
REAL-TIME SPEECH SYNTHESIS ON AN ULTRA LOW-RESOURCE,
PROGRAMMABLE DSP SYSTEM

Hamid Sheikhzadeh, Etienne Cornu, Robert Brennan, and Todd Schneider

Dspfactory Ltd., 80 King Street South, Suite 206, Waterloo, Ontario, Canada N2J 1P5
E-mails: {hsheikh, rob.brennan, todd.schneider}@dspfactory.com, etienne.cornu@chamblon.com

ABSTRACT

An efficient implementation of a time-domain speech synthesis
system on an ultra low-power, miniature, programmable block-
floating-point DSP system is introduced. The DSP system,
operating at a clock rate as low as 1.28 MHz, is well suited for
speech and audio processing applications. Similar to the MBR-
PSOLA technique, this time-domain synthesis method uses a
normalized speech database generated by a high-quality
harmonic synthesis. To reduce the memory usage and
communication bandwidth, the normalized database is
compressed using a block-adaptive, ADPCM approach. Listening
tests comparing the synthetic speech quality on the DSP system
and the same method implemented on a high-resource computer
system show no degradations due to the memory, register length,
or other low-resource limitations on the DSP system. The system
consumes less than 1 mW at 1 volt.

1. INTRODUCTION

The objective of this research is to implement a real-time speech
synthesis system on an ultra low-power (less than 1 mW at 1
volt), ultra small size, and low-cost platform (referred to as a
“low-resource” platform in this paper). Achieving this objective
requires the synthesis method to be optimized for low memory,
and low computational resources. At the same time, it has to
provide an acceptable synthesized speech quality with a minimal
time-delay. A speech synthesizer working on a low-resource
platform such as described here significantly extends the
applications of the speech synthesis technology due to its lower
cost, lower power, and smaller size.

There are various methods available to solve the speech
synthesis problem. The most successful methods use an inventory
of pre-recorded speech units (like diphones), and concatenate the
units (with or without some prosodic modifications) to synthesize
fluent speech with correct prosody. Through the employment of
effective unit selection methods, one can achieve high quality
synthesized speech and avoid the prosodic modification of
speech units by recording a very large inventory of units and
searching for optimal units to be concatenated at the synthesis
stage. However, this requires a large memory to store the unit
inventory, and the search for optimal units at the synthesis stage
is complicated. Thus, such speech synthesis systems are not
suitable for implementation on our low-resource platform (see
Section 2).

The next alternative synthesizers to the unit selection
systems are the class of small-unit concatenation systems that use
less than a few thousand speech units. Due to many reasons (see

[1] for a detailed discussion), mostly diphones have been used as
speech units and as a result, “diphone concatenation systems”
have been developed for many languages. The number of
diphones used in most languages is less than a few thousand
(e.g., 2000 for English and French), leading to lower memory
usage (compared to unit selection methods) after data
compression. Since time-domain diphone concatenation systems
require less computation than spectral-domain methods [1,2], an
obvious choice for a low-resource speech synthesizer is a time-
domain diphone concatenation system. Amongst the various
versions of these systems proposed in the literature, the Time-
Domain Pitch-Synchronous Overlap and Add (TD-PSOLA)
method [3,4] is very simple and offers a high speech quality if
the problems of pitch, phase and spectral discontinuities are
properly addressed.

For a low-resource implementation, it is desirable to do
most of the computations and normalizations off-line to simplify
the on-line synthesis. In the Multi-Band Resynthesis Pitch-
Synchronous Overlap-Add (MBR-PSOLA) method [5], the
speech unit database is carefully re-synthesized to obtain a
constant-pitch, fixed-phase (up to a cut-off frequency) database
for time-domain synthesis. This off-line re-synthesis stage is
called normalization or re-harmonization. The two important
problems of pitch and phase discontinuity are thus resolved
offline, at a cost of minor quality losses in the normalization
process. Due to the pitch and phase normalizations, the spectral
discontinuities (across the units) can then be resolved using a
simple time-domain interpolation. In a recently proposed method
[2], Dutoit et al. have implemented a modified version of the
MBR-PSOLA synthesis. According to this method, at the
normalization stage of speech units at a constant pitch, for each
analysis frame (of almost two pitch periods), only one of the two
re-synthesized pitch periods is synthesized and stored. As
reported, this leads to less memory usage and a better separation
of periodic and stochastic waveforms.

