RSL10 Smart Shot Camera for Event-Triggered Imaging

Combining cloud-based AI with ultra-low-power triggered image capture, the RSL10 Smart Shot Camera enables next-generation IoT imaging applications including smart retail, smart buildings, surveillance cameras, factory automation, and smart agriculture.

Using the RSL10 Smart Shot Camera, developers can create imaging applications that automatically capture an image when triggered by various elements including time or environmental changes such as motion, humidity or temperature. The image can be sent to the provided mobile application over Bluetooth® Low Energy, allowing for connectivity to cloud or AI recognition services.

Bluetooth® Low Energy Camera Platform with Sensors and Cloud AI

ARX3A0 Mono 65° DFOV IAS Module

Panasonic

BOSCH

RSL10 SiP

SunplusIT

SunplusIT SPC1100A

Other Components

FAN54120
USB-compatible single-cell, linear Li-Ion battery charger

NCP6925
Dedicated PMIC

FAN49100
Buck Boost Controller

NCP170
Low dropout regulator
Seamless Edge-to-Cloud Connectivity

Key Features

- **Event Triggered Imaging**
 - Accelerometers, motion, temperature & humidity sensors
 - Periodic & sensor event based image capture
 - Context aware image monitoring

- **Ultra-Low-Power Components**
 - Battery life > 1 year
 - RSL10: Industry lowest power Bluetooth Low Energy solution
 - ARX3A0 Image sensor - 3mW for a single frame
 - SunplusIT IoT Camera ISP
 - USB and Battery powering options

- **Superior Image Sensing**
 - Black & White
 - 560 x 560 VGA resolution
 - NIR+ capable: better low-light performance
 - Compact 1/10” sensor: small form Factor (55 x 65 mm)

- **Edge to Cloud Connectivity**
 - Mobile gateway app on Android & iOS
 - Bluetooth Low Energy connectivity from camera to mobile app
 - Firmware Over The Air (FOTA) Update
 - Cloud AI recognition: AWS Rekognition

Learn More at www.onsemi.com/rsl10smartshot

ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate.