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ABSTRACT

The Affine Projection Algorithm (APA) has been shown to im-
prove the performance of Over-Sampled Subband Adaptive Filters
(OS-SAFs) compared to classical Normalized Least Mean Square
(NLMS) algorithms. Because of the complexity of APA, however,
only low-order APAs are practical for real-time implementation.
Thus, in this paper, we propose a reduced-complexity version of
the Gauss-Seidel Fast APA (GSFAPA) for adapting the subband
filters in OS-SAF systems. We propose modifying the GSFAPA
with a complexity reduction method based on partial filter update,
and also with a low-cost method for combined regularization and
step size control. We show the advantage of the new algorithm –
termed Low-Cost Gauss-Seidel Fast Affine Projection – compared
to the APA in a subband echo canceller application.

1. INTRODUCTION

For many adaptive filtering applications, the Over-Sampled Sub-
band Adaptive Filter (OS-SAF) [1, 2] can provide a significant
improvement over other critically-sampled implementations be-
cause of the lower aliasing level in the subbands. With an over-
sampling factor (OS) of 2 or more, the group delay is also reduced,
while aliasing in the subbands is maintained at a low level [2].
However, because of the larger eigenvalue spread in highly over-
sampled subband signals, the convergence of the popular NLMS
algorithm in OS-SAF systems can be very slow. Thus, in [3], the
Affine Projection Algorithm (APA) is proposed as a better adap-
tation technique for OS-SAF. The APA provides better conver-
gence behavior than NLMS algorithms, while at the same time
it avoids the high computation cost and instability associated with
the Recursive Least Squares (RLS) algorithm [3]. Nevertheless,
for real-time implementation on very low resource platforms, only
an affine projection order of 2 or 3 is generally practical.

Recently, a fast version of APA based on Gauss-Seidel itera-
tions (GSFAP) has been introduced [4]. The GSFAP algorithm is a
stable and low-complexity version of the original fast APA (FAPA)
[5]. It uses the Gauss-Seidel (GS) iterations instead of the sliding
windowed Fast Recursive Least Squares algorithm to update the
normalized residual echo vector, and thus has more stable conver-
gence behavior when given a diagonally dominant autocorrelation
matrix of the excitation signal.

In this paper, we propose to further reduce the complexity of
the GSFAP algorithm for OS-SAF systems. We modify GSFAP
with a method for partial filter update, and also with a low-cost
method for combined regularization and step size control. The new
algorithm, termed Low-Cost GSFAP (LC-GSFAP), is evaluated in
a subband acoustic echo canceller (SAEC) application.
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Fig. 1. Block Diagram of SAEC System
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Fig. 2. LC-GSFAP Adaptive Processor

Figure 1 shows the block diagram of the OS-SAF system in
an SAEC application. A highly efficient Weighted Overlap-Add
(WOLA) filterbank [2] is used as the analysis/synthesis filterbank
in the system. The WOLA is a uniform, generalized DFT filter-
bank with configurable, high over-sampling factors (OS≥ 2). As
shown in Figure 2, LC-GSFAP is used to adapt the filter weights
of each subband. Note, however, in fast versions of the APA, the
actual filter weightshn,k are not directly calculated – only a ”fast”

version of the filter weights,̂hn,k, is available. Figure 2 is thus
only a conceptual illustration of the adaptive process.

The notations and definitions used throughout this paper is
based heavily on [5] and [6]. For the rest of this paper,K de-
notes the number of subbands,L denotes the subband adaptive fil-
ter length,N denotes the affine projection order, and a subscript of
m, n, andk (as inxm andxn,k), is used to denote, respectively, the
time-domain sample index, the subband frame index, and the fre-
quency band index. This paper is organized as follows. Section 2
briefly describes the GSFAP algorithm. Section 3 presents the LC-
GSFAP algorithm, while Section 4 presents the simulation result.
Finally, Section 5 presents the conclusions of this work.

2. THE GSFAP ALGORITHM

The time-domain GSFAP algorithm is summarized as follows:
Initialization: assume, form < 0, xm = ym = 0, ĥm = 0t,



Em = 0t, α̂m = 0t, Rm = Xt
mXm = 0 + δI, r̂xx,m = [δ, 0]t,

0.7 < µ < 1, andP m = b/δ.
Then, at each samplem ≥ 0:

1) r̂xx,m = r̂xx,m−1 + xmα̂m − xm−Lα̂m−L (1)

2) êm = ym − xt
m ĥm−1 (2)

3) em = êm − µr̃t
xx,mEm−1 (3)

4) updateRm usingr̂xx,m

5) solveRmP m = b for P m using one GS iteration

6) εm = emP m (4)