In PC-based synthesis systems, speech is synthesized into
temporary files that are played back when a part of the text
(typically complete sentences) has been processed. In contrast, in
a real-time system, the synthesis cannot be interrupted once it has
started. Also, synthesis is not a straight-through process in which
the input data can be simply synthesized as it is made available to
the processor. The processor has to buffer enough data to account
for variations in prosody. It also has to work on several frames at
a time in order to perform interpolation between units while
synthesis is taking place. In our implementation, a low-resource
system performs these operations in real-time, thereby
significantly off-loading a host processor while using only a very
limited amount of resources.

Copyright 2002 IEEE. Published in the 2002 International Conference on Acoustics Speech and Signal Processing (ICASSP’02), scheduled for May 13-17,
2002 in Orlando, Florida. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.

In the next sections, we briefly describe the low-resource
DSP system that is used, and the methods selected for speech
synthesis and data compression. Next, we describe the
implementation of the real-time synthesis method on the DSP
system. Finally conclusions and future work are discussed.

2. THE DSP SYSTEM

Figure 1 shows a block diagram of the DSP system [6,7]. The
DSP portion consists of three major components: a weighted
overlap-add (WOLA) block-floating point filterbank, a 16-bit
DSP core, and an input-output processor (IOP). The system is
implemented on two ASICs. A digital chip on 0.18µ CMOS
technology contains the DSP core, RAM, the WOLA filterbank,
and the IOP. The mixed-signal portions are implemented on 1
µm CMOS. A separate, off-the-shelf E2PROM provides the non-
volatile storage. The RAM consists of two 4-kword data spaces
and a 12-kword program memory space. Additional shared
memory for the WOLA filterbank and the IOP is also provided.
The core provides 1 MIPS/MHz operation and has a maximum
clock rate of 4 MHz at 1 volt. At 1.8 volts, 30 MHz operation is
also possible. The system operates from a 1 volt (single battery),
and consumes a power of less than 1 mW. Prototype versions of
the chipset are packaged into a 6.5 x 3.5 x 2.5 mm hybrid circuit.

3. TIME-DOMAIN SPEECH SYNTHESIS
METHOD

We use a method similar, in principle, to MBR-PSOLA [5], with
some modifications at the normalization stage. A speech unit
database (e.g. a diphone database) is first processed offline by a
spectral method to get a normalized database that has a nominal
constant pitch frequency (F0=1/T0) and a phase that is fixed (up
to a cut-off frequency less than 3 kHz) for all units. The
normalization method could be any high-quality speech synthesis
method that is capable of synthesizing speech at a constant pitch.
Using speech synthesis systems such as the Harmonic + Noise
Model (HNM) [8] and the hybrid Harmonic/Stochastic model
(H/S) [9], the speech frames of around two pitch periods in
duration are first analyzed. Then the constant-pitch and fixed-
phase “elementary waveforms” are synthesized for each frame.
The elementary waveforms can have duration of one pitch period
(T0) if the synthesized elementary waveforms are assumed (as in
[2]) to be perfectly periodic. However, if they are not assumed to
be perfectly periodic, the elementary waveforms should have a
length of more than one pitch period (2T0 or more). For naturally
uttered speech, the perfect periodicity assumption does not hold
for almost all the unvoiced sounds, and for many classes of
voiced sounds such as voiced fricatives, diphthongs, and even for
some vowels. This means that two consecutive pitch periods are
not exactly the same for most voiced sounds. Thus, we relax the
perfect periodic assumption and use an elementary waveform
length of 2T0. As a result, time-varying and powerful methods
like the HNM can be employed to achieve a better quality. The
elementary waveforms are then multiplied by a Hanning window,
and processed through an OLA stage to obtain a normalized
speech waveform. The re-synthesized units in the database now
can be used for a time-domain concatenation, without any
concerns about the pitch and phase discontinuities. The spectral
discontinuities can be removed through simple time-domain
interpolation [5]. The interpolation process is limited to the

WOLA
filterbank

16-bit Harvard
DSP core

shared RAM
interface

in
pu

t-o
ut

pu
t

pr
oc

es
so

r

A/D

D/A

A/D

peripherals X,Y,P
SRAM

inputs

output

E2PROM

voiced sounds. As a result of using synthesis models (such as
HNM) that are capable of modelling the speech time variations
within a few pitch periods, the system can achieve better speech
quality. Also, the synthesized speech frames are now more
compressible. To explain this, note that if the elementary
waveforms were assumed to be one period long, there would be
unavoidable discontinuities (at frame boundaries) in the
normalized database due to the frame-to-frame acoustic
variations. However, when the OLA synthesis is employed to
obtain normalized speech using longer elementary units (of
length 2T0), there won’t be any jumps or discontinuities in the
normalized units due to the OLA smoothing. As a result, the units
can be compressed more by adaptive-predictive methods as
described below.

