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ABSTRACT 

The affine projection algorithm has been employed for echo 
cancellation using subband adaptive filters implemented 
with over-sampled filterbanks. We show that the near-end 
signal may be distorted or partially cancelled if proper regu-
larization is not applied. We attribute these distortions to the 
nonlinear effects that appear mostly when narrow-band sig-
nals are involved in adaptive filtering. Supporting this as-
sumption, it is shown that as the over-sampling rate in-
creases and subband signals become more bandlimited, 
near-end cancellation also increases. The effect of adaptive 
filter length and the regularization parameter on near-end 
distortion is analyzed, leading to the result that near-end 
distortion can be avoided by proper regularization. As a re-
sult, a practical low-cost on-line regularization method is 
proposed for the affine projection algorithm, effectively 
eliminating near-end distortion. 

1. INTRODUCTION 

While Normalized Least Mean Square (NLMS) algorithm is 
a simple and stable adaptation technique, its convergence is 
sensitive to the spectral flatness of the reference input and 
may be very slow for coloured signals. The Recursive Least 
Squares (RLS) algorithm significantly accelerates the con-
vergence. However, major drawbacks of RLS in practical 
applications are its high computational requirement and its 
potential for instability especially in limited precision arith-
metic [1].  

To reduce computation, the Affine Projection Algorithm 
(APA) has been introduced as a link between NLMS and 
RLS [2]. By employing several blocks of input signal rather 
than one, APA provides convergences faster than NLMS, 
especially when the reference input of the adaptive filter is 
highly colored. Furthermore, it requires much fewer compu-
tations than the RLS method and is more stable. 

In our application, we have implemented APA in the con-
text of Over-Sampled Subband Adaptive Filters (OS-SAFs). 
OS-SAFs have become a common practical solution [3] 
because of the well-known advantages of subband process-
ing. Over-sampling greatly simplifies implementation lead-
ing to much reduced distortion (aliasing) as compared to 
critical sampling. In order to reduce group delay while main-
taining aliasing at a low level, it is desirable to use a combi-
nation of less aggressive analysis and synthesis filters with  
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Figure 1: Block diagram of the OS-SAF system. 

an over-sampling factor ( OS ) of two or more [4]. When 
adaptive filters are used in these highly over-sampled sub-
band structures, the over-sampled inputs to each subband 
adaptive filter are coloured, leading to slow NLMS conver-
gence. In these situations, the APA is a reasonable alternative 
adaptation technique. 

Fig. 1 shows the block diagram of the OS-SAF system in 
an echo cancellation set up. The filterbank is a highly over-
sampled ( 2OS ≥ ), generalized DFT, uniform filterbank [4]. 
Here, the number of bands is set to 32K =  ( K/2 unique 
bands due to Hermitian symmetry) and the decimation rate 
in each subband is R . The over-sampling rate is RKOS /= . 
Each APA adaptive processor contains an FIR filter adapted 
by the APA. 

We show that when the APA is employed to process the 
colored subband signals of the over-sampled filterbank, 
near-end (NE) cancellation and distortion occurs. It is well 
known (for review see [5]) that nonlinear effects occur in 
NLMS when the reference signal is narrow-band and the 
adaptation step-size is large. We report similar nonlinear 
effects in the APA. The effect of APA parameters on the NE 
distortion is analyzed and an efficient regularization tech-
nique is proposed to cope with these distortions. 

In the following, Section 2 describes the APA and Sec-
tion 3 discusses the NE cancellation. A practical regulariza-
tion technique is proposed in Section 4, and conclusions are 
provided in Section 5. 

2.  AFFINE PROJECTION ALGORITHM 

The affine projection algorithm can be summarized in three 
equations [6]: 
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where  N is the affine order, [ ]1Nn1nnn xxx +−−= ,,, LX  is 

the excitation signal matrix ( NL × ), 

[ ]T1Ln1nnn xxxx +−−= ,,, L  is the excitation signal vector, 

L  is the length of the adaptive filter 

[ ]Tn1Ln1n0n hhhh ,,, ,,, −= L , and NI  is the NN ×  identity 

matrix. The N -length vectors  en , nε  and  sn are the error 

(output), the normalized error, and the primary signal vec-
tors respectively. The scalars δ and µ  are the regularization 
and step-size parameters, respectively. The primary signal 

 sn can be decomposed as 

nep
T
nn yhs += X  

where eph  is the echo-path impulse response and ny is the 

NE disturbance. 