7) Em =

[
0

Em−1

]
+ εm (5)

8) ĥm = ĥm−1 + µxm−(N−1)EN−1,m (6)

In the above,̂hm is theL×1 fast adaptive filter coefficients,Em is
anN×1 vector consisting of a sum of the fast normalized residual
echoεm [5], EN−1,m is the last element ofEm , Em is a vector
consisting of the uppermostN − 1 elements ofEm , xm is the
L × 1 excitation signal vector,ym is the reference signal,̂αm =
[xm, . . . , xm−N+1]

t, b = [1, 0]t, Xm is theL × N excitation
signal matrix,I is the identity matrix, andδ is the regularization
factor. Note,̃rxx,m in Equation 3 has the same definition as in [5],
and is simply theN − 1 lower elements of̂rxx,m . Also, in step
4, Rm is updated simply by replacing the first row and column
with the elements of̂rxx,m , and the bottom(N − 1) × (N − 1)
submatrix is replaced with the top(N − 1)× (N − 1) submatrix
of Rm−1.

In OS-SAF systems, because the WOLA filterbank provides
near-orthogonal subbands, the GSFAP algorithm can be applied
independently in each subband. Hence, for subband implemen-
tations, we can simply exchange the subscriptm with the pair
(n, k), and generalize all operations for complex-valued signals
(i.e. transposes become Hermitian transposes, multiplications be-
come complex-valued multiplications, and the filter is now a com-
plex filter, etc.). The complexity of GSFAP in this implementation
is N2 + 3N + 2L MACs plus 1 multiplication and 1 division
(per subband). Due to the regular structure ofRm (or Rn,k in
subband), step 4 of GSFAP can be implemented efficiently – for
example, by simply reorganizing memory buffers.

3. THE LC-GSFAP ALGORITHM

3.1. Partial Filter Update

The Partial Filter Update (PFU) method in LC-GSFAP aims to
reduce the computation requirement of GSFAP without sacrificing
too much of the system performance. It is similar in concept to
the Sequential Least Mean Square (S-LMS) algorithm in [7], and
is implemented as follows. LetD be a positive integer,D ≥ 1
andL mod D = 0. Then, the updating of the subband ”fast” filter
coefficientŝhn,k (Equation 6) is modified to

ĥn,k = ĥn−1,k + µx̃n−(N−1),kEN−1,n,k (7)

where

x̃n,k = [x̃n,k, x̃n−1,k, . . . , x̃n−L+1,k]t (8)

x̃n,k =

{
xn,k if n mod D = 0
0 otherwise

(9)

In effect, whenD > 1, only every D-th element of̂hn,k is up-
dated at a time. WhenD = 1, the algorithm reverts to the orig-
inal GSFAP method. Also,̂αn,k in Equation 1 is replaced with
α̌n,k = [x̃n,k, . . . , x̃n−N+1,k]t, which means only every D-th el-
ement of̂rxx,n,k is updated at a time. As a result,Rn,k can also be
updated at every D-th frame (corresponding to step 4 in Section 2),
which is when̂rxx,n,k is fully updated. The complexity of GSFAP
with PFU implementation isN2 + N + L + 2N+L

D
MACs plus 1

multiplication and 1 division (per subband). Note that the update
rate ofRn,k is also reduced by a factor of D.

In [8], it is shown that the PFU method in the S-LMS algo-
rithm can be seen as a polyphase implementation of LMS where
only one polyphase component is updated at a time. It can be
seen clearly that a similar polyphase analysis will also apply here
for LC-GSFAP. However, one significant difference here is that
the polyphase decomposition is applied toĥn,k , which is a ”trans-
formed” version of the actual filterhn,k . The relationship between
the two filters can be seen easily from Equation 2 and Equation 3.
Since nowr̃xx,n,k is updated at a decimated rate, it is therefore
important to note that the PFU method here is not necessarily mod-
eled by a Perfect Reconstruction (PR) filterbank as noted in [8] for
S-LMS. Nevertheless, in the over-sampled subband domain, alias-
ing and misadjustment due to decimation is not expected to be sig-
nificant so long asD does not exceed the filterbank over-sampling
factor (i.e.D ≤ OS). The effect ofD on the system performance
can be seen in the result presented in Section 4.

