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ABSTRACT 
 

An efficient implementation of a time-domain speech synthesis 
system on an ultra low-power, miniature, programmable block-
floating-point DSP system is introduced. The DSP system, 
operating at a clock rate as low as 1.28 MHz, is well suited for 
speech and audio processing applications. Similar to the MBR-
PSOLA technique, this time-domain synthesis method uses a 
normalized speech database generated by a high-quality 
harmonic synthesis. To reduce the memory usage and 
communication bandwidth, the normalized database is 
compressed using a block-adaptive, ADPCM approach. Listening 
tests comparing the synthetic speech quality on the DSP system 
and the same method implemented on a high-resource computer 
system show no degradations due to the memory, register length, 
or other low-resource limitations on the DSP system. The system 
consumes less than 1 mW at 1 volt. 
 

1. INTRODUCTION 

The objective of this research is to implement a real-time speech 
synthesis system on an ultra low-power (less than 1 mW at 1 
volt), ultra small size, and low-cost platform (referred to as a 
“low-resource” platform in this paper). Achieving this objective 
requires the synthesis method to be optimized for low memory, 
and low computational resources. At the same time, it has to 
provide an acceptable synthesized speech quality with a minimal 
time-delay. A speech synthesizer working on a low-resource 
platform such as described here significantly extends the 
applications of the speech synthesis technology due to its lower 
cost, lower power, and smaller size. 

There are various methods available to solve the speech 
synthesis problem. The most successful methods use an inventory 
of pre-recorded speech units (like diphones), and concatenate the 
units (with or without some prosodic modifications) to synthesize 
fluent speech with correct prosody. Through the employment of 
effective unit selection methods, one can achieve high quality 
synthesized speech and avoid the prosodic modification of 
speech units by recording a very large inventory of units and 
searching for optimal units to be concatenated at the synthesis 
stage. However, this requires a large memory to store the unit 
inventory, and the search for optimal units at the synthesis stage 
is complicated. Thus, such speech synthesis systems are not 
suitable for implementation on our low-resource platform (see 
Section 2).  

The next alternative synthesizers to the unit selection 
systems are the class of small-unit concatenation systems that use 
less than a few thousand speech units. Due to many reasons (see 

[1] for a detailed discussion), mostly diphones have been used as 
speech units and as a result, “diphone concatenation systems” 
have been developed for many languages. The number of 
diphones used in most languages is less than a few thousand 
(e.g., 2000 for English and French), leading to lower memory 
usage (compared to unit selection methods) after data 
compression. Since time-domain diphone concatenation systems 
require less computation than spectral-domain methods [1,2], an 
obvious choice for a low-resource speech synthesizer is a time-
domain diphone concatenation system. Amongst the various 
versions of these systems proposed in the literature, the Time-
Domain Pitch-Synchronous Overlap and Add (TD-PSOLA) 
method [3,4] is very simple and offers a high speech quality if 
the problems of pitch, phase and spectral discontinuities are 
properly addressed.  

For a low-resource implementation, it is desirable to do 
most of the computations and normalizations off-line to simplify 
the on-line synthesis. In the Multi-Band Resynthesis Pitch-
Synchronous Overlap-Add (MBR-PSOLA) method [5], the 
speech unit database is carefully re-synthesized to obtain a 
constant-pitch, fixed-phase (up to a cut-off frequency) database 
for time-domain synthesis. This off-line re-synthesis stage is 
called normalization or re-harmonization. The two important 
problems of pitch and phase discontinuity are thus resolved 
offline, at a cost of minor quality losses in the normalization 
process. Due to the pitch and phase normalizations, the spectral 
discontinuities (across the units) can then be resolved using a 
simple time-domain interpolation. In a recently proposed method 
[2], Dutoit et al. have implemented a modified version of the 
MBR-PSOLA synthesis. According to this method, at the 
normalization stage of speech units at a constant pitch, for each 
analysis frame (of almost two pitch periods), only one of the two 
re-synthesized pitch periods is synthesized and stored. As 
reported, this leads to less memory usage and a better separation 
of periodic and stochastic waveforms. 

In PC-based synthesis systems, speech is synthesized into 
temporary files that are played back when a part of the text 
(typically complete sentences) has been processed. In contrast, in 
a real-time system, the synthesis cannot be interrupted once it has 
started. Also, synthesis is not a straight-through process in which 
the input data can be simply synthesized as it is made available to 
the processor. The processor has to buffer enough data to account 
for variations in prosody. It also has to work on several frames at 
a time in order to perform interpolation between units while 
synthesis is taking place. In our implementation, a low-resource 
system performs these operations in real-time, thereby 
significantly off-loading a host processor while using only a very 
limited amount of resources. 
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In the next sections, we briefly describe the low-resource 
DSP system that is used, and the methods selected for speech 
synthesis and data compression. Next, we describe the 
implementation of the real-time synthesis method on the DSP 
system. Finally conclusions and future work are discussed. 