3. NEAR-END CANCELLATION IN APA 

In various implementations of APA the step-size is often 
selected close to one, and the regularization parameter is 
selected to insure the stability of the algorithm. However, as 
reported in this paper, improper regularization can lead to 
distortion and cancellation of the primary signal before in-
stability occurs. 

3.1 Experiments  

The APA was employed in an acoustic echo cancellation 
(AEC) set up employing the OS-SAF, depicted in Fig. 1. To 
eliminate other potential sources of NE cancellation, full 
APA (with no approximation) was applied in each sub-band 

with fixed regularization of 7105 ×=δ  and 01.=µ . White 
noise was employed for the time-domain reference signal. 
Echo was generated using a typical echo plant at echo return 
loss of 15  dB. This parameter set and system set up were 
kept constant through all experiments except where other-
wise noted. 

The NE signal consisted of a male voice and white noise 
(at 15  dB SNR), as depicted in bottom half of Fig. 2. To 
demonstrate NE distortion, the reference signal and the pri-
mary signal (consisting of NE disturbance and echo) were 
applied to the SAF system. Simulations were done with 

4OS = , adaptive filter length of 24L = , and the affine order 
of 4N = . The power of the output signal (in dB) was then 
subtracted from the power of the NE disturbance in dB. 
Smoothing this difference with a first-order IIR filter, we 
arrive at the curve depicted in the top half of Fig. 2. In ab-
sence of NE cancellation, this difference should be negative, 
or at most zero dB when echo is perfectly cancelled. The 
difference however is positive which indicates that the NE 
signal is being cancelled. This time-varying cancellation in 
various subbands results in audible distortion even though 
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Figure 2: NE speech signal (bottom) and its cancelled portion (top). 

Table 1: Power of various signal employed in the experiment 

Signal Output Power (dB) 

Primary -39.46 

Reference -27.47 

Echo -42.46 

Near-End -42.47 

Table 2: Output power versus different over-sampling factors for 
both constant L and scaled L . 

OS value 
for SAF 

Scaled 
L  

Output Power 
(Scaled L ) 
(dB) 

Output Power 
( 128L = ) (dB) 

2 8 -43.02 -50.45 
4 16 -51.16 -57.48 
8 32 -57.42 -63.47 
16 64 -63.81 -66.99 
Time-
domain 
APA 

128 -39.39 

 
the system is completely stable. We attribute the NE cancel-
lation to the nonlinear effects of the APA when the reference 
subband signal becomes narrowband as a result of over-
sampling. To validate this assumption, more experiments are 
carried out. 

3.1.1 Effect of Increased Over-sampling on NE cancellation  

To analyze the effect of over-sampling, we measured the 
steady-state performance of the OS-SAF system for echo 
cancellation using two long white uncorrelated signals as the 
NE and primary signals. The steady-state input signal powers 
were measured as depicted in Table 1. The OS  value was 
varied between 2  to 16 , and output power of the system was 
measured. For SAF length, first a constant length of 

 128L = was employed, and next the length was scaled to 
maintain the same time-span of the filter for different 
OS values. 4th order APA (with no approximations) was ap-
plied in each sub-band. Table 2 presents the output power for 
various OS values. For reference, the output power of the 
time-domain APA system (of order 4) using the same data is 
also shown. Evidently, the NE cancellation uniformly in-
creases with increased over-sampling since the subband sig-
nals become more narrow-band. The trend is similar for both 
constant and scaled filter length scenarios. However, the 
time-domain APA exhibits almost no NE cancellation. This 
experiment confirms that when APA is employed in OS-SAF
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Figure 3: Output power in time for: (a) grey-thick line, 7105 ×=δ , 

70.=µ , 24L = , (b) dashed line, 7105×=δ , 70.=µ , 96L = , (c) 

black-thin line, 81052 ×=δ . , 5751.=µ , 96L = . 

NE signal cancellation and distortion happens due to subband 
signal coloration. 

