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Abstract 
The convergence rate of the Least Mean Square (LMS) 

algorithm is dependent on the eigenvalue distribution of the 
reference input correlation matrix. When adaptive filters are 
employed in low-delay over-sampled subband structures, 
colored subband signals considerably decelerate the 
convergence speed. Here, we propose and implement two 
promising techniques for improving the convergence rate based 
on: 1) Spectral emphasis and 2) Decimation of the subband 
signals. We analyze the effects of the proposed methods based 
on theoretical relationships between eigenvalue distribution 
and convergence characteristics. We also propose a combined 
decimation and spectral emphasis whitening technique that 
exploits the advantages of both methods to dramatically 
improve the convergence rate. Moreover, through decimation 
the combined whitening approach reduces the overall 
computation cost compared to subband LMS with no pre-
processing. Presented theoretical and simulation results 
confirm the effectiveness of the proposed convergence 
improvement methods. 

1.  Introduction 
Subband Adaptive Filters (SAF) have become a viable 

choice for adaptive noise and echo cancellation. The SAF 
approach uses a filterbank to split the fullband input into a 
number of frequency bands, each serving as input to an 
adaptive filter. Due to their narrower bandwidth, subband 
signals can be decimated. Subband decomposition and 
decimation results in much “whiter” signals at the input of 
adaptive filter. Decimation also leads to a parallel bank of 
much shorter adaptive filters improving convergence behavior 
[1]. If critical sampling is used, aliasing distortion may be 
eliminated by employing either adaptive cross-filters between 
adjacent subbands or gap filters [1-2]. Systems with cross-
filters generally converge slower and have higher 
computational cost, while systems employing gap filters 
produce significant signal distortion. 

Over-Sampled SAF (OS-SAF) systems offer a simplified 
structure that, without employing cross-filters or gap filters, 
significantly reduces the aliasing level in subbands. Typically, 
in an attempt to reduce computation cost, a non-integer over-
sampling factor close to one ( 2OS1 << ) is used (see for 
example [3]). However, for many real-time applications that 
require low processing delay, long analysis time-windows can 
not be employed. Consequently, high over-sampling factors are 
used to minimize the aliasing distortion that would occur in 
critical sampling or low over-sampling cases. As a result, 
prototype filter design becomes less stringent [4]. In adaptive 
noise and echo cancellation (and many other applications) 

wide-range gain adjustment of the subband signals is a 
necessity. To avoid aliasing and distortions, the solution of 
choice is to use over-sampling factors of 2 or more. However, 
over-sampling degrades the convergence behavior of SAF 
systems. In this research, we investigate the convergence 
properties of an OS-SAF system based on a generalized DFT 
(GDFT) highly over-sampled filterbank (OS = 2 or more).  

We introduce the employed SAF system in Section 2. 
Section 3 provides the theoretical basis for eigenvalue analysis 
of the convergence problem. In Section 4, techniques for 
improving convergence of LMS-based adaptive algorithms are 
proposed and analyzed. Finally, system evaluations and 
conclusions are described in Sections 5 and 6. 

2.  SAF System Structure 
Fig. 1 shows an SAF system in a noise cancellation 

application. Due to its desirable properties, a very efficient 
Weighted Overlap-Add (WOLA) filterbank [4] is employed in 
this research. The WOLA is a highly over-sampled GDFT 
uniform filterbank implemented on an ultra-low-power 
hardware platform. Through the DFT, it modulates a single 
prototype filter into K  complex filters ( 2/K  real bands due to 
frequency symmetry). In order to take advantage of the over-
sampling properties of the WOLA structure, we configure it for 

8R = , so the over-sampling factor will be 4R/KOS == . 
The added computation cost due to over-sampling is partly 
compensated by the use of shorter analysis prototype filters, 
and the efficiency of the WOLA hardware structure [4]. 
Referring to Fig. 1, each adaptive processing block is generally 
an adaptive filter that works on a specific frequency band thus 
modeling a narrow frequency band of the acoustic plant.  

