ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Reference Design – TND6359/D

240 W Lighting Solution with NCL2801 and NCL30076

ON's Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCL2801 NCL30076 NCP10671	Lighting	90 to 305 Vac	240 W	BOOST PFC, BUCK, Flyback	Non-Isolated

	Output Specification
Output Voltage	130 Vdc-240 Vdc
Nominal Current	0-1 A
Max Current	1 A
Min Current	zero

Avg. Efficiency	>96% @ full load at board end, 230 Vac
Constant Current Tolerance	<2%
Standby Power	<0.5 W
Power Density	2.12 W/cm^3
Protection	OCP,OVP, output LED short circuit protection
Size	Round Size, Radius*High = 60 mm*35 mm

Circuit Description

PFC This design used ON's controller NCL2801CDA and BUCK controller NCL30076, with a high PF and low THD performance. The NCL30076 is DC-DC buck controller for wide analog dimming range down to 1%. ON Semiconductor's **LED** proprietary current calculation technique driven by zero input offset amplifiers performs precise constant current in the whole analog dimming range. PWM dimming is also provided to keep the constant LED color temperature.

There is also a Auxiliary power supply board using ON's NCP10671, which can be used to supply the

Vcc power for NCL30076, NCL2801 and the Dimming circuit.

Key Features

- Wide analog dimming range: 1-100%
- Precise CC regulation: ±2% at 100% load
- QR operation at full load
- Low STBY current
- Protections:
 - Short LED protection
 - Over current protection
 - Thermal shutdown
- High PF and low THD

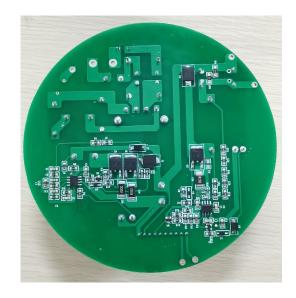
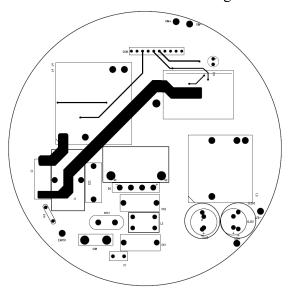



