
© 2007 AMI Semiconductor, Inc.

Ultra-Low-Power Application Development with RCore C and Assembler
Alan Rooks, Etienne Cornu

AMI Semiconductor Inc. | www.amis.com

Abstract

Assembly language programs are efficient, but slow to develop
and difficult to maintain. A higher-level language like C can
resolve these issues, but for ultra-low-power applications
where efficiency is critical, how can the developer contend
with the C compiler’s relatively inefficient code generation, in
a modular, maintainable way? This paper shows how the
RCore C compiler allows C and assembler interfaces to be
combined cleanly, for rapid development of ultra-low-power
applications that are at once efficient and maintainable.

Introduction

Assembly language is the obvious design choice for ultra-low-
power application development based on a system with a
programmable controller core such as the RCore DSP (1),
because the most efficient code can be written. However, there
are well-known problems with assembler:
1. It is too time-consuming for prototyping, development,

test, and maintenance.
2. Clean interfaces—which promote modularity,

maintainability, and code re-use—can be difficult to
design and enforce in assembly language.

3. The learning curve for effective assembler programming
is too steep for engineers who are new to the system. For
a new design with an embedded RCore, development
engineers must understand the system’s peripherals, I/O
interfaces, and possibly other embedded cores, in
addition to programming the controller core (RCore).
The situation is similar for customers using ASSPs, such
as BelaSigna® 250, where the WOLA coprocessor is a
second large block to absorb.

The C programming language (2) could help with these issues,
but some fundamental obstacles to using C for highly resource-
constrained DSP applications are:
1. Many DSPs, including RCore, have an instruction set

and memory architecture that are not a good fit for the C
language, so the generated code is sub-optimal.

2. The data types and operations (e.g., multiply-
accumulate) of the DSP are different from those of C, so
effective signal-processing code is difficult to write in C.

3. If there are existing libraries that are optimized for use in
assembly language (math routines, hardware control), or
existing signal-processing modules written in assembler,
these can be difficult to assimilate with C calling
conventions, data layout, and register usage.

The RCore C compiler (3) was designed to encourage and
support integration with assembly-language modules and
interfaces to reap the benefits of both environments. This
paper shows—with a BelaSigna 250 signal-processing
example—how to use RCore C and its assembly-language
“glue” for development of ultra-low-power applications that
are:

• Cycle-efficient for signal processing.
• Quick to prototype, develop, test, and change.
• Modular and maintainable.

Problem Domain Example: BelaSigna 250 Applications

Audio applications for BelaSigna 250 provide examples of
real-world embedded programs with ultra-low power budgets,
running on an embedded RCore DSP. Such applications are
typically difficult to implement with a C-based design for the
reasons stated above, so the BelaSigna 250 environment
provides a challenging target for a port to RCore C. This
section gives background on the problem at hand by providing
a brief overview of the BelaSigna 250 hardware and its
assembly-language software framework.

A. The BelaSigna 250 Chip

BelaSigna 250 is an ultra-low-power audio processing system
developed by AMIS for portable audio applications (4). Fig. 1
shows an overview of the blocks comprising BelaSigna 250.

Fig. 1 BelaSigna 250 Block Structure

Ultra-Low-Power Application Development with RCore C and Assembler 2

© 2007 AMI Semiconductor, Inc.

The RCore DSP is the system controller and performs general-
purpose signal processing functions, while the WOLA
coprocessor is dedicated to vector-based filtering computations.
The mixed-signal chip also contains full audio input and output
stages, several peripherals and I/O interfaces, and other
dedicated subsystems. Reference (5) describes how this
architecture is used to improve sound quality in audio headsets.

B. BelaSigna 250 Application Software Framework

The BelaSigna 250 hardware architecture is mature, so a
significant body of software expertise and infrastructure exists;
all of it written in assembler or intended for interfacing with
assembly programs (6). In summary, the software is layered
from the bottom up as follows:

• A “hardware symbols” header file gives names to all
addresses, bit positions, and numeric values related
to the chip.

• Low-level libraries with associated headers provide
interfaces for math primitives, peripherals, interfaces,
and the WOLA coprocessor.

• Code blocks or modules are larger-grain components,
such as filters, that are built from the primitives.

• Algorithms are code sets that combine lower-level
components to implement high-level functionality
such as noise reduction or echo cancellation.

• Applications group the algorithms and other
controlling code into a functioning system.

C. Creating a BelaSigna 250 Application

The BelaSigna 250 software framework demonstrates that with
time and effort modularity can be achieved in assembler. This
highly structured assembly environment presents a challenge
(and an excellent example) for integration with C; see Hoisting
BelaSigna 250 Interfaces into the C World, below.