3.1. Database Compression
The normalized units all have the same pitch periods, and due to
the phase normalization in the re-synthesis process, the
consecutive frames are very similar, at least for the voiced
sounds. The proposed compression method is based on exploiting
both the interframe and intraframe correlation of the normalized
speech. The database compression is done off-line and once for
all speech units, and the voiced/unvoiced status of the frames is
accurately known. Thus, rather than using a general-purpose
speech compression technique, we employ a variant of the
classical ADPCM carefully optimized to make use of the
database features. The objective is to achieve a high compression
ratio while preserving the decoder simplicity. To conserve
resources, the decoder is constrained to employ only fixed-point
additions and bit-shifting, with no multiplies.

The block diagram of the compression method is shown in
Figure 2. For voiced frames, the difference between a sample
value and the value of the corresponding sample in the previous
period (frame prediction error) is found. For unvoiced sounds, the
speech waveform itself replaces the frame prediction error. Since
the consecutive frames are very similar for the voiced sounds, the
frame prediction error has a smaller dynamic range than the
speech waveform itself. Also the unvoiced sounds naturally have
a smaller dynamic range than the voiced sounds. A block-
adaptive differential PCM (DPCM) quantizer is then used to
quantize the prediction error. A single quantization step is
adapted for each block (one pitch period) as follows. First, the

Figure 1: The DSP system block diagram

Compressed
Frame

Fr
am

e

Pr
ed

ic
tio

n

D
iff

er
en

ce

Fu
nc

tio
n

Q
 S

ca
le

A
da

pt
at

io
n

Ze
ro

-T
ap

 D
PC

M
 Input

Frame

Previous
Frame

Prediction Error

Compressed
Frame

Fr
am

e

Pr
ed

ic
tio

n

D
iff

er
en

ce

Fu
nc

tio
n

Q
 S

ca
le

A
da

pt
at

io
n

Ze
ro

-T
ap

 D
PC

M
 Input

Frame

Previous
Frame

Compressed
Frame

Fr
am

e

Pr
ed

ic
tio

n

D
iff

er
en

ce

Fu
nc

tio
n

Q
 S

ca
le

A
da

pt
at

io
n

Ze
ro

-T
ap

 D
PC

M
 Input

Frame

Previous
Frame

Prediction Error

(first-order) difference function of the prediction error is
calculated, and the maximum of its absolute value is found.
Based on this maximum value, the quantization step is then
scaled for each period so that there is minimal data clipping in
the quantization process. The frame prediction error is then
scaled by the quantization scale, and compressed with a zero-tap
DPCM quantizer. For each frame, the DPCM signal and the
quantization scale are then stored. To simplify the decoding
process, the scale factor is constrained to be a power of two. As a
result, we need to simply bit-shift the samples (instead of
multiplying/dividing them by the scale factor) at the decoding
stage.

The decoding process is straightforward. First the
compressed values of a frame are bit-shifted (using a single shift
value for each frame) to compensate for the quantization scaling.
Then two accumulations are applied: one over the frames and one
inside each frame. The computation cost of the decoding method
is thus two fixed-point additions and one bit-shift per sample.
This is much less than the 4.9 (possibly floating point) operations
per sample reported in [10]. The algorithm uses only 13 CPU
cycles (on average) to decompress each 16-bit sample. Informal
tests showed that the compression was transparent to the listener
at a compression rate of 4. At a compression rate of 5.3 the
quality dropped to toll quality. Although the compression ratio is
less than that reported in [10] for a comparable quality, the
computation cost is low enough for the method to be
implementable on our low-resource platform.