Figure 1. Demo Board Pictures

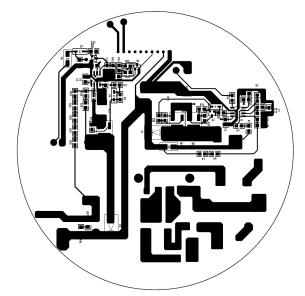


Figure 2. Main Board PCB

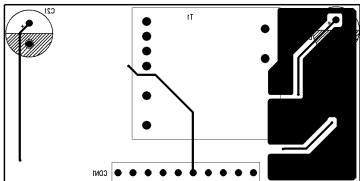
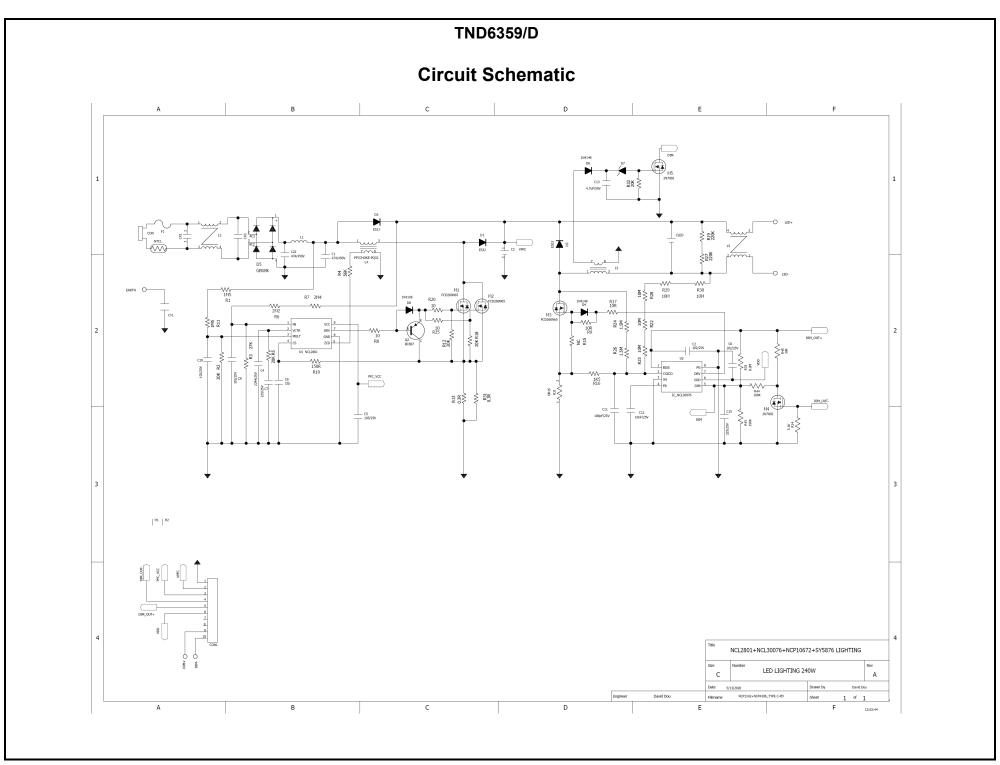
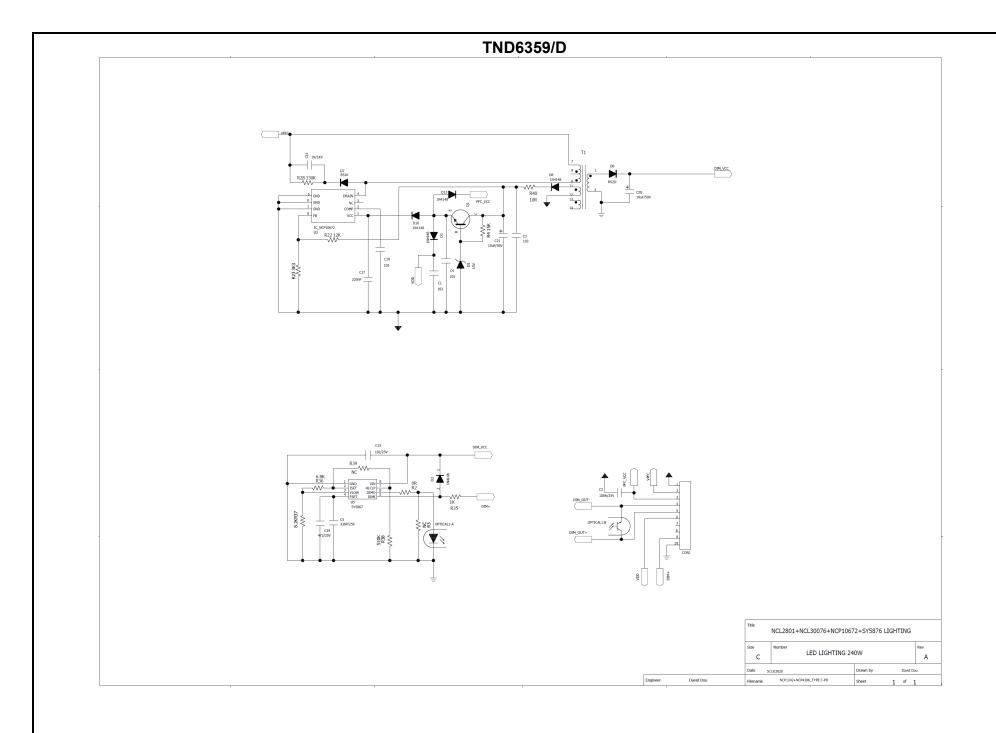
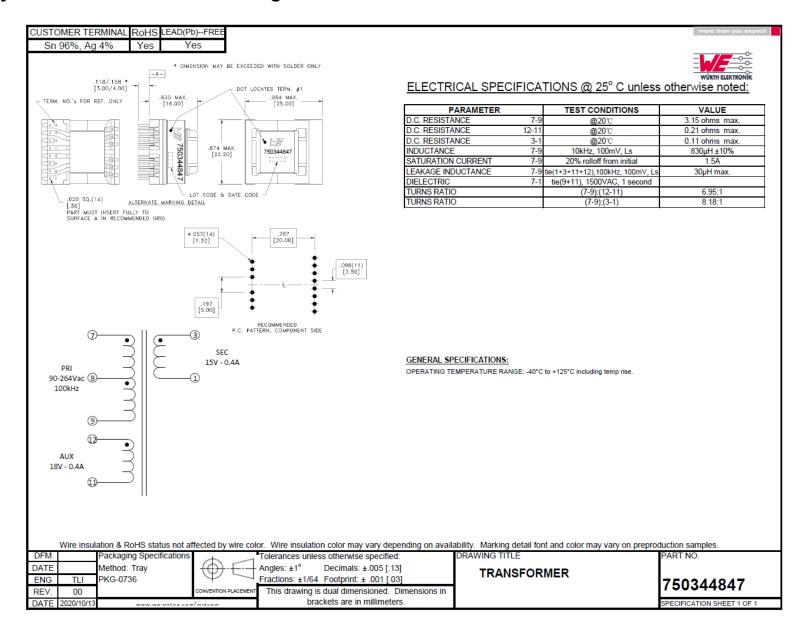
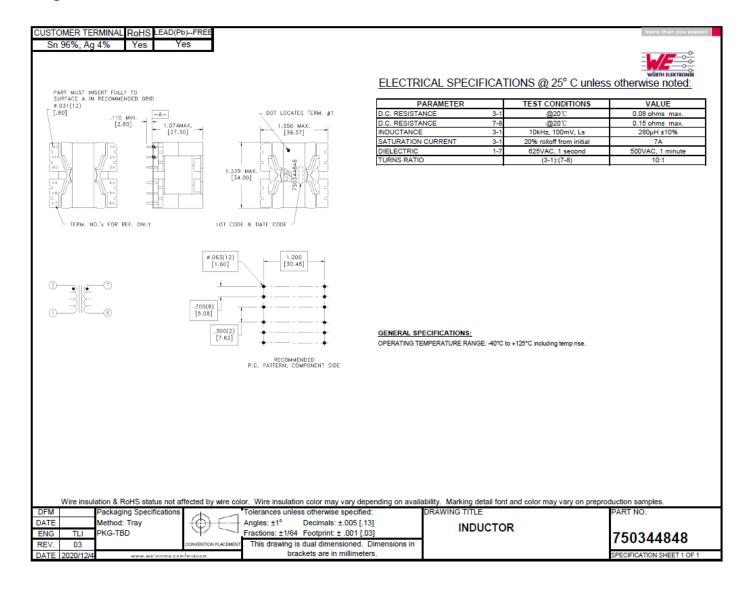
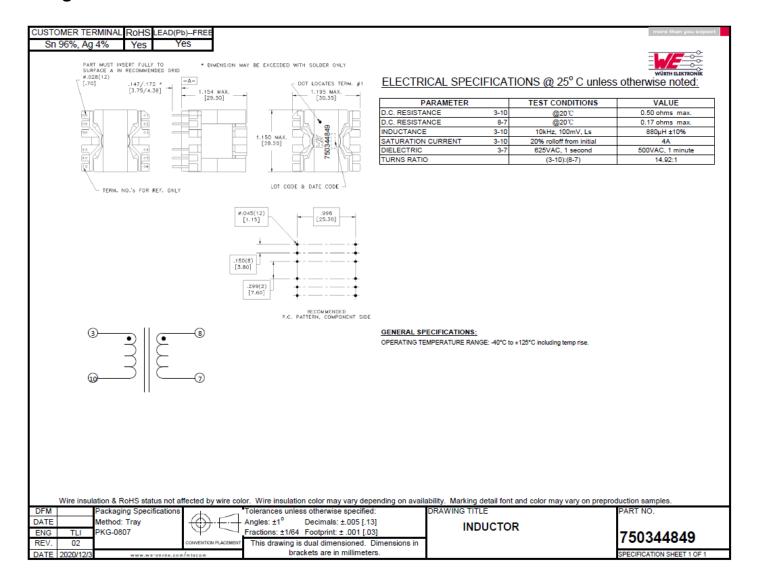
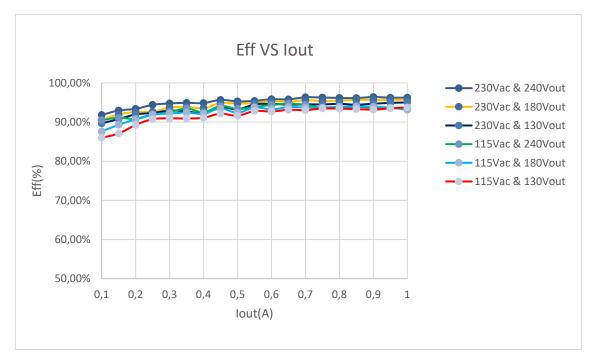





Figure 3. Auxiliary Vcc PCB

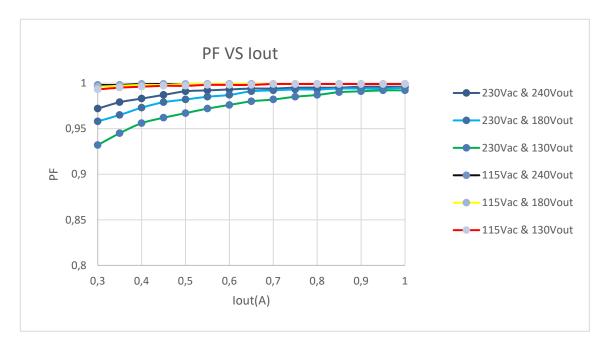



Auxiliary Vcc Power Transformer Design

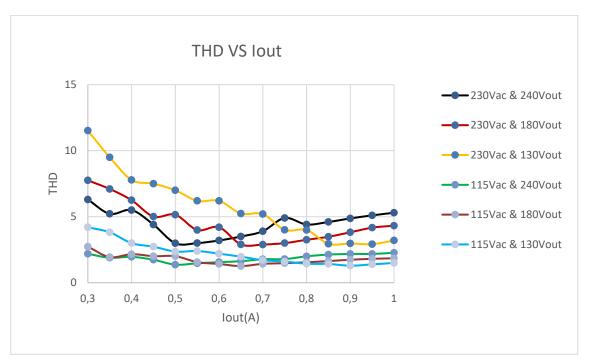
PFC Choke Design



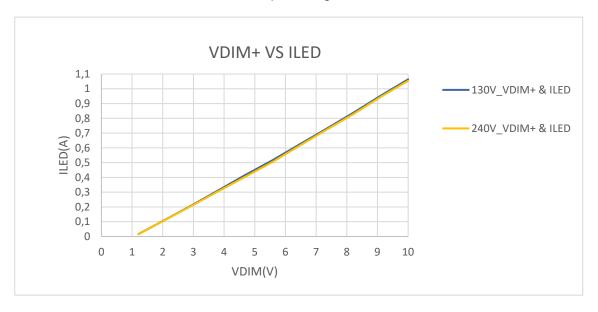
Buck Choke Design


Efficiency Curve in Different AC Input Voltage

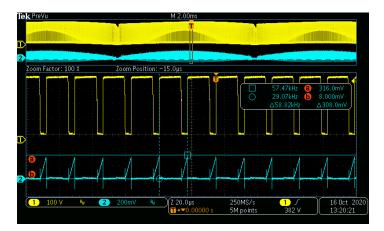
Test condition: all efficiency are tested at board end


PFC Value in Different Load:

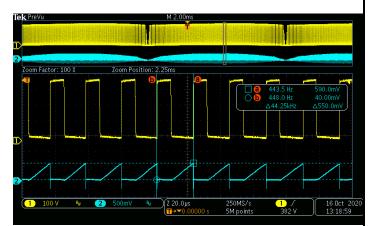
Test condition: test in different load condition


THD in Different Load

Test condition: test in different load condition


Dimming Curve:

