September, 2006

Verilog Models for Catalyst IIC Serial CMOS E2PROMs
General Presentation

Catalyst IIC serial memory chips are constituting a rich enough game. This application tries to cover their common features related to main IIC protocol functions, offering:

· a behavioral model for these circuits;

· a benchtest for this model.

The Verilog model has been conceived as protocol automata (state machines) for IIC protocol, the memory chip being seen as the “slave” component and the controlling device as the “master” one.

The programs are fully parameterized (through some files), in order to cover different chip types and various environment conditions.

A detailed report (including: the circuit main features, the parameters selected by the user and, mainly, the simulation flow) is given to the user by means of displayed messages.

This first version consists in:

· a Verilog module – IICslave.v

 (model for Catalyst IIC memory chips - the main target);

· the necessary stuff to test this module (benchtest), as follows:

· a Verilog module IICmaster.v (master for IIC protocol), generating the test sequences according to user indications, sending them to the slave (chip model) and interpreting its answers;

· some context Verilog modules, as follows:

- IICtest.v for:

· test running (frame module, containing the instantiations

of modules representing the chip model (slave) and the controlling device generating input signals (master));

- customization (the user can modify timing, header structure, device

 address etc.);

- Input0.v & Input.v (called through `include in the master module),

 for customization

 (the user must define the suite of commands to be sent to the memory chip)

- MemType.v (called through `include in the protocol modules),

 for customization

 (the user must select the chip type and the protocol type – standard or fast);

 - MemParameters.v (called through `include in the protocol modules)

 (parameters for each type of memory chip)

 - Timing.v (called through `include in MemParameters.v), containing the default

 timing (which is that from the circuit datasheets).
How to Prepare a Simulation
- do edit MemType.v
·
- uncomment only:

· the line specifying your chip type and

· the line specifying the protocol type (standard or fast);
- do edit Input0.v & Input.v

- specify the desired test suite (“Input0.v” the first command, “Input.v” the others);

these files are headed with a commented zone including

patterns for all the commands specifications;

to include a new command in the suite:

- copy the appropriate pattern and uncomment & replace as required

- get, from the corresponding section of “MemParameters.v”, as last lines in

 each entry, the definitions of addrInfoByteW & addrInfoByteR (copy & uncomment)

- for “Input.v”, ensure that the numbers preceding the operations descriptors are

 in ascending order (beginning with 2); this file being included in a "case"

 statement in the context of a mechanism of automated index increasing

 by 1, the sequential order must be kept.

- if you are using IICmaster.v to generate the input, edit, if necessary, IICtest.v;

 to study the chip behaviour under different conditions, you can:

- specify the desired clock frequency, modifying the appropriate line; e.g.:

defparam m.frequency = 1000000;
// clock frequency (in Hz)

(attention: not over the maximum one allowed in your context);

- specify the desired stop – start interval, modifying the appropriate line; e.g.:

defparam m.sepLength = 10;
// length parameter for…

- specify the memory device address and the desired header configuration (see “initial” section)

Example of Test Suite

Here you have a possible sequence from a suite of commands to include

 in “Input0.v” (the first) & “Input.v” (the others):

Input0.v

// Input Data Sequence - first step

WPPAD = 0;

// no protection, write 41h at address 11h

Moperation = `write;

MoperationType = `byteWrite;

addr = 16'h0011;

lSeq = 1;

dataByte = 8'h41;

addrInfoByteW = {headerFirstHalf,addrDev[2:1],addr[8],`B0};

addrInfoByteR = {headerFirstHalf,addrDev[2:1],addr[8],`B1};

Input.v

// Input Data Sequence - next steps

2:

begin

// read one byte from address 11h

Moperation = `read;

MoperationType = `selectiveRead;

addr = 16'h0011;

lSeq = 1;

addrInfoByteW = {headerFirstHalf,addrDev[2:1],addr[8],`B0};

addrInfoByteR = {headerFirstHalf,addrDev[2:1],addr[8],`B1};

end

3:

begin

WPPAD
= 1;

// set Hardware Write Potect, write byte

Moperation = `write;

MoperationType = `byteWrite;

addr = 16'h0010;

lSeq = 1;

dataByte = 8'h51;

addrInfoByteW = {headerFirstHalf,addrDev[2:1],addr[8],`B0};

addrInfoByteR = {headerFirstHalf,addrDev[2:1],addr[8],`B1};

end

4:

begin

WPPAD
= 1;

// reset Hardware Write Potect, write page

// “pattern” used to generate byte sequence

// (in this case, => 90h, 91h, 92 h …)

Moperation = `write;

MoperationType = `pageWrite;

addr = 16'h0020;

pattern = 9;

lSeq = 16;

addrInfoByteW = {headerFirstHalf,addrDev[2:1],addr[8],`B0};

addrInfoByteR = {headerFirstHalf,addrDev[2:1],addr[8],`B1};

end

5:

begin

// read 32 bytes from address 10h

Moperation = `read;

MoperationType = `sequentialSelectRead;

addr = 16'h0010;

lSeq = 2*16;

addrInfoByteW = {headerFirstHalf,addrDev[2:1],addr[8],`B0};

addrInfoByteR = {headerFirstHalf,addrDev[2:1],addr[8],`B1};

end

Protocol Requirements Verification Made by the Model

The model makes the following verifications of input signals according to I2C protocol requirements (errors being signaled by messages via $display... on the output window of the simulator):

- timing related:

 (see "Read&Write Cycle Limits" section in I2C circuits datasheets):

- at START recognition:

- time bus must be free before a new transmission

 (time interval from the last STOP to be >= tBUF)

- start condition setup time

 (start setup time to be >= tSU_STA)

- start condition hold time

 (start hold time to be >= tHD_STA)

- no internal writing to take place

- at STOP recognition:

- stop condition setup time

 (stop setup time to be >= tSU_STO)

- message structure related:

- at header recognition:

- the first 4 bits configuration

- the slave address

- at STOP recognition:

- general structure of a received write command.

How to Use Standard Output for Verification & Debugging

All the simulation flow is presented in the output window of the simulator.

The following indications are given:

- the memory chip features (name, size, address configuration, page size, maximum frequency,

write protection type, device address)

- each test phase (command specification, partial images of memory -addresses and their contents-

 for read/write operations)

- protocol error messages.

For debugging reasons, the user can trace the protocol significant steps. It can edit "IICslave.v" and uncomment lines such:

//$display("***** Slave (i2c memory): ...",$time);

Remarks

This application has been tested under ModelSim SE PLUS 5.6d.

Also, some tests have been done under Simucad SILOS III – V98.100 Build 219 and VCS version 7.0.

The Verilog modules can be used in any simulator recognizing this language, eventually making the

minor modifications required when the used simulator is conceived for another Verilog standard.

1
4

