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Abstract 

Assembly language programs are efficient, but slow to develop 
and difficult to maintain.  A higher-level language like C can 
resolve these issues, but for ultra-low-power applications 
where efficiency is critical, how can the developer contend 
with the C compiler’s relatively inefficient code generation, in 
a modular, maintainable way?  This paper shows how the 
RCore C compiler allows C and assembler interfaces to be 
combined cleanly, for rapid development of ultra-low-power 
applications that are at once efficient and maintainable. 

Introduction 

Assembly language is the obvious design choice for ultra-low-
power application development based on a system with a 
programmable controller core such as the RCore DSP (1), 
because the most efficient code can be written.  However, there 
are well-known problems with assembler: 
1. It is too time-consuming for prototyping, development, 

test, and maintenance. 
2. Clean interfaces—which promote modularity, 

maintainability, and code re-use—can be difficult to 
design and enforce in assembly language. 

3. The learning curve for effective assembler programming 
is too steep for engineers who are new to the system.  For 
a new design with an embedded RCore, development 
engineers must understand the system’s peripherals, I/O 
interfaces, and possibly other embedded cores, in 
addition to programming the controller core (RCore).  
The situation is similar for customers using ASSPs, such 
as BelaSigna® 250, where the WOLA coprocessor is a 
second large block to absorb. 

The C programming language (2) could help with these issues, 
but some fundamental obstacles to using C for highly resource-
constrained DSP applications are: 
1. Many DSPs, including RCore, have an instruction set 

and memory architecture that are not a good fit for the C 
language, so the generated code is sub-optimal. 

2. The data types and operations (e.g., multiply-
accumulate) of the DSP are different from those of C, so 
effective signal-processing code is difficult to write in C. 

3. If there are existing libraries that are optimized for use in 
assembly language (math routines, hardware control), or 
existing signal-processing modules written in assembler, 
these can be difficult to assimilate with C calling 
conventions, data layout, and register usage. 

The RCore C compiler (3) was designed to encourage and 
support integration with assembly-language modules and 
interfaces to reap the benefits of both environments.  This 
paper shows—with a BelaSigna 250 signal-processing 
example—how to use RCore C and its assembly-language 
“glue” for development of ultra-low-power applications that 
are: 

• Cycle-efficient for signal processing. 
• Quick to prototype, develop, test, and change. 
• Modular and maintainable. 

Problem Domain Example: BelaSigna 250 Applications 

Audio applications for BelaSigna 250 provide examples of 
real-world embedded programs with ultra-low power budgets, 
running on an embedded RCore DSP.  Such applications are 
typically difficult to implement with a C-based design for the 
reasons stated above, so the BelaSigna 250 environment 
provides a challenging target for a port to RCore C.  This 
section gives background on the problem at hand by providing 
a brief overview of the BelaSigna 250 hardware and its 
assembly-language software framework. 

A. The BelaSigna 250 Chip 

BelaSigna 250 is an ultra-low-power audio processing system 
developed by AMIS for portable audio applications (4).  Fig. 1 
shows an overview of the blocks comprising BelaSigna 250. 

 

Fig. 1  BelaSigna 250 Block Structure 
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The RCore DSP is the system controller and performs general-
purpose signal processing functions, while the WOLA 
coprocessor is dedicated to vector-based filtering computations.  
The mixed-signal chip also contains full audio input and output 
stages, several peripherals and I/O interfaces, and other 
dedicated subsystems.  Reference (5) describes how this 
architecture is used to improve sound quality in audio headsets. 

B. BelaSigna 250 Application Software Framework 

The BelaSigna 250 hardware architecture is mature, so a 
significant body of software expertise and infrastructure exists; 
all of it written in assembler or intended for interfacing with 
assembly programs (6).  In summary, the software is layered 
from the bottom up as follows: 

• A “hardware symbols” header file gives names to all 
addresses, bit positions, and numeric values related 
to the chip. 

• Low-level libraries with associated headers provide 
interfaces for math primitives, peripherals, interfaces, 
and the WOLA coprocessor. 

• Code blocks or modules are larger-grain components, 
such as filters, that are built from the primitives. 

• Algorithms are code sets that combine lower-level 
components to implement high-level functionality 
such as noise reduction or echo cancellation. 

• Applications group the algorithms and other 
controlling code into a functioning system. 

C. Creating a BelaSigna 250 Application 

The BelaSigna 250 software framework demonstrates that with 
time and effort modularity can be achieved in assembler.  This 
highly structured assembly environment presents a challenge 
(and an excellent example) for integration with C; see Hoisting 
BelaSigna 250 Interfaces into the C World, below. 