3.2. Low-Cost Regularization

In [4], the regularization factorδ is a constant value that is used
only when initializingRm (orRn,k in subband). In practice, how-
ever,δ should be time-varying and is often determinedon-line –
for example, in [9]. It can be seen in [9] that the regularization
factorδ can also be used as a step size control for filter adaptation.
In an echo canceller application, it is well-known that the filter
adaptation should be stopped or slowed down when there is a high
level of near-end signal activity. However, the method described
in [9] for finding the value ofδ requires an estimation of the sys-
tem mismatch, which can be computationally expensive. It is also
unclear whether the adaptation will remain stable when there is
little or no near-end signal activity and the system is nearly con-
verged, because the method does not explicitly ensure thatRm is
not ill-conditioned.

Thus, we propose a low-cost alternative method that effec-
tively combines regularization with step size control. We start with
the pseudo-optimal regularization factor from [9],

δopt,n,k ≈
Lσ2

x,n,k(σ2
e,n,k − σ2

ε,n,k)

σ2
ε,n,k

(10)

whereσ2
x,n,k is the power of the subband excitation signal,σ2

e,n,k

is the power of the subband error signal, andσ2
ε,n,k is the power

of the subband undistorted error signal. Applying the approxima-
tions as described in [9], and realizing thatσ2

e,n,k − σ2
ε,n,k can be

exchanged withσ2
y,n,k − σ2

d,n,k, we obtain,

δopt,n,k ≈
L(σ2

y,n,k − σ2
d,n,k)

E{‖∆n‖2} (11)

whereσ2
y,n,k is the power of the subband reference signal (near-

end signals plus the echo signal),σ2
d,n,k is the power of the sub-



band echo signal, and∆n is the system mismatch. Since the sub-
band echo signaldn,k is not directly available, and the estimation
of ∆n can be computationally expensive, we simplify the above to

δopt,n,k ≈ Lσ2
y,n,k (12)

As a step size control, Equation 12 will tend to slightly over-supp-
ress the adaptation because the power of the echo signal is in-
cluded, but will nevertheless achieve the desired effect of slowing
down the adaptation when there is a high level of near-end sig-
nal activity. We have removed the system mismatch estimation
entirely because when there is a high level of near-end signal ac-
tivity, we need to slow down the adaptation regardless of whether
the system is near convergence. When there is little or no near-end
signal activity, we will rely on an explicit matrix regularization
approach (described below) for step size control.

To incorporate the new regularization factor into LC-GSFAP,
we compute, before the GS iteration in step 5 of the GSFAP algo-
rithm (Section 2),

R̃n,k = Rn,k + δn,kI (13)

Then,R̃n,k is used in the GS iteration instead ofRn,k. The regu-
larization factorδn,k is now a1×N vector. Each element ofδn,k ,

i.e. δ(i)
n,k, for 0 < i ≤ N − 1, is determined by

δ
(i)
n,k = max{L|yn,k|2, Dδ

(i)
R,n,k} (14)

whereyn,k is the subband reference signal, and

δ
(i)
R,n,k =

 N−1∑
j=0,j 6=i

|x∗n−j,kxn−i,k|

− |x∗n−i,kxn−i,k| (15)

The superscript∗ is used to denote complex conjugate. The term
Dδ

(i)
R,n,k is used to ensure that the matrix̃Rn,k is always diago-

nally dominant, which is especially important for convergence sta-
bility when the near-end signal level is low. The factorD is to take
into account of the frequency scaling effect due to the decimation
of the excitation signal in the PFU method (note the regulariza-
tion factor is still updated at every frame even whenD > 1). The
overline in Equation 14 denotes averaging by a dual-time-const-
ant attack-release filter (i.e.δ(i)

n,k = αδ
(i)
n,k + (1 − α)δ

(i)
n−1,k if

δ
(i)
n,k ≥ δ

(i)
n−1,k, otherwiseδ(i)

n,k = βδ
(i)
n−1,k, and0 < α, β < 1).

For practical implementation, it is also possible to further re-
duce the computation cost by replacing the vectorδR,n,k with a
scalarδR,n,k (correspondingly,δn,k with δn,k), whereδR,n,k =

maxi{δ(i)
R,n,k} or δR,n,k = δ

(0)
R,n,k. Clearly, this approximation

will make the algorithm more susceptible to highly non-stationary
signals, but a compromise can likely be reached depending on the
sizes ofN andL, and the nature of the intended environment.

3.3. LC-GSFAP

The proposed algorithm is summarized in the following. It should
be understood that the subband-domain description can be easily
applied to the time domain by exchanging(n, k) with m, and treat-
ing all imaginary parts as zero. The superscriptH is used to denote
Hermitian transpose.

Constraint:D is an integer≥ 1, L mod D = 0.

