V, 3.0 A Buck Controller

- \(V_{IN} = 12 \text{ V} \pm 20\% \text{ (i.e. 14.4 V max, 12 V nom, 9.6 V min)}\)
- \(V_{OUT} = 5.0 \text{ V} \pm 2\%\)
- \(I_{OUT} = 0.3 \text{ A to 3.0 A}\)
- Output ripple voltage < 50 mV max
- Efficiency > 80%
- \(f_{SW} = 200 \text{ kHz}\)

1) Duty Cycle Estimates

Since the maximum duty cycle \(D\), of the CS51031 is limited to 80\% min, it is necessary to estimate the duty cycle for the various input conditions over the complete operating range.

The duty cycle for a buck regulator operating in a continuous conduction mode is given by:

\[
D = \frac{V_{OUT} + V_F}{V_{IN} - V_{SAT}}
\]

where:

\(V_{SAT} = R_{DS(ON)} \times I_{OUT \ max}\) and \(R_{DS(ON)}\) is the value at \(T_J 100^\circ C\).

If \(V_F = 0.60 \text{ V}\) and \(V_{SAT} = 0.60 \text{ V}\) then the above equation becomes:

\[
D_{\text{MAX}} = \frac{5.6}{9.0} = 0.62
\]

\[
D_{\text{MIN}} = \frac{5.6}{13.8} = 0.40
\]

2) Switching Frequency and On and Off Time Calculations

Given that \(f_{SW} = 200 \text{ kHz}\) and \(D_{\text{MAX}} = 0.80\)

\[
T = \frac{1.0}{f_{SW}} = 5.0 \mu s
\]

\[
T_{\text{ON(max)}} = T \times D_{\text{MAX}} = 5.0 \mu s \times 0.62 \approx 3.0 \mu s
\]

\[
T_{\text{ON(min)}} = T \times D_{\text{MIN}} = 5.0 \mu s \times 0.40 = 2.0 \mu s
\]

\[
T_{\text{OFF(max)}} = T_{\text{ON(min)}} = 5.0 \mu s - 2.0 \mu s = 3.0 \mu s
\]

3) Oscillator Capacitor Selection

The switching frequency is set by \(C_{OSC}\), whose value is given by:

\[
C_{OSC \ in \ pF} = \frac{95 \times 10^6 + 6}{F_{SW} \left(1 + \frac{F_{SW}}{3 \times 10^6} - \left(\frac{3 \times 10^6}{F_{SW}}\right)^2\right)}
\]

http://onsemi.com
4) Inductor Selection
The inductor value is chosen for continuous mode operation down to 0.3 Amps.

The ripple current \(\Delta I = 2 \times I_{\text{OUT min}} = 2 \times 0.3 \text{ A} = 0.6 \text{ A} \).

\[
L_{\text{min}} = \frac{(V_{\text{OUT}} + V_D) \times T_{\text{OFF (max)}}}{\Delta I} = \frac{5.6 \text{ V} \times 3.0 \mu\text{s}}{0.6 \text{ A}} = 28 \mu\text{H}
\]

This is the minimum value of inductor to keep the ripple current < 0.6 A during normal operation.

A smaller inductor will result in larger ripple current. Ripple current at a minimum off time is:

\[
\Delta I = \frac{(V_{\text{OUT}} + V_F) \times T_{\text{OFF (min)}}}{L_{\text{MIN}}} = \frac{5.6 \text{ V} \times 2.0 \mu\text{s}}{28 \mu\text{H}} = 0.4 \text{ A}
\]

The core must not saturate with the maximum expected current, here given by:

\[
I_{\text{MAX}} = I_{\text{OUT}} + \Delta I/2 = 3.0 \text{ A} + 0.4 \text{ A}/2 = 3.2 \text{ A}
\]

5) Output Capacitor
The output capacitor and the inductor form a low pass filter. The output capacitor should have a low ESL and ESR. Low impedance aluminum electrolytic, tantalum or organic semiconductor capacitors are a good choice for an output capacitor. Low impedance aluminum are less expensive. Solid tantalum chip capacitors are available from a number of suppliers and are the best choice for surface mount applications.