Test condition: test in 130V and 240V output voltage with CC mode

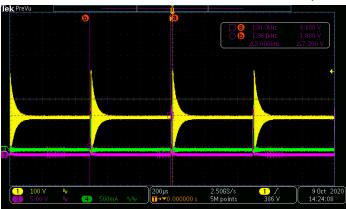


PFC MOSFET D-S wave-form:

(CH1: DS, CH2:CS)

(CH1: DS, CH2:CS)

230Vac input & full load


115Vac input & full load

Steady-State Wave form:

Test Condition – Vout : 240V, VDIM+: 9.2V/6.2V/4V/1.38V

The NCL30076 Operate in multi-mode between CrM and DCM according to the Dimming condition

(CH1: MOS D-S, CH3:Driver CH4: LED current)

(CH1: MOS D-S, CH3:Driver CH4: LED current)

VDIM+ = 1.38V,DCM Operation(open loop)

VDIM+ = 4V,DCM Operation

(CH1:MOS D-S, CH3:Driver CH4: LED current)

VDIM+ = 4V,DCM Operation

VDIM+ = 9.2V,QR Operation

10

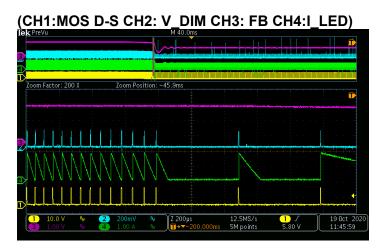
LED Short Circuit Protection

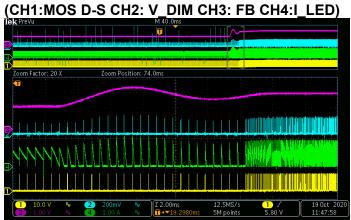
Test Condition -VOUT: 240V, ILED: 1A, VDIM+: 9.2V , LED Short and Release

When LED is short circuited, Toff MAX protects system from damage.

(CH1: MOS D-S, CH2:CS,CH3:FB CH4: I_buck)

(CH1: MOS D-S, CH2:CS,CH3:FB CH4: I_buck)

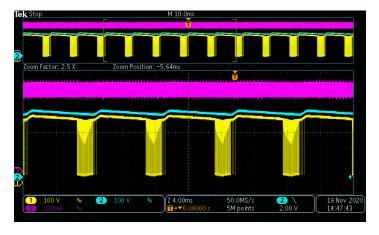



Normal Operation to LED Short

LED Short to Normal Operation

Standby Condition

NCL30076 will enter into a standby mode when V_{DIM} is lower than $V_{\text{DIM}(SB-EN)}$ for 10ms, and when V_{DIM} is higher than $V_{\text{DIM}(SB-DIS)}$, Standby mode will immediately terminated.

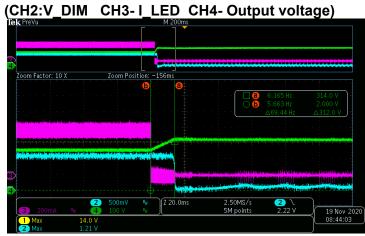


The LED Current in 305V AC Input @ Full Load:

The LED current do not have bad current ripple even when the PFC voltage have a low frequency voltage ripple.

(CH1-PFC MOS D-S CH2- PFC Voltage CH4-I LED)

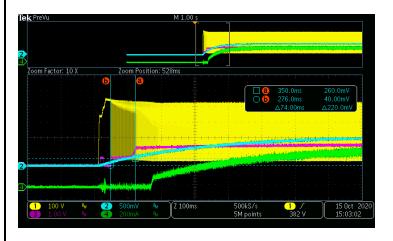
(CH1-PFC MOS D-S CH2- PFC Voltage CH4-I_LED)



Test by E-load CV mode,240V/1A load

Test by LED load, 180V/1A load

Output OVP Protection


Remove the LED or rise up the output voltage to 300V, the output voltage trigger the OVP protection.