3.1.2 Effect of Filter Length on NE cancellation 

To better analyse the NE cancellation problem, the fol-
lowing experiment was designed. Two different samples of 
white noise, both five seconds long, were used for the far-
end and NE signals with an echo created using the same 
echo plant. The APA echo canceller was used for the first 
half of the simulation. Adaptation was then stopped and the 
adaptive filter coefficients were saved. Next, a second simu-
lation was run without adaptation using the coefficients of 
the adaptive filter saved in the first run. The APA parameters 

were: fixed regularization of 7105×=δ , 70.=µ , 4N =  
and SAF length of 24L = . Curve “a” in Fig. 3 depicts the 
power, estimated using a first order IIR filter, of the output 
of the second simulation. It focuses around the time when 
adaptation was stopped during the first run. It clearly shows 
that at the point where adaptation was stopped, the power of 
the output signal is greatly reduced due to the NE cancella-
tion. At this point, the adaptive filter is highly tuned to the 
NE signal rather than adapting to the echo signal.  

For further analysis, consider the noise-amplification 
factors (NAFs) at time n , denoted by ni,τ , proposed in [6], 

δ+λ

λ
µ=δλτ

ni

ni
nini

,

,
,, ),(  

where ni,λ is the ith eigenmode of n
T
n XX . It is shown [6] 

that the NAFs scale the magnitude of the NE disturbance for 
each eigenmode of the affine projection in the APA. Fig. 4 
shows that increasing δ   will result in lower sensitivity to 
the eigenvalues. We employ the NAFs to gain more insight 
into the effect of the filter length on NE cancellation. Shown 
in Fig. 5 (by bars “a”) are the (time-averaged) NAFs for the 
four eigenmodes for the reference signal (in one subband), 
corresponding to curve “a” in Fig. 3 ( 24L = ). Increasing L  
to 96  leads to NAFs depicted by bars “b” in Fig. 5. As a 
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Figure 4: Noise amplification factor versus eigenvalues for various 
regularization parameters. 
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Figure 5: NAFs versus Eigenmodes: for parameter sets (a), (b), 
and (c) in Fig. 3. 

result, we expect more NE cancellation (as shown by curve 
“b” in Fig. 3) due to a dominant eigenmode. 

Next we re-adjust the parameters to 81052 ×=δ . and 
5751.=µ  to obtain NAFs (shown by bars “c” in Fig. 5) for 

96L =  that are very close to those for 24L = . Using these 
δ  and µ values for simulations, we obtain almost identical 
results with those for 24L = , as shown by curve “c” in Fig. 
3. 

The presented results clearly demonstrate that the filter 
length affects the NE cancellation by changing the NAFs. 
The effects of affine order on NE cancellations can be simi-
larly analysed using the NAFs. However, the analysis is 
more involved and we refrain from discussing it here for 
brevity. 

4. PREVENTING NE DISTORTION 

The solution we propose for the NE cancellation is based on 
proper regularization to suppress the NE disturbance in ad-
aptation. From Fig. 4 it can be seen that an increase in regu-
larization affects the peak of the noise amplification factor 
(due to the dominant eigenmode) first. This makes online 
regularization, like those proposed in [7] and [8], highly 



desirable. Reducing the noise-amplification factors is 
equivalent to suppressing the NE disturbance in adaptation. 
Another solution is to decrease step-size. Because step-size 
and regularization are closely related, increasing regulariza-
tion suffices.  

Here we propose a simplified method based on the on-
line regularization of [8]. In practice, fast versions of APA 
are employed for real-time implementation. We choose the 
Gauss-Seidel Fast APA (GSFAP) [9] for its low cost and 
desirable stability properties. In GSFAP, regularization can 
serve two purposes: stabilizing the Gauss-Seidel iteration 
and controlling the NE disturbance. The goal of online regu-
larization is to create a time-varying regularization parame-
ter to serve the two purposes of regularization in a near-
optimal manner. We propose the following regularization 
that comes close to this goal. 