As shown in Fig. 1, for white reference noise, input signals 
of the adaptive filter are no longer white in spectrum and their 
6-dB bandwidth is limited to OS/π  ( 4/B dB6 π=− ). This 
significantly degrades the convergence properties of the LMS 
algorithm compared to the critical sampling case, where all 
subband signals are almost white. 
Although the over-sampled subband signals are not white, their 
spectra are colored in a predicable way and can therefore be 
modified by further processing to “whiten” them in order to 
increase the convergence rate. This motivates us to propose 
and investigate spectral whitening techniques for OS-SAF 
systems. Since real-time low-delay and low-cost applications 
are targeted, the whitening techniques must be computationally 
efficient and should not substantially increase the system delay. 
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Fig. 1: Block diagram of SAF system 

3. Eigenvalue Analysis 
The convergence behavior of LMS-based adaptive filters 

has been extensively studied in the literature [5]. In [6], 
Morgan has carefully studied convergence characteristics 
based on eigenvalues of the input correlation matrix. Assuming 
reference input vector nx , noisy signal sample ny  and filter 
weights vector nw (of length M), the enhanced (noise 

cancelled) output sample is n
T
nnn yz xw−= . For simplicity, 

subscript k representing the kth subband has been dropped. 
Morgan has shown that for moderate or high values of M (e.g., 

16M ≥ ), a Modal Power Approximation (MPA) for Mean 
Squared Error (MSE) can be expressed as [6]: 

{ } ∑
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nnxx E xxR =  and 
{ }nnxx xE ′=′ xr . ns  and nx′  are the speech sample and the noise 

component in the second (noisy) input. M,...,1m,m =λ  are the 
eigenvalues of correlation matrix xxR . We assume that the 

LMS step size is M/0.1=µ  and that the signal power is 

unity so that ∑
=

==λ
M

1m
xxm M)(tr R  and 1min0 =ξ−ξ  for 0n =  

in (1) (as suggested in [6]). 
In this research, we extend the use of the MPA to 

characterize the expected (theoretical) convergence properties 
of OS-SAF systems. Since the WOLA filterbank provides 
nearly orthogonal subbands [4], only the first subband of the 
filterbank is considered for theoretical analysis. The total 
(fullband) MSE can be approximated as the sum of subband 
MSE’s. 

With a white noise excitation at the input of the SAF 
system, nx  will be a bandlimited white noise with a bandwidth 
of 4/B dB6 π=−  for 4OS = . Assuming an adaptive filter nw  
of length 16M = , the eigenvalues of xxR  are computed and 
plotted in Fig. 2 (no whitening (NoW) case) in ascending 
order. The MSE values associated with these eigenvalues 
calculated by (1) are plotted in Fig. 3. Although only the total 
distribution of eigenvalues can fully characterize the 
convergence behavior, it is obvious that the summand in (1) is 
dominated  at  the  beginning  ( in   time )  by  the  terms due to 
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Fig. 2: Eigenvalues of the input correlation matrix in 
NoW, WBS, WBD and WBDS cases. 
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Fig. 3: MSE time-variations for NoW, WBS, WBD 
and WBDS cases. 

the largest eigenvalues, and at the end by those due to the 
smallest eigenvalues. In other words, an increase in the largest 
eigenvalues results in a smaller MSE at the beginning of LMS 
adaptation, and an increase in smallest eigenvalues will 
accelerate final convergence. 

4.  Proposed Techniques for Whitening  
To cope with the slow convergence problem of OS-SAF 

systems, we propose and implement two different whitening 
techniques and analyze their effects on the convergence rate of 
the LMS algorithm when employed in highly over-sampled 
SAFs. 

4.1. Whitening by Spectral Emphasis 

We have already reported the basics of this method in [7]. Here 
we further analyze the performance of the method and combine 
it with another method. Shown in Fig. 4 is the modified 
adaptive processing block diagram that employs whitening by 
spectral emphasis (WBS) for convergence improvement. 
Considering the subband signal spectrum, we have designed 
and employed a filter (.)femp  that amplifies the high three 
quarters of the spectrum (in each subband) and leaves the low 
quarter intact. The emphasized signals are used only to 
improve the convergence characteristics of the adaptive filter. 
As shown in Fig. 4, the adaptive filtering is done in the main 
branch (right branch) while the side branch does the spectral 
emphasis  and  LMS weight  adaptation.  In each  iteration,  the  
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Fig. 4: Adaptive processing block in WBS method. 

updated weights are copied from the side branch to the main 
branch. The use of spectral emphasis has no effect on the 
modeling behavior of the adaptive filter. Since spectral 
emphasis has been applied to both reference and noisy inputs, 
its effect will be cancelled out [8]. 

