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Developing A 25-kW SiC-Based Fast DC Charger (Part 5):  Control Algorithms, 
Modulation Schemes And Feedback 

by Oriol Filló , Dionisis Voglitsis , Karol Rendek,  Stefan Kosterec and Rachit Kuma r, onsemi , Phoenix , Ariz .  

In parts 1 through 4 of this series, [1 -4]  weôve shared and extensively described the development of a 25 -kW EV  

charger  from a hardware perspective. Fig. 1 represents the system discussed until now. However, t his part  5 
dives in to  a different dimension  of the charger design  as we  explore and provide practical insights on the 

implementation of the control strategy and algor ithms for such a system.   

Rather than discussing  control theory, our  purpose  is to provide firsthand details on the beneficial approach to 
control hardware and software development  that the development team has taken, which helps speed up the 

firmware dev elopment and the validation process . This applies to  both the state -machine on the ARM controller 

and to  the main control algorithm on the FPGA, which weôll soon say more about.  

At the same time, the particular  development  process described here  ensures that errors are minimized and 
detected early on, even before prototype hardware becomes  available or is being  design ed. In the following 

sections, we will describe the steps and tools (MathWorks and Xilinx) to implement such an approach, the state 

machine of and algorithmic blocks for the power factor correction ( PFC) , and the main algorithmic blocks of the 
DAB converter.  

 
Fig. 1. A high - level block diagram of the  25-kW EV dc charger.  

Development Process For the Control Strategy  

The overview archi tecture of the control software for the PFC is illustrated in  Fig. 2 . At the heart of this design is 

Xilinxôs Zynq 7000 SoC, which contains both ARM cores and an FPGA core . T he Zynq 7000 is mounted to the  
universal controller board (UCB), which also contains peripherals, ADCs, multiple memory boards and the 

necessary power - tree for the SoC and other components . [5 ]  

First , the ARM cores r un the sta te -machine, which is the higher - level routine in the firmware, as well as other 

ancillary tasks, such us co mmunication protocols, protection functions , etc.  Secondly, the  FPGA serves as  the 
powerhouse of the main control algorithm, running the control loops that drive the converter to handle the 
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power as desired and implement the ac-dc conversion, PFC and volta ge boost to the desired dc link level.  Thus, 
the ñmain algorithmò on the FPGA is a particular stateðthe steady state we could say ðof the state -machine. 

The DAB converter has the same distribution of tasks between ARM cores and FPGA.  

 
Fig. 2.  Overview of the 25 -kW PFC converter control architecture. Tasks are distributed between 

the FPGA and ARM MCUs in the  Xilinx Zynq 7000  on the  UCB. The control architecture overview 
will be similar for the DAB converter .   

Model - Based Testing To Unveil Errors In Control System  

Fig. 3 illustrates a typical distribution of how errors arise and are detected along a projectôs development chain. 

One may notice that most of the errors are introduced  in  the early stages of the specification and design phase; 
however, the majori ty of them are discovered  in  the late stage of testing.  

 
Fig. 3. Errors introduced versus errors detected . (Source: Clive Maxfield and Kuhoo Goyalôs book, 

ñEDA: Where Electronics Begins .ò)  

In order to tackle the phenomena presented in Fig. 3, we  adopted a development process that aims to detect 

the majority of these errors during the early stages of development. If well implemented, this approach brings a 

few advantages from a project resources and timeline perspective, such as  
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¶ Minimizing  the ris k of additional necessary hardware iterations.  
¶ Optimiz ing  the control system and converter performance to a great extent , before hardware is on 

hand.   

¶ Accelerat ing  the hardware -evaluation  phase and minimiz ing  the necessary tuning to be done on the 
hardwar e. Significant work will have already  been carried out while prototype  boards were in 

production.    

 

To do that, the onsemi  firmware and control engineers utilize d a model -based testing methodology that 
leverages the MATLAB tools and ecosystem. [ 6]  There are four key pillars underpinning the successful 

implementation of this approach and that developers need to address:  

¶ Representative models that ensure a close match between the simulated and actual system response 
with viable si mulation times. A si milar trade off between model accuracy and s imulation time as 

presented in p art 3 for the power simulations of the PFC.   

¶ Compilation and validation of our firmware C code (state -machine)  within our simulation process  and  
within our simulation model . Thus  validation happens at the simulation stage ðand not at the hardware 

evaluation stage.  