2. THE DSP SYSTEM 

Figure 1 shows a block diagram of the DSP system [6,7]. The 
DSP portion consists of three major components: a weighted 
overlap-add (WOLA) block-floating point filterbank, a 16-bit 
DSP core, and an input-output processor (IOP). The system is 
implemented on two ASICs. A digital chip on 0.18µ CMOS 
technology contains the DSP core, RAM, the WOLA filterbank, 
and the IOP. The mixed-signal portions are implemented on 1 
µm CMOS. A separate, off-the-shelf E2PROM provides the non-
volatile storage. The RAM consists of two 4-kword data spaces 
and a 12-kword program memory space. Additional shared 
memory for the WOLA filterbank and the IOP is also provided. 
The core provides 1 MIPS/MHz operation and has a maximum 
clock rate of 4 MHz at 1 volt. At 1.8 volts, 30 MHz operation is 
also possible. The system operates from a 1 volt (single battery), 
and consumes a power of less than 1 mW. Prototype versions of 
the chipset are packaged into a 6.5 x 3.5 x 2.5 mm hybrid circuit. 

3. TIME-DOMAIN SPEECH SYNTHESIS 
METHOD 

We use a method similar, in principle, to MBR-PSOLA [5], with 
some modifications at the normalization stage. A speech unit 
database (e.g. a diphone database) is first processed offline by a 
spectral method to get a normalized database that has a nominal 
constant pitch frequency (F0=1/T0) and a phase that is fixed (up 
to a cut-off frequency less than 3 kHz) for all units. The 
normalization method could be any high-quality speech synthesis 
method that is capable of synthesizing speech at a constant pitch. 
Using speech synthesis systems such as the Harmonic + Noise 
Model (HNM) [8] and the hybrid Harmonic/Stochastic model 
(H/S) [9], the speech frames of around two pitch periods in 
duration are first analyzed. Then the constant-pitch and fixed-
phase “elementary waveforms” are synthesized for each frame. 
The elementary waveforms can have duration of one pitch period 
(T0) if the synthesized elementary waveforms are assumed (as in 
[2]) to be perfectly periodic. However, if they are not assumed to 
be perfectly periodic, the elementary waveforms should have a 
length of more than one pitch period (2T0 or more). For naturally 
uttered speech, the perfect periodicity assumption does not hold 
for almost all the unvoiced sounds, and for many classes of 
voiced sounds such as voiced fricatives, diphthongs, and even for 
some vowels. This means that two consecutive pitch periods are 
not exactly the same for most voiced sounds. Thus, we relax the 
perfect periodic assumption and use an elementary waveform 
length of 2T0. As a result, time-varying and powerful methods 
like the HNM can be employed to achieve a better quality. The 
elementary waveforms are then multiplied by a Hanning window, 
and processed through an OLA stage to obtain a normalized 
speech waveform. The re-synthesized units in the database now 
can be used for a time-domain concatenation, without any 
concerns about the pitch and phase discontinuities. The spectral 
discontinuities can be removed through simple time-domain 
interpolation [5]. The interpolation process is limited to the 

WOLA
filterbank

16-bit Harvard
DSP core

shared RAM
interface

in
pu

t-o
ut

pu
t

pr
oc

es
so

r

A/D

D/A

A/D

peripherals X,Y,P
SRAM

inputs

output

E2PROM
 

voiced sounds. As a result of using synthesis models (such as 
HNM) that are capable of modelling the speech time variations 
within a few pitch periods, the system can achieve better speech 
quality. Also, the synthesized speech frames are now more 
compressible. To explain this, note that if the elementary 
waveforms were assumed to be one period long, there would be 
unavoidable discontinuities (at frame boundaries) in the 
normalized database due to the frame-to-frame acoustic 
variations. However, when the OLA synthesis is employed to 
obtain normalized speech using longer elementary units (of 
length 2T0), there won’t be any jumps or discontinuities in the 
normalized units due to the OLA smoothing. As a result, the units 
can be compressed more by adaptive-predictive methods as 
described below.  
 