In the context of the BelaSigna 250 software framework, an
engineer developing a new application for BelaSigna 250
would typically be implementing a new algorithm (such as a
decoder for the AAC codec) and creating or modifying an
application to integrate the new algorithm with existing ones.
These activities—which could occur in an AMIS design team
or a customer’s development lab—require knowledge and
experience with the RCore DSP, other processors and
peripherals in the system, the software framework and how it
supports parallel processing for high performance and low
power, and the characteristics of the existing algorithms, in
addition to the specific expertise with the new algorithm.

This learning curve is not particular to BelaSigna 250; it is
typical of RCore-based applications which are resource
constrained. Climbing that learning curve by creating new
algorithms in RCore assembly language is a daunting task for
developers, especially if the algorithm is specified (or a
reference implementation is available) in a language like C.

The RCore C Language

The RCore C compiler implements ISO C90 (the 1990 C
standard) plus several extensions for the RCore DSP, but with
no floating-point support. It generates code for the
BelaSigna 250 version of the DSP core (1), and is incorporated
in the SignaKlara® Tools Integrated Development
Environment (7). RCore C is a freestanding implementation; C
library facilities that depend on an operating system are not
provided (3).1

A. The Problem: Inefficient Signal-Processing Code

The RCore C implementation achieves the basic goal of a C
compiler: code portability. For example, a portable Bluetooth
protocol stack was compiled with no substantial modifications.
However, as expected, the generated code is less than optimal
in some key areas:

• Small loops are slow because the REP instruction
(for single-instruction loops) is not generated.

• Multiply-accumulate (MAC) loops do not use the
optimal pipelined approach, so each MAC takes
several cycles instead of a single cycle.

• The accumulator’s guard bits (the AE register) are
unavailable in C, so if guard bits are needed, all
operations must be done using 32-bit long values.

• Accessing stack-based data such as function
parameters and local variables is cumbersome
because the RCore’s instruction set has no stack-
offset addressing, and stack address computations
displace expression results from the accumulator.

These deficiencies are generally not critical during the
prototyping stage of development when correct, bit-true results
are more important than performance.

In a worst-case scenario such as a sum-of-products loop in a
filter, these issues can compound to produce code that is up to
two orders of magnitude slower than the best assembly code,
and uses much more program memory. Small sections of code
with large performance issues like this typically occupy 5% of
the code while using 95% of the execution time (embedded
signal-processing applications tend to follow a more extreme
form of the 90/10 rule), so they are obvious areas for
improvement when development moves into the production
phase. RCore C facilities for enhancing performance are
described in the following sections.

B. Facilities for Improving Generated Code

Several extensions to standard C allow developers to improve
the performance of the generated code. They can all be used
conditionally (using the C preprocessor) so that the code still
compiles with a workstation-based compiler for offline
exploration, and can be compiled without optimizations for the

1 To date no operating system has been written for any RCore-based device, to
the authors’ knowledge, because memory and CPU cycles are so limited.

Ultra-Low-Power Application Development with RCore C and Assembler 3

© 2007 AMI Semiconductor, Inc.

purpose of regression-testing the optimized code. In brief:
• The register keyword is more flexible: both local

and global variables can be bound to specific
machine registers. The first two function parameters
are passed in registers as well, which reduces the
accessing overhead.

• Functions can specify that local variables be stored
statically to reduce overhead for stack accesses.

• Data can be declared in all three memory spaces and
can be further declared to reside in low XMEM or
YMEM, for quick access.

• Control-flow extensions support low-overhead
looping and indirect branching with jump tables.

C. Interfacing with Assembly Code

When code uses data types and machine structures that do not
fit the C model—such as the sum-of-products example
above—assembly language can be used to achieve the
performance requirements. The traditional method for
integrating assembly modules—where assembler code is
separately compiled, linked into the executable and called from
C—suffers from the following drawbacks:
Complexity – the code to handle the compiler’s function-
calling sequence often involves managing many details about
the stack and register usage. The details are often bypassed by
compiling (to assembler) a skeleton version of the function in
C to use as a starting point, but even this approach can fail
when the details of the calling sequence depend on the registers
used, whether the function calls another function, etc.
Susceptibility to change – changes to the parameter list,
compile-time options, or even a new version of the compiler
can require small changes throughout the assembly module.
Stack offsets and register usage can change, often with no
warning given by the compiler or assembler.
Lack of modularity – the assembly module is in a separate
source file; therefore, it is not right at hand when the C code
that calls it is edited, and vice versa. No automated check
ensures that the C declaration of the function matches its
assembler implementation. The assembler function must be
external, so C’s file scope cannot be used to hide the function
from code that need not be aware of it.
Coarse granularity – assembly-language components can
only be accessed through C’s function-call interface. If the C
programmer really just needs to execute one or two machine
instructions, the overhead of a function call is too great.