¶ Automated synthesizable generation of FPGA IP cores from the verified models. This eliminates manual 
coding errors and allows high - level optimizations to minimize FPGA cor e area while meeting timing 

constraints.   

 
To accelerate the implementation of these features, we  capitalize d on the advantages of the tools described in 

Table 1.  

Table 1. Development and simulation tools used by the onsemi  engineering team to develop, si mulate, deploy 

and test the firmware for the 25 -kW fast dc EV charger design.  

MathWorks tools  

(Development, simulation and partial tuning of the complete 

control algorithm and state -machine. Automated generation 

of the FPGA core IPs)  

Xilinx tools  

(Deploym ent of the state -machine and control 

algorithm to the FPGA and ARM cores)  

¶ Simscape Electrical  to model and simulate electrical 

power systems  
¶ Simulink  for graphical modeli ng and simulation in 

the MATLAB  environment  

¶ Fixed -Point Designer  to optimize conversion to fixed -
point  

¶ HDL Coder  to generate synthesizable register -

t ransfer level (RTL) from the model  

¶ HDL Verifier  to co -simulate the RTL back - to -back 
with the Simulink model  

¶ MATLAB Compiler  to compile handwritten C code for 

simulation in Simulink  

¶ Vivado (Development Ecosystem for 

FPGA) 

¶ Vitis (Integrated Development 

Environment  )  

 

Taking A Step At A Time. How To Develop The Simulation Models?   

 
Fig. 4 depicts the simplified flow chart of th e development and implementation process of the firmware, which is 

split into three main phases summarized in Table 2. Within the scope of thi s article, only the simulation m odel 

development is discussed in -depth, which is the most significant.  
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Fig. 4. Firmware development f lowchart  for the 25 -kW fast dc EV charger.  



 

 

Exclusive Technology Feature  

 

                                                          © 2021 How2Power. All rights reserved.                                              Page 5 of 18  
 

 

 

Table 2. Phases of the firmware development process.  

Stage  Includes  

Simulation model 

development  

Main control algorithm  

¶ C-code (state -machine) imported with S - function block  
¶ Power converter block (hardware power model)  

¶ Interface block (hardware ADC model)  

¶ Ac and dc plant blocks  

Deployment into 

Xilinx environment  

¶ Integrates the FPGA IP generated in Mathworks  

¶ Programming of the ARM core with the state -machine 
and required ancillary t asks.  

 

Testing and 

verification  

Verification of the model throughout  the complete development 

process and within the  multiple  stages.  At the end,  deployment 

of the firmware on the hardware, bring up and evaluation of 
functionality and control requirements.  

 

The simulation m odel development stage encompasses the development of the simulation models (or simulation 

blocks) that will be used to verify the control algorithm of our system. The foremost blocks included in this 

project are:  

¶ The C -code (state -machine) that will run on the ARM cores, imported for simulation via an S - function 

block  

¶ Control algorithm of the converter (control loops)  

¶ Power  conve rter, which models the hardware   

¶ Hardware interface, which models the ADC circuitry in the hard ware  

¶ Plant blocks, and ac plant for the PFC and a dc plant for the DAB.  

At this stage of development we use ñlight ò models  (representative  models that exclude  fine details) , which 

allow  us to run multiple cases/scenarios under various conditions (grid im pedances, current commands ð

depending on output -power - level variations ðand other  conditions ) validating our controller response against 

many different scenarios. Switching models should therefore be avoided at  this stage, as these are very 
detailed and take too much time to run ðwe learned that as well in part 3 of this series for the power 

simulations.   

As an alternative, we are using switching average equivalent models , [7]  which allows  building simulation bloc ks 
with  FPGA IP cores . At the same time, we preserve all the important/impactful features of the HW to ensure 

simulation integrity, such as the converter volta ge-drop effect, noise measurement , PWM transport and analog 

to digital delays, etc.  

Steps Toward  IP Generation Using MATLAB  

Diving into the details, this section explains the key steps to implement the particular s imulation model and 

approach leveraging the capabilities of the MATLAB environment presented. Fig.  5 shows a simplified 

representation of a generic energy conversation system  with the elements introduced in  Table 1.   
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Fig. 5. A simplified  representation of  a generic energy conversion system  (not specifically the 25 -

kW dc charger).  

