THINK ON.

Rangefinding and LiDAR ON Semiconductor Solutions Ecosystem

Public Information

www.onsemi.com

LiDAR concept introduction

Rangefinding and LiDAR definition

LiDAR = A distance measurement system based upon Light which can be used in a wide variety of applications

- Depth perception
- Object detection and avoidance
- Location mapping

Optical rangefinder salvaged from German cruiser Admiral Graf Spee. Source: wikipedia

Several technologies Radar, Lidar, sonar, ultrasonic, optical ...

LiDAR target markets :Automotive, IoT, industrial, ...

A photo of a range finder at La Corbière Source: wikipedia

Public Information

Why do we need Depth information in a image?

- Depth data removes ambiguity
- Helps to distinguish and give meaning to objects within a scene
- Enables automation

Why LiDAR ?

IoT, BIS, Industrial, Logistics, ...

Source: <u>http://home.iitk.ac.in/~blohani/LiDAR_Tutorial/AdvantagesofLiDARtechnology.htm</u> Source: ON Semicondcutor Intelligent Sensing Division (Sens L)

Examples of Industrial LiDAR Applications

Empty bay detection

*Images courtesy of Sick

Crop monitoring

People occupancy monitor

*Images courtesy of Denso Wave

Stack height Fill level control monitoring

Alignment control

Safety/Proximity sensor

*Images courtesy of Pepperl & Fuchs

Public Information

Technology variants for High-Resolution Depth Sensing

Application Software

Direct ToF LiDAR – Simple Concept

... Made challenging by the real world requirements

Direct ToF LiDAR Measurement Techniques

Single Shot laser pulse & photon arrival timestamp for Depth measurement

Multi Shot laser pulses & photon arrival timestamps to calculate Depth from histogram

• Photon counting for **Intensity**

Better SNR → Longer Range!

Wavelength Choice

Public Information

Solar Noise Vs Wavelength

ASTM G-173-03 Solar Irradiance Model

Public Information

ON Semiconductor LIDAR Products family

LiDAR Functional Block Diagram

management

readout and laser driver solutions for all NIR LiDAR architectures

System

Evolution of Roadmap for Enabling the LiDAR Ecosystem

What is a SPAD/SiPM?

"Single photon sensitivity to identify objects in 3D at long distance"

MicroRB-10020-MLP SiPM (1590 microcell elements)

Photons detected by a SPAD produce a measurable current pulse

SPAD/SiPM time or count multiple photons SiPM can measure intensity

Types of Photodetectors for LiDAR

PIN Diodes

✓ Low Voltage
✓ Good Uniformity
X No Gain
!! Linear Mode
↓ Market Adoption

Avalanche Photodiodes & APD Arrays

- × High Voltage
- × Poor Uniformity
- ✓ Moderate Gain (10²)
- !! Linear Mode
- Narket Adoption

Single Photon Avalanche Diodes & SPAD Arrays

- ✓ Low Voltage
- ✓ Excellent Uniformity
- ✓ Very High Gain (10⁶)
- ✓ Geiger Mode Single Photon
- Market Adoption

Silicon Photomultipliers & SiPM Arrays

✓ Low Voltage
✓ Excellent Uniformity
✓ Very High Gain (10⁶)
✓ Geiger Mode – Multi-Photon
Ø Market Adoption

Higher Performance Detector = Better Depth Sensing Performance

ON Semiconductor SiPM Detector Trend

RB-Series SiPM – Single photon sensitive for NIR LiDAR

- Optimized for NIR LiDAR
- High sensitivity \rightarrow up to 10% PDE @905nm
- Single photon sensitive \rightarrow Gain 10⁶
- Low operating voltage \rightarrow ~40V bias
- CMOS process \rightarrow Excellent uniformity
- High bandwidth \rightarrow < 1 ns rise time
- Features unique SensL Fast output → 2 ns FWHM

Figure 1. PDE vs. Wavelength (MICRORB-10010, MICRORB-10020, MICRORB-10035 @ Maximum Overvoltage)

- Reliable robust MLP package
- Operating range of -40°C to 85°C
- Available in 10 um 20 um and 35 um cell size for optimum PDE/DR
- Evaluation boards and reference designs available

ON Semiconductor SiPMs Differentiators ?

Silicon Photomultiplier (SiPMs)

Highly sensitive photodetectors

Low noise characteristics

Fast response time (accurate ToF)

High data density

Lidar

• SiPM based system is simple, reliable and scalable

ON Semiconductor SiPMs

Highly uniform and cost optimized

• suitable for high volume production

R-Series NIR sensors optimized for 850 nm to 940 nm wavelength range

> Design in systems with costoptimized mass production laser diodes

LiDAR system major functions

Six Major Hardware Functions block on a LiDAR System:

SiPM Direct Time of Flight (dToF) LiDAR platform

Get your kit*

* wwwzgnsemi.com/support/evaluation-board/seco-rangefinder-gevk Public Information

SiMPs dToF LiDAR platform – In a nutshell

Single point range-finding Plug-and-play Range 0.1 m - 23 m Class 1 laser (intrinsic eye-safety) **RB-series NIR SiPM sensor** Cost-optimized system Mass-deployment ready

All manufacturing files available

Enabling the system solution

Receiving circuit (Rx)

Other features

GUI

Out of the box operation – no installation Adjustable SiPM bias for different use cases Save and load data

Laser and optics

RB-Series SiPM detector 905nm laser diode transmitter 650-1050nm coated BK7 plano-convex lenses Maximizes distance measurement 905±5nm band pass optical filter (FWHM: 30±5nm) for RX Highest sensitivity in selected spectrum

Time to Digital Conversion (TDC)

FPGA based (ice3) ~ 85ps bin width Automatic TDC calibration

-	
—	
L .	

Regulations

Class 1 laser – eye-safety intrinsic FDA certified

Resources

Application notes and papers

SiPMs

Development kits & LiDAR modeling * SiPM dToF LiDAR **Platform Development Kit** the Internet of Things (IoT), there are an increasing number of ranging and sensing applications looking to benefit from Io SIPM Direct Time of Fight (dToF) LIDAR Platform is a complete development kit for single point range-finding applications. Th PM sensor's high gain and high bandwidth, direct time-of-flight (dToF) can be used to provide accur **Featured Resources** Development Ki Available Now ON 10klux - η = 10% - single shot 0.9 _____n = 10% - multi shot ١ - η - η - 95% - single shot 0.8 -n = 95% - multi shot 1 Aility 0.7 х Q 0.6 1 1 1 0.5 ਰੀ 0.4 ğ 0.3 ۰. 0.2 0.1 2 2 2 2 2 2 2 2 2

*under request

200

400

600

Target distance (m)

800

1000

ON Semiconductor industrial LiDAR unique ecosystem

Focus on your application while we make LiDAR easier for you

72	

System solution expertise

SiPMs leading technology

Development tools and educational resources