4. USE OF THE DSP SYSTEM

The synthesis system provides the back-end of a complete text-
to-speech system. The front-end, running on another platform
(the host), takes the text to synthesize as input from a user. The
front-end first converts the text into a sequence of diphone labels
and calculates a number of prosodic parameters that control the
speech pitch and rate. The front-end then extracts diphones from
a compressed database, and transmits them to the synthesizer on
the DSP core along with the prosodic parameters. The software
on the DSP core decompresses the data and synthesizes it as
specified by the prosodic parameters.

4.1. Technical Challenges
The synthesis algorithm implemented on our DSP system
operates in real-time; once activated by the host, the device is

capable of synthesizing speech for as long as needed. It buffers
only enough data needed for unit interpolation and to account for
the variations in time scaling (for some period of time the system
needs more or less input data to produce the same amount of
output data). Interpolation occurs typically over up to 5 frames
(about 35 milliseconds) and the entire system is designed so that
up to 30 frames can be stored in memory at the same time,
producing a latency of up to 210 milliseconds.

The sampling rate is 16kHz with a precision of 16 bits per
sample. Therefore, with a clock speed of 1.28 MHz, the chip
needs to output a 16-bit sample every 80 CPU cycles. Because of
the variations in time scaling, i.e. if more input data is needed
than is produced, not all of the 80 cycles are available for each
sample. The fluctuations in time-scaling are controlled by the
host. In our case, they are limited to about +/- 25% of the output
rate. So, a general rule for the design of the software was that
only about 60 cycles per output sample were available. During
these 60 cycles, the chip must perform the following operations:
accept the data from the host, decompress and store it; then
retrieve it, perform interpolation, windowing, overlap-add and
store it again; then finally retrieve it and send it to the output
processor. There is also some overhead for buffer management.
Accepting data from the host already takes an average of 30
cycles per 16-bit sample because an interrupt is generated for
every 8-bits of data. Decompression and storage uses about 13
cycles per 16-bit sample. The interpolation, windowing and
overlap-add stage take about 8 cycles per sample and finally the
output operation takes 4 cycles per sample.

4.2. Implementation Architecture
The synthesis system includes the following components as
shown in Figure 3:

• Host Interface module

• Data Decompression module

• Overlap-Add module

The synthesis system receives data of two types from the
host: 1) Data frames, which are made of (compressed) frames
containing L contiguous speech samples of a pitch period. 2)
Prosody scripts, which include all the prosodic and interpolation
information.

The Host Interface module accepts data packets from the
host, determines their type (frame or prosody script) and
dispatches them to the Data Decompression module.

4.2.1. Data Decompression Module
The Data Decompression module reads the compressed frames
and prosody scripts, applies the decompression algorithm and
stores the decompressed data into the corresponding buffer. Data
frames are decompressed using the algorithm described in
Section 3.1, that takes as input L-sample compressed speech
frames. Prosody scripts vary in length, and are compressed to
occupy 3 bytes per frame. To save more power and at the cost of
a larger size, we can alternatively store the compressed speech
unit database in a non-volatile memory that is directly accessible
by the DSP system over existing interfaces.

4.2.2. Overlap-Add Module
The Overlap-Add module is the major part of the synthesis
system. It loops through the prosody script entries sent by the

Figure 2: Data compression block diagram

host. The prosodic information contained in the scripts include:

1) Shift. Amount by which to shift the data out to the signal
buffer after the overlap-add. Shifted samples are stored in the
signal buffer. They are then read by the IO-processor, transmitted
to system's Digital to Analog converter and from there to the
speaker.2) Interpolation data. Gives the diphone boundary and
the interpolation depth, assumed to be equal for both sides of the
interpolation at unit boundaries. 3) Frame reverse flag.
Repeated unvoiced frames are time-reversed by the Overlap-Add
module to avoid tonal noise distortions [4].

For each script entry, the Overlap-Add module performs the
following operations.1) Build a 2L-sample frame from the L-
sample frame referenced by the script and the L-sample frame
that follows. 2) If necessary, reverse the frame. 3) Calculate the
interpolation values at the unit boundaries. 4) If necessary, add a
proper multiple of interpolation values to the L sample frame.
Interpolation between frames is applied only at diphone
boundaries when the two units are both voiced. 5) Apply a
Hanning window to the frame. 6) Overlap-Add the 2L-sample
frame at the beginning of the output signal queue. 7) Shift out the
number of values specified in the script and adjust the signal
queue pointer.