To address these issues, RCore C provides inline assembly
language, which integrates assembly-language code directly
into a C-code file. Inline assembly language usually appears
within a C function body, and is written within special
delimiters, similar to a multi-line comment:

/$
 CLB A // Normalize A
 SHFT A
 $/

Fine-grain assembler use is obviously supported. However, the
real power of inline assembler comes from its symbolic
connections to the C code in which it is embedded. Assembly
instructions can refer to C elements as follows:

@variable – expands to a register name for register variables, a
stack offset for function parameters and local variables, or a
label for statically-allocated variables (and functions).

@sizeof(expression) – expands to a constant with the value
that the C sizeof() operator would return for the expression.

@struct-type.member – produces the offset of the member
within its struct type. Nested struct members are allowed.

One common idiom with inline assembler is to define a
function in C, but implement the whole executable body of the
function with assembly code:

int func(register int a,
 register XMEM int *xp)
{
 register YMEM int *yp;
 register int r @ REG_AH;
 /$
 // Assembler using @a, @xp, @yp, @r
 ...
 $/
 return r;
}

This is an alternative to the traditional approach (separate
assembler functions) that resolves all of the drawbacks of that
approach. The C compiler manages the stack frame and
register allocation, while the assembly code is tightly but
symbolically integrated with the surrounding C code in the
source file, so it is robust when changes occur. The compiler
also checks calls to the function for correctly-typed arguments.

Interrupt handlers can be defined in RCore C by using the
_INTERRUPT keyword in a function definition. This allows
the developer to implement first versions of low-level interrupt
handling code in C, without worrying about which registers to
save, how to save and restore status, or re-enabling interrupts.
Interrupt functions also work well with inline assembler.

Hoisting BelaSigna 250 Interfaces into the C World

We now look at porting the assembler interfaces of the
BelaSigna 250 software framework to C, using the facilities of
RCore C described above. We will walk through the layers as
they are described in BelaSigna 250 Application Software
Framework above, looking at examples from each layer.

The hardware symbols header file was designed for use in
assembly language, but the symbols are useful in BelaSigna
250 C programs, too. It can be #include’d in the usual way:

Ultra-Low-Power Application Development with RCore C and Assembler 4

© 2007 AMI Semiconductor, Inc.

#include <sk25_hw.inc>

All of the symbols can now be used in the C program. This
“cheat”—using an assembly-language header file unchanged in
a C program—illustrates a final aspect of RCore C’s rich
facilities for cooperation with assembly language: the RCore
assembly language tools use (and have always used) the same
C preprocessor to provide assembler macros, symbolic names
for constants, conditional compilation and file inclusion, as the
RCore C compiler. This C preprocessor provides the usual
standard facilities, plus extensions like multi-line macros to
facilitate its use for macro assembler programming. These are
available in C programs as well as assembly language.

The second layer—low-level libraries for math primitives,
system facilities and the WOLA—are accessed similarly, using
#include to pull in the assembly-language headers:

#include <bat.inc>
#include <boss.inc>
#include <wola.inc>

These headers contain symbolic names like the hardware
symbols header, but they also implement assembler macros
and have associated libraries containing assembled functions.
The assembler macros can be used directly in a C function,
with inline assembly. Sometimes it is easiest to simply steal
existing assembler code and use pieces of it in C:

void SystemInitialize(void)
{
 /$
 // Set up interrupt vectors
 Set_Int_Vect(D_VECT_IOBLOCK, _iop_isr)
 // Analog block configuration...
 // High voltage mode
 Write_AReg(A_PSU_CTRL, POWER_CFG)
 Sys_Delay(100)
 // Configure sampling frequency
 Write_AReg(A_ADC_CTRL, ADC_CTRL_CFG)
 ...
 // Configure and start IOP
 Set_Iop_Cfg(IOP_CFG)
 $/
}

Library functions can be accessed similarly. Macros that
contain .extern directives allow the function to be called
from inline assembler, while a C declaration for a function
must be written to call it from C. A wrapper combines the two:

int BAT_db_rms(register int db_val)
{
 register int result @ REG_AH;

 /$
 RES ST, 7 // Signed mode
 LD AH, @db_val // Get parameter
 DB_RMS // Call _db_rms
 $/

 return result;
}

Here, a wrapper function invokes the DB_RMS macro from the
Basic Algorithm Toolkit (BAT); the macro expands to a call to
the library’s _db_rms function that the macro declared with
a .extern directive. The rest of the C application uses the C
interface BAT_db_rms() to call the BAT function.
The third layer in the BelaSigna 250 software framework
consists of existing computational blocks (e.g., filters) that can
be integrated in the same fashion as the low-level libraries.
New blocks can be added, using C and assembler as desired or
convenient, in the style of the previous examples.

A full BelaSigna 250 application can now be assembled. If a
new algorithm (fourth layer) is to be implemented for the
application, its routines will likely be prototyped in C to speed
development. Once the algorithm is behaving correctly, the
time-consuming sections can be optimized as necessary.

