

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 1 of 18

ISSUE: August 20 21

Developing A 25-kW SiC-Based Fast DC Charger (Part 5): Control Algorithms,
Modulation Schemes And Feedback

by Oriol Filló , Dionisis Voglitsis , Karol Rendek, Stefan Kosterec and Rachit Kuma r, onsemi , Phoenix , Ariz .

In parts 1 through 4 of this series, [1 -4] weôve shared and extensively described the development of a 25 -kW EV

charger from a hardware perspective. Fig. 1 represents the system discussed until now. However, t his part 5
dives in to a different dimension of the charger design as we explore and provide practical insights on the

implementation of the control strategy and algor ithms for such a system.

Rather than discussing control theory, our purpose is to provide firsthand details on the beneficial approach to
control hardware and software development that the development team has taken, which helps speed up the

firmware dev elopment and the validation process . This applies to both the state -machine on the ARM controller

and to the main control algorithm on the FPGA, which weôll soon say more about.

At the same time, the particular development process described here ensures that errors are minimized and
detected early on, even before prototype hardware becomes available or is being design ed. In the following

sections, we will describe the steps and tools (MathWorks and Xilinx) to implement such an approach, the state

machine of and algorithmic blocks for the power factor correction (PFC) , and the main algorithmic blocks of the
DAB converter.

Fig. 1. A high - level block diagram of the 25-kW EV dc charger.

Development Process For the Control Strategy

The overview archi tecture of the control software for the PFC is illustrated in Fig. 2 . At the heart of this design is

Xilinxôs Zynq 7000 SoC, which contains both ARM cores and an FPGA core . T he Zynq 7000 is mounted to the
universal controller board (UCB), which also contains peripherals, ADCs, multiple memory boards and the

necessary power - tree for the SoC and other components . [5]

First , the ARM cores r un the sta te -machine, which is the higher - level routine in the firmware, as well as other

ancillary tasks, such us co mmunication protocols, protection functions , etc. Secondly, the FPGA serves as the
powerhouse of the main control algorithm, running the control loops that drive the converter to handle the

http://www.how2power.com/newsletters/2108/index.html

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 2 of 18

power as desired and implement the ac-dc conversion, PFC and volta ge boost to the desired dc link level. Thus,
the ñmain algorithmò on the FPGA is a particular stateðthe steady state we could say ðof the state -machine.

The DAB converter has the same distribution of tasks between ARM cores and FPGA.

Fig. 2. Overview of the 25 -kW PFC converter control architecture. Tasks are distributed between

the FPGA and ARM MCUs in the Xilinx Zynq 7000 on the UCB. The control architecture overview
will be similar for the DAB converter .

Model - Based Testing To Unveil Errors In Control System

Fig. 3 illustrates a typical distribution of how errors arise and are detected along a projectôs development chain.

One may notice that most of the errors are introduced in the early stages of the specification and design phase;
however, the majori ty of them are discovered in the late stage of testing.

Fig. 3. Errors introduced versus errors detected . (Source: Clive Maxfield and Kuhoo Goyalôs book,

ñEDA: Where Electronics Begins .ò)

In order to tackle the phenomena presented in Fig. 3, we adopted a development process that aims to detect

the majority of these errors during the early stages of development. If well implemented, this approach brings a

few advantages from a project resources and timeline perspective, such as

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 3 of 18

¶ Minimizing the ris k of additional necessary hardware iterations.
¶ Optimiz ing the control system and converter performance to a great extent , before hardware is on

hand.

¶ Accelerat ing the hardware -evaluation phase and minimiz ing the necessary tuning to be done on the
hardwar e. Significant work will have already been carried out while prototype boards were in

production.

To do that, the onsemi firmware and control engineers utilize d a model -based testing methodology that
leverages the MATLAB tools and ecosystem. [6] There are four key pillars underpinning the successful

implementation of this approach and that developers need to address:

¶ Representative models that ensure a close match between the simulated and actual system response
with viable si mulation times. A si milar trade off between model accuracy and s imulation time as

presented in p art 3 for the power simulations of the PFC.