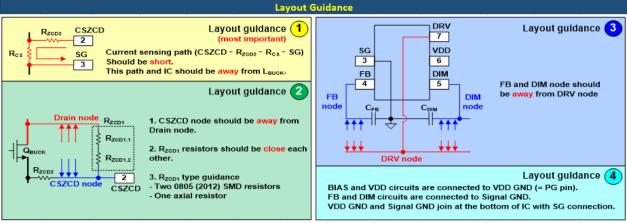
When the Output voltage rise up, the OVP protection will be triggered, the output voltage will not exceed the OVP set point.

Start-up Timing

(CH1:MOS D-S CH2:V_DIM CH3:FB CH4:I_LED)

BOM

Item	Qty	Reference	Туре	Part Name	MFR	Value	Package	Description
1	1	NTC1	NTC	SPNL09D1R5MBI	SUNLORD	1.5 Ω		
2	1	F1	FUSE	3.15A/250VAC	II ittaltiica	Micro Fuse 3.15 A/250 VAC		
3	1	L1	Filter		WE	90 μH/4 A		WE ODER NO.7447013
4	1	L4	PFC choke		WE	280 μΗ	IP(13225	WE ODER NO.750344848
5	1	L2	Filter		WE	2*14 μH/4 A		WE ODER NO.744841414
6	1	L3	BUCK choke		WE	880 μH	IPMXXXX	WE ODER NO.750344849
7	1	L5	Output common filter		WE	JUMP WIRE		
8	2	CX1,CX2	X-cap		WE	474/275 Vac	L*W:18*6cm, 脚距 15cm	WE ODER NO.890334025039CS
9	1	R1,R11	Resistor	Std	Std	1M5/0805	0805	
10	1	R2	Resistor	Std	Std	20 K/0805	0805	
11	1	R3	Resistor	Std	Std	27 K/0805	0805	
12	1	R4	Resistor	Std	Std	56 K/0805	0805	
13	1	R5	Resistor	Std	Std	20 K/0805	0805	
14	1	R6	Resistor	Std	Std	2M2/0805	0805	
15	1	R7	Resistor	Std	Std	2M2/0805	0805	
16	5	R8,R20,R25,R9,R17	Resistor	Std	Std	10/0805	0805	
17	1	R10	Resistor	Std	Std	150 R/0805	0805	
18	2	R12,R18, R32	Resistor	Std	Std	20 K/0805	0805	
19	2	R13,R31	Resistor	Std	Panasonic	0R2	2512	
20	1	R21	Resistor	Std	Panasonic	0R15	2512	
21	2	R24,R26	Resistor	Std	Std	1.5 M/0805	0805	
22	5	R22,R23,R28,R29,R30	Resistor	Std	Std	10 M/0805	0805	


				TNI	D6359/D		
23	1	R33	Resistor	Std	Std	8.2 M/0805	0805
24	1	R16	Resistor	Std	Std	1K5/0603	0603
25	1	R14	Resistor	Std	Std	5.1 K/0805	0805
26	1	R45	Resistor	Std	Std	30 K/0805	0805
27	1	R44	Resistor	Std	Std	100 K/0805	0805
28	1	R43	Resistor	Std	Std	150 K/0805	0805
29	2	R19,R27	Resistor	Std	Std	220 K/0805	0805
30	2	C1,C22	Film capacitor	Std	WE	450 V/474	Film capacitor
31	2	C3,CLED	E-cap	Std	WE	450 V/180 μF	E-cap
32	4	C2,C6,C9,C10	Ceramic cap	Std	Std	102/25 V	0805
33	1	C13,C15	Ceramic cap	Std	Std	225/50 V	0805
34	1	C4	Ceramic cap	Std	Std	224/25 V	0805
35	1	C7	Ceramic cap	Std	Std	225/25 V	0805
36	1	C8	Ceramic cap	Std	Std	22P/25 V	0805
37	1	C5	Ceramic cap	Std	Std	105/25 V	0805
38	1	C11	Ceramic cap	Std	Std	100 pF/25 V	0603
39	1	C12	Ceramic cap	Std	Std	103/35 V	0805
40	1	Q2	BJT	BC807-40LT1G	ON	45 V/0.5 A	SO23
41	3	M1,M2,M3	MOSFET	FCD260N65	ON	650 V/260 mR	D-PARK
42	1	M4,M5	MOSFET	2N7002	ON	2N7002	SO23
43	2	D1,D3	Diode	MUR460	ON	600 V/4 A	SMC
44	2	D8,D4	DIODE	MMSD4148T1G	ON	100 V/0.2 A	SOD323
45	1	D2	Diode	ES1J	ON	1 KV/1 A	SMA
45	1	D6	Diode	RS1D	ON	200 V/1 A	SMA
45	1	D7	Zener	MMSZ15T1G	ON	15 V	SOD-123
46	1	D5	Diode bridge	GBU806	ON	800 V/6 A	Micro-DIP
47	1	U2	BUCK controller	NCL30076	ON	BUCK controller	SOIC-8
48	1	U1	PFC controller	NCL2801CDA	ON	PFC controller	SOIC-8
49	1	Heat-sink for D5		Heat-sink and screw	Std		