3.1. Database Compression 
The normalized units all have the same pitch periods, and due to 
the phase normalization in the re-synthesis process, the 
consecutive frames are very similar, at least for the voiced 
sounds. The proposed compression method is based on exploiting 
both the interframe and intraframe correlation of the normalized 
speech. The database compression is done off-line and once for 
all speech units, and the voiced/unvoiced status of the frames is 
accurately known. Thus, rather than using a general-purpose 
speech compression technique, we employ a variant of the 
classical ADPCM carefully optimized to make use of the 
database features. The objective is to achieve a high compression 
ratio while preserving the decoder simplicity. To conserve 
resources, the decoder is constrained to employ only fixed-point 
additions and bit-shifting, with no multiplies. 

The block diagram of the compression method is shown in 
Figure 2. For voiced frames, the difference between a sample 
value and the value of the corresponding sample in the previous 
period (frame prediction error) is found. For unvoiced sounds, the 
speech waveform itself replaces the frame prediction error. Since 
the consecutive frames are very similar for the voiced sounds, the 
frame prediction error has a smaller dynamic range than the 
speech waveform itself. Also the unvoiced sounds naturally have 
a smaller dynamic range than the voiced sounds. A block-
adaptive differential PCM (DPCM) quantizer is then used to 
quantize the prediction error. A single quantization step is 
adapted for each block (one pitch period) as follows. First, the 

Figure 1: The DSP system block diagram
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(first-order) difference function of the prediction error is 
calculated, and the maximum of its absolute value is found. 
Based on this maximum value, the quantization step is then 
scaled for each period so that there is minimal data clipping in 
the quantization process. The frame prediction error is then 
scaled by the quantization scale, and compressed with a zero-tap 
DPCM quantizer. For each frame, the DPCM signal and the 
quantization scale are then stored. To simplify the decoding 
process, the scale factor is constrained to be a power of two. As a 
result, we need to simply bit-shift the samples (instead of 
multiplying/dividing them by the scale factor) at the decoding 
stage. 

The decoding process is straightforward. First the 
compressed values of a frame are bit-shifted (using a single shift 
value for each frame) to compensate for the quantization scaling. 
Then two accumulations are applied: one over the frames and one 
inside each frame. The computation cost of the decoding method 
is thus two fixed-point additions and one bit-shift per sample. 
This is much less than the 4.9 (possibly floating point) operations 
per sample reported in [10]. The algorithm uses only 13 CPU 
cycles (on average) to decompress each 16-bit sample. Informal 
tests showed that the compression was transparent to the listener 
at a compression rate of 4. At a compression rate of 5.3 the 
quality dropped to toll quality. Although the compression ratio is 
less than that reported in [10] for a comparable quality, the 
computation cost is low enough for the method to be 
implementable on our low-resource platform.  

4. USE OF THE DSP SYSTEM 

The synthesis system provides the back-end of a complete text-
to-speech system. The front-end, running on another platform 
(the host), takes the text to synthesize as input from a user. The 
front-end first converts the text into a sequence of diphone labels 
and calculates a number of prosodic parameters that control the 
speech pitch and rate. The front-end then extracts diphones from 
a compressed database, and transmits them to the synthesizer on 
the DSP core along with the prosodic parameters. The software 
on the DSP core decompresses the data and synthesizes it as 
specified by the prosodic parameters. 

4.1. Technical Challenges 
The synthesis algorithm implemented on our DSP system 
operates in real-time; once activated by the host, the device is 

capable of synthesizing speech for as long as needed. It buffers 
only enough data needed for unit interpolation and to account for 
the variations in time scaling (for some period of time the system 
needs more or less input data to produce the same amount of 
output data). Interpolation occurs typically over up to 5 frames 
(about 35 milliseconds) and the entire system is designed so that 
up to 30 frames can be stored in memory at the same time, 
producing a latency of up to 210 milliseconds. 

The sampling rate is 16kHz with a precision of 16 bits per 
sample. Therefore, with a clock speed of 1.28 MHz, the chip 
needs to output a 16-bit sample every 80 CPU cycles. Because of 
the variations in time scaling, i.e. if more input data is needed 
than is produced, not all of the 80 cycles are available for each 
sample. The fluctuations in time-scaling are controlled by the 
host. In our case, they are limited to about +/- 25% of the output 
rate. So, a general rule for the design of the software was that 
only about 60 cycles per output sample were available. During 
these 60 cycles, the chip must perform the following operations: 
accept the data from the host, decompress and store it; then 
retrieve it, perform interpolation, windowing, overlap-add and 
store it again; then finally retrieve it and send it to the output 
processor. There is also some overhead for buffer management. 
Accepting data from the host already takes an average of 30 
cycles per 16-bit sample because an interrupt is generated for 
every 8-bits of data. Decompression and storage uses about 13 
cycles per 16-bit sample. The interpolation, windowing and 
overlap-add stage take about 8 cycles per sample and finally the 
output operation takes 4 cycles per sample.  