¶ Compilation and validation of our firmware C code (state -machine) within our simulation process and
within our simulation model . Thus validation happens at the simulation stage ðand not at the hardware

evaluation stage.

¶ Automated synthesizable generation of FPGA IP cores from the verified models. This eliminates manual
coding errors and allows high - level optimizations to minimize FPGA cor e area while meeting timing

constraints.

To accelerate the implementation of these features, we capitalize d on the advantages of the tools described in

Table 1.

Table 1. Development and simulation tools used by the onsemi engineering team to develop, si mulate, deploy

and test the firmware for the 25 -kW fast dc EV charger design.

MathWorks tools

(Development, simulation and partial tuning of the complete

control algorithm and state -machine. Automated generation

of the FPGA core IPs)

Xilinx tools

(Deploym ent of the state -machine and control

algorithm to the FPGA and ARM cores)

¶ Simscape Electrical to model and simulate electrical

power systems
¶ Simulink for graphical modeli ng and simulation in

the MATLAB environment

¶ Fixed -Point Designer to optimize conversion to fixed -
point

¶ HDL Coder to generate synthesizable register -

t ransfer level (RTL) from the model

¶ HDL Verifier to co -simulate the RTL back - to -back
with the Simulink model

¶ MATLAB Compiler to compile handwritten C code for

simulation in Simulink

¶ Vivado (Development Ecosystem for

FPGA)

¶ Vitis (Integrated Development

Environment)

Taking A Step At A Time. How To Develop The Simulation Models?

Fig. 4 depicts the simplified flow chart of th e development and implementation process of the firmware, which is

split into three main phases summarized in Table 2. Within the scope of thi s article, only the simulation m odel

development is discussed in -depth, which is the most significant.

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 4 of 18

Fig. 4. Firmware development f lowchart for the 25 -kW fast dc EV charger.

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 5 of 18

Table 2. Phases of the firmware development process.

Stage Includes

Simulation model

development

Main control algorithm

¶ C-code (state -machine) imported with S - function block
¶ Power converter block (hardware power model)

¶ Interface block (hardware ADC model)

¶ Ac and dc plant blocks

Deployment into

Xilinx environment

¶ Integrates the FPGA IP generated in Mathworks

¶ Programming of the ARM core with the state -machine
and required ancillary t asks.

Testing and

verification

Verification of the model throughout the complete development

process and within the multiple stages. At the end, deployment

of the firmware on the hardware, bring up and evaluation of
functionality and control requirements.

The simulation m odel development stage encompasses the development of the simulation models (or simulation

blocks) that will be used to verify the control algorithm of our system. The foremost blocks included in this

project are:

¶ The C -code (state -machine) that will run on the ARM cores, imported for simulation via an S - function

block

¶ Control algorithm of the converter (control loops)

¶ Power conve rter, which models the hardware

¶ Hardware interface, which models the ADC circuitry in the hard ware

¶ Plant blocks, and ac plant for the PFC and a dc plant for the DAB.

At this stage of development we use ñlight ò models (representative models that exclude fine details) , which

allow us to run multiple cases/scenarios under various conditions (grid im pedances, current commands ð

depending on output -power - level variations ðand other conditions) validating our controller response against

many different scenarios. Switching models should therefore be avoided at this stage, as these are very
detailed and take too much time to run ðwe learned that as well in part 3 of this series for the power

simulations.

As an alternative, we are using switching average equivalent models , [7] which allows building simulation bloc ks
with FPGA IP cores . At the same time, we preserve all the important/impactful features of the HW to ensure

simulation integrity, such as the converter volta ge-drop effect, noise measurement , PWM transport and analog

to digital delays, etc.

Steps Toward IP Generation Using MATLAB

Diving into the details, this section explains the key steps to implement the particular s imulation model and

approach leveraging the capabilities of the MATLAB environment presented. Fig. 5 shows a simplified

representation of a generic energy conversation system with the elements introduced in Table 1.

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 6 of 18

Fig. 5. A simplified representation of a generic energy conversion system (not specifically the 25 -

kW dc charger).

The ñpower converterò is the central element of the model (the representation of our hardware), and the

ñcontrollerò is the main algorithmic block of interest and the one that we are developing and evaluating.
Eventually this algorithmic block will be turned into an FPGA IP core itself by using the automated tool s

provided by the MATLAB simulation ecosystem.