The output capacitor limits the output ripple voltage. The CS51031 needs a maximum of 20 mV of output ripple for the feedback comparator to change state. If we assume that all the inductor ripple current flows through the output capacitor and that it is an ideal capacitor (i.e. zero ESR), the minimum capacitance needed to limit the output ripple to 50 mV peak-to-peak is given by:

\[
C = \frac{\Delta V}{8.0 \times f_{SW} \times \Delta V} = \frac{0.6 \text{ A}}{8.0 \times (200 \times 10^3 \text{Hz}) \times (50 \times 10^{-3} \text{V})} = 7.5 \mu\text{F}
\]

The minimum ESR needed to limit the output voltage ripple to 50 mV peak-to-peak is:

\[
\text{ESR} = \frac{\Delta V}{\Delta I} = \frac{50 \times 10^{-3}}{0.6 \text{ A}} = 83 \text{ m\Omega}
\]

The output capacitor should be chosen so that its ESR is less than 83 m\Omega.

During the minimum off time, the ripple current is 0.4 A and the output voltage ripple will be:

\[
\Delta V = \text{ESR} \times \Delta I = 83 \text{ m\Omega} \times 0.4 = 33 \text{ mV}
\]

6) \(V_{\text{FB}} \) Divider

\[
V_{\text{OUT}} = 1.25 V \left(\frac{R1 + R2}{R2} \right) = 1.25 V \left(\frac{R1}{R2} + 1.0 \right)
\]

The input bias current to the comparator is 4.0 \(\mu\text{A} \). The resistor divider current should be considerably higher than this to ensure that there is sufficient bias current. If we choose the divider current to be at least 250 times the bias current this permits a divider current of 1.0 mA and simplifies the calculations.

\[
\frac{5.0 \text{ V}}{1.0 \text{ mA}} = R1 + R2 = 5.0 \text{ K\Omega}
\]

Let \(R2 = 1.0 \text{ K} \).

Rearranging the divider equation gives:

\[
R1 = R2 \left(\frac{V_{\text{OUT}}}{1.25} - 1.0 \right) = 1.0 \text{ k\Omega} \left(\frac{5.0 \text{ V}}{1.25} - 1.0 \right) = 3.0 \text{ k\Omega}
\]

7) Divider Bypass Capacitor \(C_{RR} \)
Since the feedback resistors divide the output voltage by a factor of 4.0, i.e. 5.0 V/1.25 V = 4.0, it follows that the output ripple is also divided by four. This would require that the output ripple be at least 60 mV (4.0 \times 15 mV) to trip the feedback comparator. We use a capacitor \(C_{RR} \) to act as an AC short.

The ripple voltage frequency is equal to the switching frequency so we choose \(C_{RR} = 1.0 \text{ nF} \).

8) Soft−Start and Fault Timing Capacitor \(CS \)
CS performs several important functions. First it provides a delay time for load transients so that the IC does not enter a fault mode every time the load changes abruptly. Secondly it disables the fault circuitry during startup, it also provides Soft−Start by clamping the reference voltage during startup, allowing it to rise slowly, and, finally it controls the hiccup short circuit protection circuitry. This reduces the duty cycle to approximately 0.035 during short circuit conditions.

An important consideration in calculating CS is that it’s voltage does not reach 2.5 V (the voltage at which the fault detect circuitry is enabled) before \(V_{\text{FB}} \) reaches 1.15 V otherwise the power supply will never start.

If the \(V_{\text{FB}} \) pin reaches 1.15 V, the fault timing comparator will discharge CS and the supply will not start. For the \(V_{\text{FB}} \) voltage to reach 1.15 V the output voltage must be at least 4 \times 1.15 = 4.6 V.

If we choose an arbitrary startup time of 900 \(\mu\text{s} \), the value of CS is:

\[
\frac{\text{Startup}}{\text{Charge}} = \frac{CS \times 2.5 \text{ V}}{\text{Charge}}
\]

\[
CS_{\text{min}} = \frac{900 \mu\text{s} \times 264 \mu\text{A}}{2.5 \text{ V}} = 950 \text{ nF} \approx 0.1 \mu\text{F}
\]
The fault time is the sum of the slow discharge time, the fast discharge time, and the recharge time. It is dominated by the slow discharge time.

