THINK ON.

www.onsemi.com

PFC Controller Totem Pole & 300W Demo Board

NCP1680

Public Information

Why using a Totem-Pole PFC ? Some system advantages here

ON.

- Efficiency of the boost stage & LLC stage have plateaued.
- Bridge diodes are the major source of power loss.

Bridge diode power losses can impact the application heavily

How to make boost PFC stages more efficient

- Replace all the diodes with FETs. <u>All the front-end diodes have to be replaced with ~ 50 m Ω , 650 V FETs.</u>
- 2 FETs in the 'bridge' and 1 FET in the boost stage are always conducting.
- In total 6 High Voltage FETs are present. This leads to an expensive implementation.

NCP1680- Totem Pole PFC Controller

Value Proposition

The NCP1680 is a CrM Totem Pole PFC Controller capable constant on time and valley synchronized frequency foldback for optimized efficiency across the entire load range. The device features a proprietary current sensing architecture and proven control algorithms for a cost-effective solution without jeopardizing performance.

Unique Features	Benefits	Device Pin-Out
 Constant on-time / fixed freq CrM architecture w. valley switching during foldback Proprietary Current Sense Scheme Line Polarity detection Proprietary valley sense scheme Control loop Internally compensated 	 Optimized performance across power levels Cycle-by-cycle current limit w/o hall effect sensor Removes external components; 	FAULT CC PFCOK CC FB CC VM CC
Other Features		
 Two low voltage pins for sensing and recreating half-wave sinusoid. DCM with valley synchronized turn-on for improved light load efficiency Zero Current Detection for CrM Operation 		

Integrated Digital voltage loop control

Market & Applications

- Computing Power Supplies
- Network Power
- Gaming Console Power Supplies
- TV Power Supplies,

Ordering & Package information

SOIC-16

RTM Q2'21

Multiple Patents Issued/Pending

NCP1680 – 300W PFC - Evaluation Board

Gan Gate Driver

NCP51820

Public Information

NCP1680 Controller Application Diagram

NCP1680 – 300W PFC Demo Board - Efficiency

NCP1680 – 300W PFC Demo Board - Power Factor Plots

ON.

9