The spectral emphasis basically improves the convergence 
rate through amplification of small eigenvalues. Due to the 
unity gain constraint, this will cause the attenuation of larger 
eigenvalues. The eigenvalues of the correlation matrix of the 
emphasized reference signal are plotted in Fig. 2 in comparison 
with those for no whitening (NoW) case. As shown, WBS 
amplifies the smallest eigenvalues that can finally lead to faster 
convergence of the LMS algorithm. 

The theoretical MSE time-variation is calculated (using (1)) 
for the eigenvalues of the emphasized reference signal and 
plotted in Fig. 3. Comparing with the NoW case, although 
attenuation of large eigenvalues has increased the MSE at the 
beginning of the adaptation, the boosted smallest eigenvalues 
later result in a much faster convergence rate in the WBS case. 

Spectral emphasis improves LMS convergence at a cost of 
extra computations of spectral emphasis filtering. In the 
following section, another whitening technique is introduced 
that will accelerate convergence rate while decreasing the 
computation cost. 

4.2. Whitening by Decimation 

Since the subband reference signal has a limited bandwidth 
of 4/B dB6 π=−  (for 4OS = ), we propose to further decimate 
the subband signals, consequently generating whiter signals 
that will ultimately increase the convergence rate. Fig. 5 shows 
the adaptive processing block that employs the whitening by 
decimation technique (for convenience, called WBD). In this 
research for 4OS = , 2D =  is employed. Greater values of D 
were not used to avoid inband aliasing. By imposing a constant 
time-memory constraint on the adaptive filters, the order of the 
side branch adaptive filter )n(kw′  is set to 82/M = . After 
each LMS weight update, adaptive filter coefficients are 
upsampled and copied to the mirror filter in the main branch. 
Although the upsampling creates in-band images in the filter 
spectrum, since the input signal does not contain significant 
energy for ,4/π>ω  the filter spectral images do not contribute 
to distortion at the output. 

Eigenvalues of the correlation matrix of decimated reference 
signal are plotted in Fig. 2. To show the eigenvalues on the 
same graph in comparison to other methods, eigenvalues for 
the decimated method are located in odd indices. Decimation 
causes expansion of the effective bandwidth resulting in   
relatively larger eigenvalues. As can be predicted from this 
eigenvalue distribution, at the beginning the MSE will be  
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Fig. 5: Adaptive processing block in WBD method. 

larger than in the NoW case. However, the effects of the large 
eigenvalues will diminish and the small eigenvalues will take 
over. This plot predicts that whitening by decimation will 
ultimately result in lower MSE values. This is demonstrated in 
Fig. 3. 

WBD is also attractive from computation cost point of view. 
Here, LMS adaptation is done once out of each D input blocks 
(once every 2 blocks in the 2D =  case). Furthermore, the 
inserted zero weights of the adaptive filter )n(kw  will cause a 
further reduction in computational cost. This will be further 
discussed in Section 5.1. 

4.3. Whitening by both Decimation and Spectral Emphasis 

Whitening by decimation improves the convergence rate by 
increasing the effective bandwidth of the reference input. 
Nevertheless, it cannot deal with the stop-band region of the 
prototype filter. Thus as it is evident from Fig. 2, WBD still 
suffers from the effects of the smallest eigenvalues. This 
motivates us to propose the use of a spectral emphasis filter 
following the whitening by decimation method. We refer to 
this hybrid method as WBDS. The block diagram of the 
combined adaptive processor is shown in Fig. 6. A low-cost 
second-order IIR spectral emphasis filter has been employed 
here. 

As shown in Fig. 2, WBDS results in a majority of large 
(and approximately equal) eigenvalues and a few smaller ones. 
A much whiter spectrum of input signal is predictable from this 
eigenvalue distribution. The square-symbol curves in Fig. 3 
demonstrate the considerable achieved improvement in 
convergence rate. Although the smaller values of the largest 
eigenvalues (compared to other methods presented) increase 
the MSE at the beginning, this is soon compensated by 
improvements due to other eigenvalues and consequently, 
general convergence behavior is much better than other 
presented methods. 