In the context of the BelaSigna 250 software framework, an 
engineer developing a new application for BelaSigna 250 
would typically be implementing a new algorithm (such as a 
decoder for the AAC codec) and creating or modifying an 
application to integrate the new algorithm with existing ones.  
These activities—which could occur in an AMIS design team 
or a customer’s development lab—require knowledge and 
experience with the RCore DSP, other processors and 
peripherals in the system, the software framework and how it 
supports parallel processing for high performance and low 
power, and the characteristics of the existing algorithms, in 
addition to the specific expertise with the new algorithm. 

This learning curve is not particular to BelaSigna 250; it is 
typical of RCore-based applications which are resource 
constrained.  Climbing that learning curve by creating new 
algorithms in RCore assembly language is a daunting task for 
developers, especially if the algorithm is specified (or a 
reference implementation is available) in a language like C. 

The RCore C Language 

The RCore C compiler implements ISO C90 (the 1990 C 
standard) plus several extensions for the RCore DSP, but with 
no floating-point support.  It generates code for the 
BelaSigna 250 version of the DSP core (1), and is incorporated 
in the SignaKlara® Tools Integrated Development 
Environment (7). RCore C is a freestanding implementation; C 
library facilities that depend on an operating system are not 
provided (3).1 

A. The Problem: Inefficient Signal-Processing Code 

The RCore C implementation achieves the basic goal of a C 
compiler: code portability.  For example, a portable Bluetooth 
protocol stack was compiled with no substantial modifications.  
However, as expected, the generated code is less than optimal 
in some key areas: 

• Small loops are slow because the REP instruction 
(for single-instruction loops) is not generated. 

• Multiply-accumulate (MAC) loops do not use the 
optimal pipelined approach, so each MAC takes 
several cycles instead of a single cycle. 

• The accumulator’s guard bits (the AE register) are 
unavailable in C, so if guard bits are needed, all 
operations must be done using 32-bit long values. 

• Accessing stack-based data such as function 
parameters and local variables is cumbersome 
because the RCore’s instruction set has no stack-
offset addressing, and stack address computations 
displace expression results from the accumulator. 

These deficiencies are generally not critical during the 
prototyping stage of development when correct, bit-true results 
are more important than performance. 

In a worst-case scenario such as a sum-of-products loop in a 
filter, these issues can compound to produce code that is up to 
two orders of magnitude slower than the best assembly code, 
and uses much more program memory.  Small sections of code 
with large performance issues like this typically occupy 5% of 
the code while using 95% of the execution time (embedded 
signal-processing applications tend to follow a more extreme 
form of the 90/10 rule), so they are obvious areas for 
improvement when development moves into the production 
phase.  RCore C facilities for enhancing performance are 
described in the following sections. 

B. Facilities for Improving Generated Code 

Several extensions to standard C allow developers to improve 
the performance of the generated code.  They can all be used 
conditionally (using the C preprocessor) so that the code still 
compiles with a workstation-based compiler for offline 
exploration, and can be compiled without optimizations for the 
                                                                    
1 To date no operating system has been written for any RCore-based device, to 
the authors’ knowledge, because memory and CPU cycles are so limited. 
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purpose of regression-testing the optimized code.  In brief: 
• The register keyword is more flexible: both local 

and global variables can be bound to specific 
machine registers.  The first two function parameters 
are passed in registers as well, which reduces the 
accessing overhead. 

• Functions can specify that local variables be stored 
statically to reduce overhead for stack accesses. 

• Data can be declared in all three memory spaces and 
can be further declared to reside in low XMEM or 
YMEM, for quick access. 

• Control-flow extensions support low-overhead 
looping and indirect branching with jump tables. 

C. Interfacing with Assembly Code 

When code uses data types and machine structures that do not 
fit the C model—such as the sum-of-products example 
above—assembly language can be used to achieve the 
performance requirements.  The traditional method for 
integrating assembly modules—where assembler code is 
separately compiled, linked into the executable and called from 
C—suffers from the following drawbacks: 
Complexity – the code to handle the compiler’s function-
calling sequence often involves managing many details about 
the stack and register usage.  The details are often bypassed by 
compiling (to assembler) a skeleton version of the function in 
C to use as a starting point, but even this approach can fail 
when the details of the calling sequence depend on the registers 
used, whether the function calls another function, etc. 
Susceptibility to change – changes to the parameter list, 
compile-time options, or even a new version of the compiler 
can require small changes throughout the assembly module.  
Stack offsets and register usage can change, often with no 
warning given by the compiler or assembler. 
Lack of modularity – the assembly module is in a separate 
source file; therefore, it is not right at hand when the C code 
that calls it is edited, and vice versa.  No automated check 
ensures that the C declaration of the function matches its 
assembler implementation.  The assembler function must be 
external, so C’s file scope cannot be used to hide the function 
from code that need not be aware of it. 
Coarse granularity – assembly-language components can 
only be accessed through C’s function-call interface.  If the C 
programmer really just needs to execute one or two machine 
instructions, the overhead of a function call is too great. 