The first parameter is the slow discharge time, it is the time for the CS capacitor to discharge from 2.4 V to 1.5 V and is given by:

\[t_{\text{Slow Discharge}}(t) = \frac{CS \times (2.4 \text{ V} - 1.5 \text{ V})}{I_{\text{Discharge}}} \]

where \(I_{\text{Discharge}} \) is 6.0 \(\mu \text{A} \) typical.

The fast discharge time occurs when a fault is first detected. The CS capacitor is discharged from 2.5 V to 2.4 V.

\[t_{\text{Fast Discharge}}(t) = CS \times (2.5 \text{ V} - 2.4 \text{ V}) \]

where \(I_{\text{Fast Discharge}} \) is 66 \(\mu \text{A} \) typical.

The recharge time is the time for CS to charge from 1.5 V to 2.5 V.

\[t_{\text{Charge}}(t) = \frac{CS \times (2.5 \text{ V} - 1.5 \text{ V})}{I_{\text{Charge}}} \]

where \(I_{\text{Charge}} \) is 264 \(\mu \text{A} \) typical.

The fault time is given by:

\[t_{\text{Fault}} = CS \times (3787 + 1515 + 1.5 \times 10^5) \]

where \(t_{\text{Fault}} = 0.1 \times 10^{-6} \times 1.55 \times 10^5 = 15.5 \mu \text{s} \)

A larger value of CS will increase the fault time out time but will also increase the Soft−Start time.

9) Input Capacitor

The input capacitor reduces the peak currents drawn from the input supply and reduces the noise and ripple voltage on the VCC and VC pins. This capacitor must also ensure that the VCC remains above the UVLO voltage in the event of an output short circuit. A low ESR capacitor of at least 100 \(\mu \text{F} \) is good. A ceramic surface mount capacitor should also be connected between VCC and ground to filter high frequency noise.

10) MOSFET Selection

The CS51031 drives a P−Channel MOSFET. The \(V_{\text{GATE}} \) pin swings from GND to VC. The type of P−Ch FET used depends on the operating conditions but for input voltages below 7.0 V a logic level FET should be used.

A P−Ch FET with a continuous drain current (\(I_D \)) rating greater than the maximum output current is required.

The Gate−to−Source voltage \(V_{GS} \) and the Drain−to−Source Breakdown Voltage should be chosen based on the input supply voltage.

The power dissipation due to the conduction losses is given by:

\[PD = I_{\text{OUT}}^2 \times R_{DS(ON)} \times D \]

where \(R_{DS(ON)} \) is the value at \(T_J = 100 \degree \text{C} \)

The power dissipation of the P−Ch FET due to the switching losses is given by:

\[PD = 0.5 \times V_{IN} \times I_{\text{OUT}} \times (t_r) \times f_{SW} \]

where \(t_r = \text{Rise Time} \).

11) Diode Selection

The flyback or catch diode should be a Schottky diode because of it’s fast switching ability and low forward voltage drop. The current rating must be at least equal to the maximum output current. The breakdown voltage should be at least 20 V for this 12 V application.

The diode power dissipation is given by:

\[PD = I_{\text{OUT}} \times V_D \times (1.0 - D_{\text{min}}) \]
PACKAGE DIMENSIONS

SOIC–8 NB
CASE 751–07
ISSUE AG

NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

<table>
<thead>
<tr>
<th>DIM</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.80</td>
<td>0.189</td>
</tr>
<tr>
<td>B</td>
<td>3.80</td>
<td>0.150</td>
</tr>
<tr>
<td>C</td>
<td>1.35</td>
<td>0.053</td>
</tr>
<tr>
<td>D</td>
<td>0.33</td>
<td>0.013</td>
</tr>
<tr>
<td>G</td>
<td>1.27 BSC</td>
<td>0.050</td>
</tr>
<tr>
<td>H</td>
<td>0.19</td>
<td>0.007</td>
</tr>
<tr>
<td>J</td>
<td>0.40</td>
<td>0.016</td>
</tr>
<tr>
<td>K</td>
<td>0.25</td>
<td>0.100</td>
</tr>
<tr>
<td>M</td>
<td>5.80</td>
<td>0.229</td>
</tr>
</tbody>
</table>

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE THERMAL DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SOIC–8</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Junction</td>
<td>Typical</td>
<td>45</td>
</tr>
<tr>
<td>R Junction</td>
<td>Typical</td>
<td>165</td>
</tr>
</tbody>
</table>

http://onsemi.com