The ñpower converterò is the central element of the model (the representation of our hardware), and the 

ñcontrollerò is the main algorithmic block of interest and the one that we are developing and evaluating. 
Eventually this algorithmic block  will be turned into an FPGA IP core itself by using the automated tool s 

provided by the MATLAB simulation ecosystem.  

Our team uses a series  of six steps during the model development stage , which takes us all the way to  the final 
IP generation. These steps are summarized in the simplified flow -chart in Fig. 6  and are briefly explained below.   

Step 1: We develop our model in double -precision floating point, while we are using an average model for the 

power converter. As discussed in the previous section, at this stage, the developed models play an important 
role and should be a s light  as possible to allow reasonable simulation runtimes,  but also accurate enough to 

reflect the actual behavior of the system.  

Step 2: We are using automation tools provided by MATLAB to generate a fixed -point equivalent model of our 

system. The tool  that we are using for this task is the MATLAB Fixed Point Designer.  

Step 3: Having changed from double precision to  a fixed -point one, we run a validation simulation, to ensure 

that fixed -point conversion has not affected the system ôs operational behavior.  

Step 4: After validation, we include the state -machine that will be running in the ARM core of our UCB 
controller. The tool that allows simulating handwritten C -code in a Simulink model is the S -Function. At this 

point, we should be  able to test our controller against numerous cases and under various conditions within 

reasonable simulation runtimes . Within this process, various important subtasks may take place. For example, 
the validation of proportional integral controller gains, t he evaluation of the load -step response of the controller, 

the overcurrent reaction of the state -machine, error -handles, etc.  

Step 5: Prior to the FPGA IP core generation, we highly recommend running a few simulations for selected 
cases/scenarios replacin g the average model of the converter with the switching one. This process being time 

consuming should be repeated for very few  simulation cases. It is, however, important to ensure that our 

controller is immune against the nonlinearities that are introduce d by the switching behavior of the converter.  

Step 6:  Having reached the required confide nce  level for the developed algorithm, we can now use the 

automation tools for FPGA IP cores generation. This process significantly reduces programming errors, and 

ach ieve s synthesizable and area -optimized RTLs that meet the timing constraints.  
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Fig. 6. Flow chart of the six steps in the simulation model development stage. For ease of 

representation, the ñperipheralsò block in Fig. 5 has been omitted from  this flow c hart. It would 
be present in the same position and connections with the other blocks as in Fig. 5.  

PFC Control Strategy: State Machine And Control Loops   

This section will elaborate on the control strategy of the PFC, including the state -machine as well a s the control 
algorithm (control loops). The state machine runs on the ARM cores of the UCB, and the control algorithm is run 

during the ñDC BUS VOLTAGE_CONTROLò state of the state-machine , and implemented on the FPGA silicon.  

In upcoming sections, more d etails are provided of both the state -machine and algorithmic functionality. Fig. 7 

provides an overview of the PFC state -machine, with the ñDC BUS VOLTAGE_CONTROLò state highlighted in 
green, where the control loops and FPGA would take over the control an d run the main algorithmic functionality.  
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Fig. 7 . Overview of the state machine for  the PFC converter.  

When a three -phase voltage at 50 Hz is provided to the input connector  of the charger , the output bus capacitor 

voltage will rise because of the natur e of the PFC topology. A bridge less PFC with MOSFET s guarantees a 
current path from input to output because of the parasitic freewheeling diode present on each MOSFET.  

When the MOSFET s are all off, the board simplifies to  a three -phase diode bridge. The r ectified input ac voltage 

will set to a defined level depending on the supply voltage amplitude and on the forward voltage of the MOSFET 

body diodes . However it is expected that at least a minimum ac voltage is provided at the input. For this 
reason, a res istor on two different lines serves as inrush current limiter.  

Once the bus voltage reaches 230 V, the main ancillary power supply starts to operate. This power supply along 

with a series of dc-dc regulators generate the other voltage levels  needed  for powering up the digital and 
analog circuitry.  More details about the PFC functionality can be found in onsemiôs AND9957/D application note 

for an on -board charger PFC converter [8 ]  as the sam e strategy has been implemented in this  25 -kW dc charger 

project.  

PFC S tate - Machine I mplementation On The ARM Core  

As described above, the state -machine of the PFC runs on the ARM cores of the UCB. Its sequence begins with 

the IDLE block illustrated in Fig. 7, moving into the verification of the offset voltages in the ADC channels and 
the monitoring and sensing of the input voltages . These  are used to determine the  frequency and the angle of 

the phase of the three voltages. The  angle will be the reference  of the system to achieve power factor 

correction.   