Initialization: assume, forn < 0, xn,k = yn,k = 0, ĥn,k =

0H , En,k = 0H , α̌n,k = 0H , Rn,k = XH
n,kXn,k = 0 + I,

r̂xx,n,k = [1, 0]H , µ = 1, andP n,k = b.
Then, at each samplen ≥ 0, 0 ≤ k ≤ K − 1:

1) r̂xx,n,k = r̂xx,n−1,k + xn,kα̌n,k − xn−L,kα̌n−L,k (16)

2) ên,k = yn,k − xH
n,k ĥn−1,k (17)

3) en,k = ên,k − µr̃H
xx,n,kEn−1,k (18)

4) if n mod D = 0, updateRn,k usingr̂xx,n,k

5) R̃n,k = Rn,k + δn,kI

6) solveR̃n,kP n,k = b for P n,k using one GS iteration

7) εn,k = en,kP n,k (19)

8) En,k =

[
0

En−1,k

]
+ εn,k (20)

9) ĥn,k = ĥn−1,k + µx̃n−(N−1),kEN−1,n,k (21)

4. SIMULATION

We compare the performance of LC-GSFAP with APA by imple-
menting the OS-SAF systems in an echo canceller application. The
number of subbands in the systems isK = 8, with OS = 4. The
acoustic echo pathG(z) (Figure 1) has an echo delay of 55 ms and
a return loss of -15 dB. Two different male speech segments about
90 seconds long are used as the far-end and near-end signals, with
double-talk occurring near the middle of the segment. White noise
is also added to both the far-end and near-end signals at an SNR of
20 dB. The sampling frequency is 8 kHz.

The adaptive filter length is 112 taps per band. The affine
projection order is 4 in both LC-GSFAP and APA versions. In
the APA implementation, a constant regularization factor is used,
which has been determined off-line to yield the best stable perfor-
mance. The performance of the echo canceller is determined by

the magnitude of the echo estimation error, i.e.
∣∣∣|dn,k| − |d̂n,k|

∣∣∣,
wheredn,k is the subband echo signal, and̂dn,k is the subband
estimated echo signal. We have chosen this measure instead of the
commonly used ERLE measure because we intend to better show
the variation of the error over time due to near- and far-end signal
activities.

Figure 3 shows the time domain echo signal, the time domain
near-end local signal (i.e. no echo) and the echo estimation error
for the second subband (center frequency at 750 Hz). Different
”PFU factors” (i.e. the valueD described in Section 3) are also
used in the LC-GSFAP implementation, and their performances
are shown in Figure 3 and Figure 4. Note that, in Figure 3, the sig-
nal amplitudes are represented using denormalized 16-bit integers.

As seen in Figure 3, forD ≤ OS, the performance of LC-
GSFAP is significantly better than APA for both the quiet and
voiced parts of the echo, achieving as much as 10 dB lower esti-
mation error. The value ofD (for D < OS) also has only minimal
impact on the estimation error. However, forD > OS, the sub-
band excitation signal becomes under-sampled. As a result, as seen
in Figure 4, the estimation error starts to increase as the subband
excitation signal becomes critically- or under-sampled, although
even atD = 8, the error is not significantly worse than that of
APA. Furthermore, the performances of APA and LC-GSFAP (for
D ≤ OS) are very similar in the double-talk situation (the period
between 40 and 45 seconds in the simulation), even though the



regularization factor in APA is optimized off-line, while in LC-
GSFAP it is determined on-line. This shows that the regulariza-
tion method in LC-GSFAP is robust enough to ensure adaptation
stability during double-talk situation.

The regularization factorδ(0)
n,2 is shown in Figure 5 for the case

of D = 2. For the simulation we have used instantaneous attack
and a slow release time-constant (1 s) in the averaging filter in
Equation 14. The tracking of both near- and far-end signal activi-
ties can be seen clearly in the figure.

5. CONCLUSION

In this paper, we described a low-complexity alternative to APA for
OS-SAF systems – LC-GSFAP. The computation cost is reduced
by using a PFU method in GSFAP, with a low-complexity method
for combined regularization and step size control. The regular-
ization and step size control is based partially on the well-known
conditions for adaptive filter convergence and stability in an echo
canceller application. Our simulation result has shown that LC-
GSFAP has lower echo estimation error compared to APA using a
constant, pre-determined regularization factor. The result has also
shown that the value ofD has only minimal impact on the conver-
gence behavior of LC-GSFAP, so long asD ≤ OS. Nevertheless,
the estimation error of LC-GSFAP in the simulation result is still
not significantly worse than that of APA even atD = 2×OS. Fi-
nally, for future work, we plan to carry out a more in-depth analy-
sis of the convergence behavior of LC-GSFAP using the polyphase
decomposition approach.
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