To address these issues, RCore C provides inline assembly 
language, which integrates assembly-language code directly 
into a C-code file.  Inline assembly language usually appears 
within a C function body, and is written within special 
delimiters, similar to a multi-line comment: 

/$ 
    CLB A        // Normalize A 
    SHFT A 
 $/ 

Fine-grain assembler use is obviously supported.  However, the 
real power of inline assembler comes from its symbolic 
connections to the C code in which it is embedded.  Assembly 
instructions can refer to C elements as follows: 

@variable – expands to a register name for register variables, a 
stack offset for function parameters and local variables, or a 
label for statically-allocated variables (and functions). 

@sizeof(expression) – expands to a constant with the value 
that the C sizeof() operator would return for the expression. 

@struct-type.member – produces the offset of the member 
within its struct type.  Nested struct members are allowed. 

One common idiom with inline assembler is to define a 
function in C, but implement the whole executable body of the 
function with assembly code: 

int func(register int a, 
         register XMEM int *xp) 
{ 
    register YMEM int *yp; 
    register int r @ REG_AH; 
    /$ 
        // Assembler using @a, @xp, @yp, @r 
        ... 
     $/ 
    return r; 
} 

This is an alternative to the traditional approach (separate 
assembler functions) that resolves all of the drawbacks of that 
approach.  The C compiler manages the stack frame and 
register allocation, while the assembly code is tightly but 
symbolically integrated with the surrounding C code in the 
source file, so it is robust when changes occur.  The compiler 
also checks calls to the function for correctly-typed arguments. 

Interrupt handlers can be defined in RCore C by using the 
_INTERRUPT keyword in a function definition.  This allows 
the developer to implement first versions of low-level interrupt 
handling code in C, without worrying about which registers to 
save, how to save and restore status, or re-enabling interrupts.  
Interrupt functions also work well with inline assembler. 

Hoisting BelaSigna 250 Interfaces into the C World 

We now look at porting the assembler interfaces of the 
BelaSigna 250 software framework to C, using the facilities of 
RCore C described above.  We will walk through the layers as 
they are described in BelaSigna 250 Application Software 
Framework above, looking at examples from each layer. 

The hardware symbols header file was designed for use in 
assembly language, but the symbols are useful in BelaSigna 
250 C programs, too.  It can be #include’d in the usual way: 
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#include <sk25_hw.inc> 

All of the symbols can now be used in the C program.  This 
“cheat”—using an assembly-language header file unchanged in 
a C program—illustrates a final aspect of RCore C’s rich 
facilities for cooperation with assembly language: the RCore 
assembly language tools use (and have always used) the same 
C preprocessor to provide assembler macros, symbolic names 
for constants, conditional compilation and file inclusion, as the 
RCore C compiler.  This C preprocessor provides the usual 
standard facilities, plus extensions like multi-line macros to 
facilitate its use for macro assembler programming.  These are 
available in C programs as well as assembly language. 

The second layer—low-level libraries for math primitives, 
system facilities and the WOLA—are accessed similarly, using 
#include to pull in the assembly-language headers: 

#include <bat.inc> 
#include <boss.inc> 
#include <wola.inc> 

These headers contain symbolic names like the hardware 
symbols header, but they also implement assembler macros 
and have associated libraries containing assembled functions.  
The assembler macros can be used directly in a C function, 
with inline assembly.  Sometimes it is easiest to simply steal 
existing assembler code and use pieces of it in C: 

void SystemInitialize(void) 
{ 
  /$ 
        // Set up interrupt vectors 
    Set_Int_Vect(D_VECT_IOBLOCK, _iop_isr) 
        // Analog block configuration... 
        // High voltage mode 
    Write_AReg(A_PSU_CTRL, POWER_CFG) 
    Sys_Delay(100) 
        // Configure sampling frequency 
    Write_AReg(A_ADC_CTRL, ADC_CTRL_CFG) 
    ... 
        // Configure and start IOP 
    Set_Iop_Cfg(IOP_CFG) 
  $/ 
} 