When the dc bus voltage becomes flat  and stabilized , the PFC controller issues a command to the relay to 
bypass the inrush resistor and allow a further boost in the output bus voltage. However, the voltage increment 

is going to be something lower than the rectified input voltage amplitude, ã6ĀVPH rms . The PFC controller will 

wait until the bus voltage becomes flat again in order to start controlling the bus voltage to  reach  the targeted 
value of 800 V. The t arget value does  not change in a single step, it  follows a  smooth ramp generator that 

brings up  the bus value following  a parametrized slope to the final 800 V . 
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The PFC implements only one hardware protection, against overcurrent events leveraging the DESAT 
functionality of the NCD57000DWR2G gate driver s. However, the DESAT hardware protection can  combine  with 

the software protection to generate a s ingle input to a NAND gate, which provides a hardware stop to the PWM 

generation.  

A reset of the failure conditions is possible only via  a reset command sent through a GUI or via a power -

down/power -up sequence , which represents a HW/SW reset. More details about the PFC functionality are found 

in reference 8 as it describes the  same strategy implemented for th is 25 -kW dc charger project.  

PFC Main Algorithm And Control Loops On The FPGA  
 

Fig. 8 illustrates the PFC control block as part of the complete simulation model. The PFC algorithm utilizes 
seven inputs and three outputs (summarized in Table 3).  As part of the project , we will run and te st different 

modulation strategies to assess which one produces better results, in terms of efficiency and harmonic 

distortion. This control strategy is the same as described in reference 8.  

 
Fig. 8. High - level block diagram of the PFC control algorithm.  

Table 3. Input and output parameters of the PFC control algorithm.  

PFC control algorithm  

Inputs  ( sampled quantities )  VPHASE (x3)  

VLINE  (x3) ï as no neutral point 

is available  

VDC_BUS  (x1)   

Outputs  VREF (x3)  
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Taking a deeper look, Fig. 9 shows in detail the blocks and relationships that compose  the PFC algorithm. The 

VLINE  voltages serve to  determine the actual position of the ac voltage phasor. The angle, theta, is then used for 

regulat ing  the current phase delay to 0° which  is the main t arget of the PFC. The voltage position is used for 

switching from the  stationary ABC system reference into the rotating DQ frame by means of Clark e and Park  

transformation (for the PFC, D axes means the amplitude of the phase voltage phasor).  

As the angle  theta  is known , all the electrical quantities can be then expressed in the DQ system; such 

simplification will ensure the usage of simple proportional integral (PI) regulators. The gain tuning of the PIs 

depends on the transfer function of the plant to be  regulated. PI regulators indeed can effectively regulate  an 
error to zero when a constant is provided as reference quantity, while these regulators  are not capable of 

regulating ac reference quantities.  

 

Fig. 9. Detailed block diagram of the PFC control  algorithm.  

In any case, the  PI regulators need some sort of calibration to ensure a proper system stability.  It is typical to 
expect fast response for the current loop (internal) and slower response on the external loop (voltage). At this 

point it is wort h noting that the c urrent control loop is running synchronously with the PWM. The 

synchronization procedure ensures that the  ADC peripheral can be triggered at the exact time instance of the 

PWM carrier to ensure the natural filtering  of  switching ripple i n the measured current quantities.  

A side note is that the PWM frequency is not completely independent of  the control frequency, because of the 

intrinsic  ADC measuring delay, which should be s mall enough to guarantee the in - time execution of the PFC 

algor ithm within the switching period. As the FPGA PFC controller latency is very low, around 150 nsec, the 
main limit ing  factor for the PWM frequency is the ADC sampling and conversion  time. Once the ADC quantities  

are available , the control implementation is straightforward.  

The main functionality of the PFC has been extensively tested with MATLAB, as described in the section ñSteps 
Toward  IP Generation Using MATLABò. The main Simulink model used is shown in Fig. 10 (the only part missing 

from this model is the S - function to test the state machine of the firmware). The blocks used are explained 

within the figure.  

Note that the model at this stage consists mai nly of Simulink blocks, including  the average model of the three -

phase power converter. The grid and the interconnection filter of the PFC utilize physical models in  the  