5. System Evaluation 

5.1. Computation Cost Comparison 

We compare the computation cost of LMS adaptation and 
adaptive filtering in one subband per input sample for various 
methods. Assuming an adaptive filter of length M, the NoW 
approach requires 1M2 +  operations (OPS, defined here as 
one complex multiply and add). Considering a spectral 
emphasis filter of order P1, the computation cost of WBS is is 

1P2M3 1 ++  OPS. For the WBD method with a decimation 

factor of D, a total of D/)1M(D/M2 2 ++  OPS are needed. 
Finally, the total complexity of the WBDS method with a
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Fig. 6: Adaptive processing block in WBDS method. 

1 2 3 4 5 6 7 8 9
x 10

4

-60

-50

-40

-30

-20

-10

Sample Number, n

M
SE

(d
B

)

NoW
WBS
WBD
WBDS

1 2 3 4 5 6 7 8 9
x 10

4

-60

-50

-40

-30

-20

-10

Sample Number, n

M
SE

(d
B

)

NoW
WBS
WBD
WBDS

 
Fig. 7: Simulation results: MSE time-variations of the 
noise-cancelled first-subband output for NoW, WBS, 
WBD and WBDS cases. 

spectral emphasis filter of order P2 is 
D/)1P2M2(D/M2 2

2 +++  OPS. For a typical parameter 
setup ( 16M = , 2D = , 4P1 =  and 2P2 = ), the NoW, WBS, 
WBD and WBDS techniques require 33, 57, 17 and 19 OPS, 
respectively. This demonstrates a reduction by a factor of 
(almost) two in computation cost achieved by the use of the 
decimation technique (19 compared to 33 OPS). Moreover, in a 
real-time implementation, decimation allows the side branch 
adaptation process for different subbands to be spread across D 
consecutive blocks. 

5.2. Convergence of Adaptive Noise Cancellation System 

Convergence behavior of OS-SAF with and without the 
proposed whitening techniques has been evaluated by 
simulating the system in an adaptive noise cancellation setup. 
A white noise signal for the reference input and a typical 
acoustic plant are used. The WOLA filterbank has been 
configured for 162/K =  bands, 128L =  point window length 
and down/up sampling ratio of 8R = . So, the over-sampling 
ratio is 4OS = . A 16-tap adaptive filter has been employed for 
each subband. 

Fig. 7 presents the simulation results (MSE of the noise- 
cancelled first-subband output) for the NoW, WBS, WBD and 
WBDS cases. Despite all the simplifications and 
approximations made in our theoretical analysis, the simulation 
results consistently follow the corresponding theoretical curves 
shown in Fig. 3. As expected, the WBDS method has 
dramatically increased the convergence rate. 

To ensure that the proposed techniques are not dependent on 
the transfer function of the acoustic plant, the simulations were 

repeated for several plants achieving consistent results. During 
the simulation, we also compared the MSE time-variations for 
the (full-band) time-domain outputs. Similar comparative 
results were achieved [8]. 

6.  Conclusion 
Based on a theoretical eigenvalue analysis of LMS 
convergence, we proposed, implemented, and carefully 
evaluated three simple and low-complexity whitening 
techniques that can significantly enhance the convergence rate 
of OS-SAFs.  
It was shown that spectral emphasis whitening improves the 
convergence rate considerably but it requires extra 
computations to do spectral emphasis filtering. On the other 
hand, whitening by decimation achieves a data rate closer to 
critical sampling and provides a whiter signal at the adaptive 
filter input. By doing so, it actually decreases the computation 
cost. The combined and spectral emphasis whitening exploits 
the advantages of both methods and improves LMS 
convergence rate drastically. 

Employing a side branch in the adaptive system enabled us 
to use the whitened inputs for the LMS adaptation (in the side 
branch) while conserving their original versions for the 
adaptive filtering in the main branch to avoid excessive 
aliasing. Our simulation results on an OS-SAF employed for 
noise cancellation confirm the capability of the proposed 
whitening techniques to effectively improve the convergence 
rate. We are now in the process of porting the OS-SAF system 
including the efficient WBDS technique to an ultra-low-power 
hardware implementation of the over-sampled WOLA 
filterbank described in [4]. 
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