Library functions can be accessed similarly. Macros that 
contain .extern directives allow the function to be called 
from inline assembler, while a C declaration for a function 
must be written to call it from C.  A wrapper combines the two: 

int BAT_db_rms(register int db_val) 
{ 
    register int result @ REG_AH; 
 
    /$ 
        RES ST, 7       // Signed mode 
        LD AH, @db_val  // Get parameter 
        DB_RMS          // Call _db_rms 
     $/ 
 
    return result; 
} 

Here, a wrapper function invokes the DB_RMS macro from the 
Basic Algorithm Toolkit (BAT); the macro expands to a call to 
the library’s _db_rms function that the macro declared with 
a .extern directive.  The rest of the C application uses the C 
interface BAT_db_rms() to call the BAT function. 
The third layer in the BelaSigna 250 software framework 
consists of existing computational blocks (e.g., filters) that can 
be integrated in the same fashion as the low-level libraries.  
New blocks can be added, using C and assembler as desired or 
convenient, in the style of the previous examples. 

A full BelaSigna 250 application can now be assembled.  If a 
new algorithm (fourth layer) is to be implemented for the 
application, its routines will likely be prototyped in C to speed 
development.  Once the algorithm is behaving correctly, the 
time-consuming sections can be optimized as necessary. 

The application layer integrates code and data from the various 
algorithms that the application uses.  The application’s main() 
function typically executes initialization routines for the 
algorithms and the system as a whole, and then enters its main 
loop that coordinates execution of the various routines.  These 
are usually interleaved with interrupt handlers, which can also 
be written in C for tight integration with the application. 

In summary, the assembler interfaces of the BelaSigna 250 
software framework were not in fact ported to C, in the sense 
of being re-written in C.  Rather, they were directly integrated 
with C code, as is.  The rich inline assembly language facility 
and the shared C preprocessor allow RCore C and assembly 
language to be integrated seamlessly.  This combined approach 
accelerates initial development as well as performance tuning.  
Optimized code is modular and maintainable because related 
elements are kept together and the strengths of the two 
languages are leveraged: the efficiency and notational brevity 
of macro assembler programming, with the automatic code 
generation and type checking of C. 

Benefits of C for Testing and Teaching 

The preceding sections have focused on selective optimization 
of RCore C programs to satisfy the efficiency requirements of 
production ultra-low-power application code.  The benefits of 
C through the development lifecycle have been discussed—
exploring pre-production algorithms on the hardware entirely 
in C, optimizing incrementally, simpler maintenance—but 
always with a focus on dealing with the inefficiencies of C by 
optimizing, typically using assembly language. 

Some of the code that is associated with an ultra-low-power 
application never needs to be optimized, however.  Using C for 
these code sets is especially beneficial since they are not 
shipped as part of the application or product, and thus need not 
be optimized: 

• Test scaffolding code and unit-test modules often 
run on test jigs or development platforms where 
power consumption and timing are not critical; 
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correct output results are the key. 
• Reference versions of code blocks or whole 

algorithms are typically written entirely in C for 
portability and ease of understanding.  This original 
form can be retained and used for regression-testing 
optimized versions of the code. 

• Utility programs for product setup, configuration, 
calibration, or problem diagnosis usually do not 
have strict performance requirements. 

• Example or template code must be clear and easy to 
understand, primarily.  It might be provided by an 
internal design team to a customer as a starting point 
for the customer’s product integration efforts 
(involving optimization), for example. 

C is an obvious benefit for these programs, to further accelerate 
application development, test, and maintenance. 

Conclusions 

We have investigated the benefits of RCore C in the 
development of ultra-low-power applications.  Poor code 
generation is a common problem for C implementations on 
DSP cores, so we evaluated RCore C’s optimizing extensions 
and assembly-language integration using the BelaSigna 250 
application software framework.  Our goal was to determine 
whether RCore C is an effective language for development of 
real-world ultra-low-power applications that are very efficient, 
yet still modular and maintainable. 

We conclude that RCore C is an excellent tool for developing 
ultra-low-power applications because its extensions and 
seamless integration with assembly language provide the 
benefits of both environments: 

• Rapid prototyping, development, testing, changing. 
• Modular, re-usable, maintainable code. 
• Ultimate efficiency, when necessary and without the 

usual drawbacks of separately-compiled assembler. 
• Ability to use existing assembler-based interfaces 

directly in C. 
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