TND6359/D								
50	1	CON1	CONNECTOR	CONNECTOR,10PIN	WE	CONNECTOR,10PIN	10PIN	WE ODER NO.61301011021
Item	Qty	Reference	Туре	Part Name	MFR	Value	Package	Description
1	1	R28	Resistor	Std	Std	330 K	1206	
2	1	R22	Resistor	Std	Std	12 K	0603	
3	1	R23	Resistor	Std	Std	3.3 K	0603	
4	1	R4	Resistor	Std	Std	15 K	0603	
5	1	R40	Resistor	Std	Std	10	0603	
6	1	R36	Resistor	Std	Std	1M2	0603	
7	1	R37	Resistor	Std	Std	300 K	0603	
8	1	R38	Resistor	Std	Std	2M2	0603	
9	1	R2	Resistor	Std	Std	0	0603	
10	1	R35	Resistor	Std	Std	0	0603	
11	1	C21	E-cap		WE	47 μF/50 V	E-cap	WE ODER NO.860010673012
12	1	C20	E-cap		WE	10 μF/50 V	E-cap	WE ODER NO.860010672009
13	1	C11	Ceramic cap	Std	WE	1 nF/1000 V	1206	WE ODER NO.885342208018
14	1	C17	Ceramic cap	Std	Std	220 nF/25 V	0603	
15	1	C18	Ceramic cap	Std	Std	103/25 V	0603	
16	1	C1	Ceramic cap	Std	Std	103/25 V	0603	
17	1	C4	Ceramic cap	Std	Std	103/25 V	0603	
18	1	C3	Ceramic cap	Std	Std	103/25 V	0603	
19	1	C13	Ceramic cap	Std	Std	102/35 V	0603	
20	1	C19	Ceramic cap	Std	Std	472/25 V	0603	
21	1	C5	Ceramic cap	Std	Std	330 P/25 V	0603	
22	1	C2	Ceramic cap	Std	Std	104/25 V	0603	
23	1	Q1	BJT	BC817-40LT1G	ON	45 V/0.5 A	SO23	
24	5	D1,D2,D8,D10,D13	DIODE	MMSD4148T1G	ON	100 V/0.2 A	SOD323	
25	1	D7	Diode	RS1K	ON	1 KV/1 A	SMA	
26	1	D6	DIODE	RS2D	ON	200 V/1 A	SMA	

	TND6359/D							
27	1	D3	Zener	MMSZ15T1G	ON	15 V	SOD-123	
28	1	11 1 ≺	Flyback Switcher	NCP10671	ON	Flyback controller	SOIC-8	
29	1	U1	Dimming controller	SY5867		Dimming controller	SOIC-8	
30	1	OPTICAL1	Optical coupler	FODM1007	ON	Optical coupler	LSOP4	
31	1	T1	Transformer		WE	800 μH	IFF20	WE ODER NO.750344847

Something about PCB Layout

TND6359/D
References
ON Semiconductor datasheet for NCL30076.
Disclaimer : ON Semiconductor is providing this reference design "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.
Reference design created by; e-mail: tom.zhang@onsemi.com