Our team uses a series of six steps during the model development stage , which takes us all the way to the final
IP generation. These steps are summarized in the simplified flow -chart in Fig. 6 and are briefly explained below.

Step 1: We develop our model in double -precision floating point, while we are using an average model for the

power converter. As discussed in the previous section, at this stage, the developed models play an important
role and should be a s light as possible to allow reasonable simulation runtimes, but also accurate enough to

reflect the actual behavior of the system.

Step 2: We are using automation tools provided by MATLAB to generate a fixed -point equivalent model of our

system. The tool that we are using for this task is the MATLAB Fixed Point Designer.

Step 3: Having changed from double precision to a fixed -point one, we run a validation simulation, to ensure

that fixed -point conversion has not affected the system ôs operational behavior.

Step 4: After validation, we include the state -machine that will be running in the ARM core of our UCB
controller. The tool that allows simulating handwritten C -code in a Simulink model is the S -Function. At this

point, we should be able to test our controller against numerous cases and under various conditions within

reasonable simulation runtimes . Within this process, various important subtasks may take place. For example,
the validation of proportional integral controller gains, t he evaluation of the load -step response of the controller,

the overcurrent reaction of the state -machine, error -handles, etc.

Step 5: Prior to the FPGA IP core generation, we highly recommend running a few simulations for selected
cases/scenarios replacin g the average model of the converter with the switching one. This process being time

consuming should be repeated for very few simulation cases. It is, however, important to ensure that our

controller is immune against the nonlinearities that are introduce d by the switching behavior of the converter.

Step 6: Having reached the required confide nce level for the developed algorithm, we can now use the

automation tools for FPGA IP cores generation. This process significantly reduces programming errors, and

ach ieve s synthesizable and area -optimized RTLs that meet the timing constraints.

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 7 of 18

Fig. 6. Flow chart of the six steps in the simulation model development stage. For ease of

representation, the ñperipheralsò block in Fig. 5 has been omitted from this flow c hart. It would
be present in the same position and connections with the other blocks as in Fig. 5.

PFC Control Strategy: State Machine And Control Loops

This section will elaborate on the control strategy of the PFC, including the state -machine as well a s the control
algorithm (control loops). The state machine runs on the ARM cores of the UCB, and the control algorithm is run

during the ñDC BUS VOLTAGE_CONTROLò state of the state-machine , and implemented on the FPGA silicon.

In upcoming sections, more d etails are provided of both the state -machine and algorithmic functionality. Fig. 7

provides an overview of the PFC state -machine, with the ñDC BUS VOLTAGE_CONTROLò state highlighted in
green, where the control loops and FPGA would take over the control an d run the main algorithmic functionality.

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 8 of 18

Fig. 7 . Overview of the state machine for the PFC converter.

When a three -phase voltage at 50 Hz is provided to the input connector of the charger , the output bus capacitor

voltage will rise because of the natur e of the PFC topology. A bridge less PFC with MOSFET s guarantees a
current path from input to output because of the parasitic freewheeling diode present on each MOSFET.

When the MOSFET s are all off, the board simplifies to a three -phase diode bridge. The r ectified input ac voltage

will set to a defined level depending on the supply voltage amplitude and on the forward voltage of the MOSFET

body diodes . However it is expected that at least a minimum ac voltage is provided at the input. For this
reason, a res istor on two different lines serves as inrush current limiter.

Once the bus voltage reaches 230 V, the main ancillary power supply starts to operate. This power supply along

with a series of dc-dc regulators generate the other voltage levels needed for powering up the digital and
analog circuitry. More details about the PFC functionality can be found in onsemiôs AND9957/D application note

for an on -board charger PFC converter [8] as the sam e strategy has been implemented in this 25 -kW dc charger

project.

PFC S tate - Machine I mplementation On The ARM Core

As described above, the state -machine of the PFC runs on the ARM cores of the UCB. Its sequence begins with

the IDLE block illustrated in Fig. 7, moving into the verification of the offset voltages in the ADC channels and
the monitoring and sensing of the input voltages . These are used to determine the frequency and the angle of

the phase of the three voltages. The angle will be the reference of the system to achieve power factor

correction.