4.2. Implementation Architecture 
The synthesis system includes the following components as 
shown in Figure 3: 

• Host Interface module 

• Data Decompression module 

• Overlap-Add module 

The synthesis system receives data of two types from the 
host: 1) Data frames, which are made of (compressed) frames 
containing L contiguous speech samples of a pitch period. 2) 
Prosody scripts, which include all the prosodic and interpolation 
information. 

The Host Interface module accepts data packets from the 
host, determines their type (frame or prosody script) and 
dispatches them to the Data Decompression module. 

4.2.1. Data Decompression Module 
The Data Decompression module reads the compressed frames 
and prosody scripts, applies the decompression algorithm and 
stores the decompressed data into the corresponding buffer. Data 
frames are decompressed using the algorithm described in 
Section 3.1, that takes as input L-sample compressed speech 
frames. Prosody scripts vary in length, and are compressed to 
occupy 3 bytes per frame. To save more power and at the cost of 
a larger size, we can alternatively store the compressed speech 
unit database in a non-volatile memory that is directly accessible 
by the DSP system over existing interfaces. 

4.2.2. Overlap-Add Module 
The Overlap-Add module is the major part of the synthesis 
system. It loops through the prosody script entries sent by the 

Figure 2: Data compression block diagram



host. The prosodic information contained in the scripts include: 

1) Shift. Amount by which to shift the data out to the signal 
buffer after the overlap-add. Shifted samples are stored in the 
signal buffer. They are then read by the IO-processor, transmitted 
to system's Digital to Analog converter and from there to the 
speaker.2) Interpolation data. Gives the diphone boundary and 
the interpolation depth, assumed to be equal for both sides of the 
interpolation at unit boundaries. 3) Frame reverse flag. 
Repeated unvoiced frames are time-reversed by the Overlap-Add 
module to avoid tonal noise distortions [4]. 

For each script entry, the Overlap-Add module performs the 
following operations.1) Build a 2L-sample frame from the L-
sample frame referenced by the script and the L-sample frame 
that follows. 2) If necessary, reverse the frame. 3) Calculate the 
interpolation values at the unit boundaries. 4) If necessary, add a 
proper multiple of interpolation values to the L sample frame. 
Interpolation between frames is applied only at diphone 
boundaries when the two units are both voiced. 5) Apply a 
Hanning window to the frame. 6) Overlap-Add the 2L-sample 
frame at the beginning of the output signal queue. 7) Shift out the 
number of values specified in the script and adjust the signal 
queue pointer. 

5. CONCLUSION AND FUTURE WORK 

The proposed system was implemented on the low-resource DSP 
hardware platform described in [6,7] operating at a 1.28 MHz 
clock rate. This was made possible due to the optimized hardware 
architecture and the efficient instruction set of the DSP system. 
To the best of our knowledge, this speech synthesis system is of 
smaller size and lower power consumption than any other speech 
synthesizer ever built.  

To test the performance of the system, we subjectively 
compared the speech synthesis quality on the hardware platform 
with the simulation results of the same system working on a PC 
without any data compression or register length limitations. The 
evaluations showed that the limitations imposed by the hardware, 

in terms of memory usage and quantization effects, did not lead 
to any noticeable speech quality degradation. However, the data 
compression had the greatest effect on the quality. While the 
quality degradation was not audible at a compression rate of 4, 
the quality dropped to a toll quality at a compression ratio of 
about 5.3.  

We have demonstrated that an ultra-low power DSP system 
can be effectively used to perform the back-end tasks of a 
synthesis system. This would particularly be useful in 
environments where power consumption must be reduced to a 
minimum or where an embedded processor does not have the 
capabilities to synthesize speech. For example, it could be used in 
a personal digital assistant (PDA) to off-load the main processor 
in an efficient manner. The chip could also be used in 
conjunction with a micro-controller in embedded systems. 

Our future work is directed towards the front-end text-to-
phoneme (TTP) parser and prosodic analyzer. Currently, a host 
computer system (e.g. a PC or a PDA) functions as the front-end 
processor. Based on our evaluations, the processes at the front-
end are more memory-bound rather than CPU-bound. Thus, we 
are now in the process of employing our hardware platform with 
some external memory for the TTP parsing and the prosodic 
analysis. 
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Figure 3: The Synthesis System Architecture