5. CONCLUSION AND FUTURE WORK

The proposed system was implemented on the low-resource DSP
hardware platform described in [6,7] operating at a 1.28 MHz
clock rate. This was made possible due to the optimized hardware
architecture and the efficient instruction set of the DSP system.
To the best of our knowledge, this speech synthesis system is of
smaller size and lower power consumption than any other speech
synthesizer ever built.

To test the performance of the system, we subjectively
compared the speech synthesis quality on the hardware platform
with the simulation results of the same system working on a PC
without any data compression or register length limitations. The
evaluations showed that the limitations imposed by the hardware,

in terms of memory usage and quantization effects, did not lead
to any noticeable speech quality degradation. However, the data
compression had the greatest effect on the quality. While the
quality degradation was not audible at a compression rate of 4,
the quality dropped to a toll quality at a compression ratio of
about 5.3.

We have demonstrated that an ultra-low power DSP system
can be effectively used to perform the back-end tasks of a
synthesis system. This would particularly be useful in
environments where power consumption must be reduced to a
minimum or where an embedded processor does not have the
capabilities to synthesize speech. For example, it could be used in
a personal digital assistant (PDA) to off-load the main processor
in an efficient manner. The chip could also be used in
conjunction with a micro-controller in embedded systems.

Our future work is directed towards the front-end text-to-
phoneme (TTP) parser and prosodic analyzer. Currently, a host
computer system (e.g. a PC or a PDA) functions as the front-end
processor. Based on our evaluations, the processes at the front-
end are more memory-bound rather than CPU-bound. Thus, we
are now in the process of employing our hardware platform with
some external memory for the TTP parsing and the prosodic
analysis.

6. REFERENCES

[1] T. Dutoit, An Introduction to Text-to-Speech Synthesis,
Kluwer Academic Publishers, 1997.
[2] T. Dutoit et al., ”Envelope-Invariant Analytical Speech
Resynthesis Using Periodic Signals Derived from Reharmonized
Frame Spectrum”, United States Patent 5,987,413, Nov. 16,
1999.
[3] F. Charpentier and M. G. Stella, “Diphone Synthesis Using an
Overlap-Add Technique for Speech Waveforms Concatenation”,
Proc. of the ICASSP 1986, pp. 2015-2018.
[4] E. Moulines, and F. Charpentier, “Pitch-Synchronous
Waveform Processing Techniques for Text-to-Speech Synthesis
Using Diphones”, Speech Communication, vol. 9, no. 5-6, 1990.
[5] T. Dutoit, and H. Leich, “MBR-PSOLA Text-to-Speech
Synthesis Based on an MBE Re-Synthesis of the Segments
Database”, Speech Communication, vol. 13, pp. 435-440, Nov.
1993.
[6] R. Brennan and T. Schneider, “Filterbank Structure and
Method for Filtering and Separating an Information Signal into
Different Bands, Particularly for Audio Signal in Hearing Aids”.
United States Patent 6,236,731. WO 98/47313. April 16, 1997
[7] R. Brennan and T. Schneider, “A Flexible Filterbank
Structure for Extensive Signal Manipulations in Digital Hearing
Aids”, Proc. IEEE Int. Symp. Circuits and Systems, pp.569-572,
1998.
[8] Y. Stylianou, “On the Implementation of the Harmonic Plus
Noise Model for Concatenative Speech Synthesis”, Proc.
ICASSP 2000, pp. 957-960.
[9] T. Dutoit, and B. Gosselin, “On the Use of Hybrid
Harmonic/Stochastic Model for TTS Synthesis-by-
Concatenation”, Speech Communication, 19, pp. 119-143.
[10] O. Van Der Vreken et al., “A Simple and Efficient
Algorithm for the Compression of MBROLA Segment
Databases”, Proc. Eurospeech 97, Patras, pp. 241-245.

H o s t In te r fa c e

H o s t

S c r ip t
B u ffe r

F ra m e
B u ffe r

H o s t D a ta
B u ffe r

D e c o m p re s s io n

O v e r la p - A d d M o d u le H a n n in g
W in d o w

In te rp o la t io n
B u ffe r

S ig n a l O u tp u t
B u ffe r

D /A to S p e a k e r

Figure 3: The Synthesis System Architecture