When the dc bus voltage becomes flat and stabilized , the PFC controller issues a command to the relay to
bypass the inrush resistor and allow a further boost in the output bus voltage. However, the voltage increment

is going to be something lower than the rectified input voltage amplitude, ã6ĀVPH rms . The PFC controller will

wait until the bus voltage becomes flat again in order to start controlling the bus voltage to reach the targeted
value of 800 V. The t arget value does not change in a single step, it follows a smooth ramp generator that

brings up the bus value following a parametrized slope to the final 800 V .

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 9 of 18

The PFC implements only one hardware protection, against overcurrent events leveraging the DESAT
functionality of the NCD57000DWR2G gate driver s. However, the DESAT hardware protection can combine with

the software protection to generate a s ingle input to a NAND gate, which provides a hardware stop to the PWM

generation.

A reset of the failure conditions is possible only via a reset command sent through a GUI or via a power -

down/power -up sequence , which represents a HW/SW reset. More details about the PFC functionality are found

in reference 8 as it describes the same strategy implemented for th is 25 -kW dc charger project.

PFC Main Algorithm And Control Loops On The FPGA

Fig. 8 illustrates the PFC control block as part of the complete simulation model. The PFC algorithm utilizes
seven inputs and three outputs (summarized in Table 3). As part of the project , we will run and te st different

modulation strategies to assess which one produces better results, in terms of efficiency and harmonic

distortion. This control strategy is the same as described in reference 8.

Fig. 8. High - level block diagram of the PFC control algorithm.

Table 3. Input and output parameters of the PFC control algorithm.

PFC control algorithm

Inputs (sampled quantities) VPHASE (x3)

VLINE (x3) ï as no neutral point

is available

VDC_BUS (x1)

Outputs VREF (x3)

Exclusive Technology Feature

 © 2021 How2Power. All rights reserved. Page 10 of 18

Taking a deeper look, Fig. 9 shows in detail the blocks and relationships that compose the PFC algorithm. The

VLINE voltages serve to determine the actual position of the ac voltage phasor. The angle, theta, is then used for

regulat ing the current phase delay to 0° which is the main t arget of the PFC. The voltage position is used for

switching from the stationary ABC system reference into the rotating DQ frame by means of Clark e and Park

transformation (for the PFC, D axes means the amplitude of the phase voltage phasor).

As the angle theta is known , all the electrical quantities can be then expressed in the DQ system; such

simplification will ensure the usage of simple proportional integral (PI) regulators. The gain tuning of the PIs

depends on the transfer function of the plant to be regulated. PI regulators indeed can effectively regulate an
error to zero when a constant is provided as reference quantity, while these regulators are not capable of

regulating ac reference quantities.

Fig. 9. Detailed block diagram of the PFC control algorithm.

In any case, the PI regulators need some sort of calibration to ensure a proper system stability. It is typical to
expect fast response for the current loop (internal) and slower response on the external loop (voltage). At this

point it is wort h noting that the c urrent control loop is running synchronously with the PWM. The

synchronization procedure ensures that the ADC peripheral can be triggered at the exact time instance of the

PWM carrier to ensure the natural filtering of switching ripple i n the measured current quantities.

A side note is that the PWM frequency is not completely independent of the control frequency, because of the

intrinsic ADC measuring delay, which should be s mall enough to guarantee the in - time execution of the PFC

algor ithm within the switching period. As the FPGA PFC controller latency is very low, around 150 nsec, the
main limit ing factor for the PWM frequency is the ADC sampling and conversion time. Once the ADC quantities

are available , the control implementation is straightforward.

The main functionality of the PFC has been extensively tested with MATLAB, as described in the section ñSteps
Toward IP Generation Using MATLABò. The main Simulink model used is shown in Fig. 10 (the only part missing

from this model is the S - function to test the state machine of the firmware). The blocks used are explained

within the figure.

Note that the model at this stage consists mai nly of Simulink blocks, including the average model of the three -

phase power converter. The grid and the interconnection filter of the PFC utilize physical models in the