The application layer integrates code and data from the various
algorithms that the application uses. The application’s main()
function typically executes initialization routines for the
algorithms and the system as a whole, and then enters its main
loop that coordinates execution of the various routines. These
are usually interleaved with interrupt handlers, which can also
be written in C for tight integration with the application.

In summary, the assembler interfaces of the BelaSigna 250
software framework were not in fact ported to C, in the sense
of being re-written in C. Rather, they were directly integrated
with C code, as is. The rich inline assembly language facility
and the shared C preprocessor allow RCore C and assembly
language to be integrated seamlessly. This combined approach
accelerates initial development as well as performance tuning.
Optimized code is modular and maintainable because related
elements are kept together and the strengths of the two
languages are leveraged: the efficiency and notational brevity
of macro assembler programming, with the automatic code
generation and type checking of C.

Benefits of C for Testing and Teaching

The preceding sections have focused on selective optimization
of RCore C programs to satisfy the efficiency requirements of
production ultra-low-power application code. The benefits of
C through the development lifecycle have been discussed—
exploring pre-production algorithms on the hardware entirely
in C, optimizing incrementally, simpler maintenance—but
always with a focus on dealing with the inefficiencies of C by
optimizing, typically using assembly language.

Some of the code that is associated with an ultra-low-power
application never needs to be optimized, however. Using C for
these code sets is especially beneficial since they are not
shipped as part of the application or product, and thus need not
be optimized:

• Test scaffolding code and unit-test modules often
run on test jigs or development platforms where
power consumption and timing are not critical;

Ultra-Low-Power Application Development with RCore C and Assembler 5

correct output results are the key.
• Reference versions of code blocks or whole

algorithms are typically written entirely in C for
portability and ease of understanding. This original
form can be retained and used for regression-testing
optimized versions of the code.

• Utility programs for product setup, configuration,
calibration, or problem diagnosis usually do not
have strict performance requirements.

• Example or template code must be clear and easy to
understand, primarily. It might be provided by an
internal design team to a customer as a starting point
for the customer’s product integration efforts
(involving optimization), for example.

C is an obvious benefit for these programs, to further accelerate
application development, test, and maintenance.

Conclusions

We have investigated the benefits of RCore C in the
development of ultra-low-power applications. Poor code
generation is a common problem for C implementations on
DSP cores, so we evaluated RCore C’s optimizing extensions
and assembly-language integration using the BelaSigna 250
application software framework. Our goal was to determine
whether RCore C is an effective language for development of
real-world ultra-low-power applications that are very efficient,
yet still modular and maintainable.

We conclude that RCore C is an excellent tool for developing
ultra-low-power applications because its extensions and
seamless integration with assembly language provide the
benefits of both environments:

• Rapid prototyping, development, testing, changing.
• Modular, re-usable, maintainable code.
• Ultimate efficiency, when necessary and without the

usual drawbacks of separately-compiled assembler.
• Ability to use existing assembler-based interfaces

directly in C.

References
(1) AMI Semiconductor, RCore DSP Architecture Manual, SignaKlara Tools

EDK 4.1, 2007.
(2) B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd

Edition, Prentice Hall, 1988.
(3) AMI Semiconductor, RCore C User’s Guide for BelaSigna 250,

SignaKlara Tools EDK 4.1, 2007.
(4) AMI Semiconductor, Hardware Reference Manual for Orela® 4500 and

BelaSigna 250, SignaKlara Tools EDK 4.1, 2007.
(5) K. Tam and E. Cornu, “System architecture for audio signal processing in

headsets”, Proc. of the Global Signal Processing Times Conference
(GSPx), 2005.

(6) E. Cornu, T. Soltani and J. Johnson, “A framework for automatic
generation of audio processing applications on a dual-core system”, Proc.
of the Global Signal Processing Times Conference (GSPx), 2005.

(7) AMI Semiconductor, Integrated Development Environment User’s Guide,
SignaKlara Tools EDK 4.1, 2007.

For more information and sales office locations, please visit the AMI Semiconductor web site at: www.amis.com

Worldwide Headquarters
AMI Semiconductor, Inc.
2300 Buckskin Road
Pocatello, ID 83201 USA
Tel: +1.208.233.4690

European Headquarters
AMI Semiconductor Belgium BVBA
Westerring 15
B-9700 Oudenaarde, Belgium
Tel: +32 (0) 55.33.22.11

Copyright © 2007 AMI Semiconductor, Inc. All rights reserved. AMI Semiconductor, BelaSigna, Orela, and SignaKlara are either trademarks or registered
trademarks of AMI Semiconductor, Inc. All other brands, product names and company names mentioned herein may be trademarks or registered trademarks of their
respective holders.