 ⋅−⋅=δ 2
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nn sx1NL ||,||)(max  (1) 

where 2|| o represents the time-averaged power. The first 

part of Eq. (1), 2
nxL1N ||)( ⋅⋅− , addresses the issues of 

stabilizing the Gauss-Seidel algorithm. It is based on the 
method proposed in [7] and subsequently modified in [8]  
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We now approximate (3) to reduce its complexity. For a 
stationary reference signal, each element of the summation 

can be approximated (over-estimated) by 2
xL σ⋅ , where 2

xσ  
is the power of the reference signal. This leads to 
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Notice that the regularization is now independent of the 
row i . We replace 2N −  by 1N −  to turn off regularization 
for NLMS (where 1N = ). Doing so and replacing the refer-
ence power with a time-averaged estimate results in 

2
nn xL1N ||)( ⋅⋅−=δ   (5) 

This is the first part of Eq. (1). While Eq. (5) may give val-
ues that are slightly higher than Eq. (3), it is computationally 
much simpler and our numerous simulations have shown 
that it ensures stability of the Gauss-Seidel iteration while 
maintaining a fast convergence rate. 

The second part of Eq. (1), 2
nsL ||⋅ , has its origins in 

[7], where using the independence assumption and assuming 
a white reference signal, an optimal regularization parameter 
is approximated by 







 ∆

σ⋅
≈δ

2
n

2
y

nopt

hE

L
,   (6) 

However, it is difficult to estimate the expectation of the 

adaptive filter distance from the ideal solution (
2

nh∆ ) in 

the denominator, especially when using sub-band adaptive 
filters. Furthermore, a measurement of the power of the NE 
disturbance (in the numerator) is simply not available. To 
avoid these difficulties, it is proposed in [8] to make the fol-
lowing approximation. 

2
nn sL ||⋅=δ    (7) 

where the power of the NE disturbance is replaced by the 
estimated power of the entire primary signal. The system 
distance is also assumed to be approximately one. Eq. (7) is 
the second part of Eq. (1) that is responsible for controlling 
the NE disturbance to prevent NE cancellation and distortion 
We employed the proposed regularization of Eq. (1) in vari-
ous GSFAP simulations involving realistic situations. The 
results showed negligible NE cancellation or distortion, 
while fast convergence was maintained. 

5. CONCLUSIONS 

It was shown that similar to the NLMS, nonlinear effects 
exist in the APA and its various implementations. As a result, 
the NE (primary) signal may be distorted before the system 
becomes unstable. The issue is of critical importance in OS-
SAFs due to the limited bandwidth of the subband signals. 
The problem can be avoided through a proposed regulariza-
tion. We are now in the process of providing a mathematical 
model for the nonlinear effects in APA. 

REFERENCES 

[1] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall Inc., 
1996.  

[2] M. Montazeri, and P. Duhamel, “A set of algorithms linking 
NLMS and block LMS algorithms,” IEEE Tran. Signal Process-
ing, vol. 43, no. 2, Feb. 1995. 

[3] S. Weiss, “On adaptive filtering in oversampled subbands,” 
PhD. Thesis, Signal Processing Division, University of Strath-
clyde, Glasgow, May 1998. 

[4] R. Brennan, and T. Schneider, “A flexible filterbank structure 
for extensive signal manipulation in digital hearing aids,” Proc. 
IEEE Int. Symp. Circuits and Systems, pp. 569-572, 1998. 

[5] A. A. Beex and J. R. Zeidler, Steady-state dynamic weight 
behavior in (N)LMS adaptive filters, in Least-Mean Square Adap-
tive Filters, S. Haykin and B. Widrow (eds), John Wiley & Sons, 
NJ, 2003. 

[6] S. L. Gay, Fast Projection Algorithms with Application to 
Voice Excited Echo Cancellers, doctoral dissertation, Rutgers 
Univ., Piscataway, N.J., Oct. 1994.  

[7] V. Myllylä and G. Schmidt, “Pseudo-Optimal Regularization 
for Affine Projection Algorithms,” Proc. of ICASSP 2002, vol. 2, 
May 2002, pp. 3023-3026. 

[8] E. Chau, H. Sheikhzadeh and R. L. Brennan, “Complexity 
Reduction and Regularization of a Fast Affine Projection Algo-
rithm for Oversampled Subband Adaptive Filters,” Proc. of the 
ICASSP 2004. 

[9] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, “The 
Gaussseidel fast affine projection algorithm,” Proc. IEEE Work-
shop on Signal Processing Systems, pp. 109–114, 2002. 


