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Output Voltage Low Frequency Ripple

Pin,avg

Vin(t)
Iin(t)

Pin(t)

Vout

+

-

The load power demand is matched in average only
A low frequency ripple is inherent to the PFC function



PFC Stages are Slow Systems…

The output ripple must be filtered to avoid current 
distortion.

In practice, the loop frequency is selected in the 
range of 20 Hz, which is very low.

Even if the bandwidth is low, the loop must be 
compensated! 
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A Simple Representation
• We will consider the PFC stage as a system delivering a 

power under an input rms voltage and a control signal

• Details of the power processing are ignored:
• Operation mode (CrM, CCM, Voltage or Current mode…)
• 100% efficiency, only the average power contribution of the sinusoidal

signals is considered
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• Let’s represent the PFC stage as a current source 
delivering the power to the bulk capacitor and the load:

• Pin(avg) depends on Vcontrol (always), on Vin(rms) (in the 
absence of feedforward) and sometimes on Vout

• 3 possible sources of perturbations: Vcontrol, Vout and Vin(rms).

A Simple Large Signal Model
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NCP1605
• Frequency Clamped Critical Conduction Mode (FCCrM)
• Key features for a master PFC:

• High voltage current source, Soft-SkipTM during standby mode
• “pfcOK” signal, dynamic response enhancer
• Bunch of protections for rugged PFC stages

• Markets: high power AC adapters, LCD TVs
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NCP1605 – Follower Boost
• Voltage mode operation: the circuit adjusts the power level

by modulating the MOSFET conduction time
• The charge current of the timing capacitor is proportional

to the FB square and hence to (Vout)2:

where :
Vout,nom is the Vout regulation voltage
It is a 370-µA current source

• The on-time is inversely proportional to (Vout)2  allowing the 
Follower boost function:
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NCP1605 - Power Expression
• The control signal is VF offset
down and divided by 3 to form
VREGUL used in the PWM section

• Hence due to the follower boost function, the power is
inversely dependent on (Vout)2:
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NCP1605 - Large Signal Model
• Let’s represent the PFC stage as a current source delivering

the power to the bulk capacitor and the load:

• 3 sources of perturbations: VCONTROL, Vout and Vin(rms).
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Small Signal Model
• A large signal model is nonlinear because ID is formed of the 

multiplication and division of Vcontrol, Vin,rms and Vout.
• This model needs to be linearized to assess the AC 

contribution of each variable
• The model is perturbed and linearized around a quiescient

operating point (DC point)



Considering Variations Around the DC Value…
• Let’s omit the perturbations of the line magnitude (assumed

constant)
• Let’s consider small variations around the DC values for 

Vout and Vcontrol:

• We then obtain:
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Deriving a Small Signal Model…
• The DC portion can be eliminated
• The partial derivatives are to be computed at the DC point 

that is for:
– Vcontrol that is the control signal DC value for the considered working point
– Vout,nom that is the nominal (DC) output voltage

• Replacing the derivations by their expression, we obtain:
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Contribution of the Vout Perturbations

• Depending on the controller scheme

• n=0 for NCP1607 
• n=1 for NCP1654 (predictive CCM PFC for which )
• n=2 for NCP1605 (follower boost – see slide 10)

• At the DC point                             

• Finally:
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• Hence, the small signal model can be simplified as follows:

• Noting that:                                                               

the model can be further simplified

2 Resistors…
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Finally…
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NCP1605 Example
• The large signal model instructed that:

• Hence:
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NCP1605 - Small Signal Model

• Finally:

• The transfer function is:
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Power Stage Characteristic – Bode Plots

Asymptotic
representation
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Compensation Phase Boost
• The zero brought by the bulk capacitor ESR is too high to 

bring some phase margin. It is ignored.

• The PFC open loop inherently causes a -360°phase shift:
– Power stage pole -90°
– Error amplifier inversion -180°
– Compensation origin pole -90°

• The compensation must then provide some phase boost

• A type-2 compensation is recommended



Type-2 Compensation
• The NCP1605 embeds a transconductance error amplifier 

(OTA) 

– No direct influence of the
RfbU impedance on the compensation
– Only the feedback scale factor interferes
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Type-2 Characteristic - Example
fp2 and fz1 set the 

phase boost magnitude 
and location (frequency)

The phase boost
peaks at:             
that is 27 Hz

The phase boost is: 

The origin pole fp1
adjusts the gain Gc at
the phase boost
frequency
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Phase Boost at the Crossover Frequency
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Gain Considerations
• In the red trace, the 

distance between
the zero and the 
pole frequencies is
increased

• Both characteristics
generate the same
attenuation at the 
crossover frequency

• The lower the fz1
frequency, the lower
the gain in the low
frequency region

• The higher fp2, the 
lower the (2.fline) 
ripple rejection
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Type-2 Compensator - Summary
• The zero should not be placed at a too low frequency (not to 

penalize the low-frequency gain)
• The high frequency pole must be placed at a frequency low

enough to attenuate the line ripple
• The phase boost (and phase margin) depends on the zero

and high-frequency pole locations
• The origin pole is set to force the open loop gain to zero at

the targeted crossover frequency
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Compensating for the Full Range?...
• The static gain depends on the load and if there is no 

feedforward, on the line magnitude

(NCP1605)

• The power stage pole varies as a function of the load:

(NCP1605)

• What is the worst case when closing the loop?
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Load Influence on the Open Loop Plots
• Let’s increase RLOAD ( )2 1 1LOAD LOADR R withα α= ⋅ >

fc and φm are not affected!
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Line Influence on the Open Loop Plots
• No feedforward (e.g. NCP1607) and ( )( )2 ( )1 1in rms in rmsV V withβ β= ⋅ >

The loop crossover frequency is β 2 increased
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Load and Line Considerations
• Compensate at full load

– Same crossover frequency at lighter loads
– The zero frequency is set optimally (not at a too low frequency)

• Compensate at high line
– High line is the worst case as in the absence of feedforward, the 

static gain is proportional to                  

– This leads to: 

Where HL stands for Highest Line and LL for Lowest Line

– In universal mains applications, the high-line crossover frequency is
9 times higher than the low-line one:
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Crossover Frequency Selection
• In the absence of feedforward,                      is a good option

• With feedforward,                    is rather selected for a better
attenuation of the low frequency ripple

• Get sure that on the line range, the PFC boost pole remains
lower than the crossover frequency at full load!

• If not, increase Cbulk
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Compensation Techniques
• Several techniques exist: 

manual placement, “k factor” (Venable)…
+ Systematic
- The PFC boost gain is to be computed at fc

- No flexibility in the zero and high pole locations 

Pole and zero cancellation:

Place the compensation zero so that it cancels the power stage pole:

Force the pole at the origin to cancel the PFC boost gain when (f = fc)

Adjust the phase margin with the high frequency pole
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Pole and Zero Cancellation…

The higher fp2, the larger the phase margin
The lower fp2, the better the rejection of the low frequency ripple
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Poles and Zero Placement
• Design the compensation for full load, high line:

• Place the origin pole to cancel 
K0, the static gain at fc:

• Place the zero so that it cancels 
the PFC boost pole                                     

• Place fp2 to obtain the targeted phase margin:
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Example
• A wide mains, 150-W application driven by the NCP1605
• Vout,nom = 390 V
• (Vin(rms))LL = 90 V
• (Vin(rms))HL = 265 V
• L = 150 µH
• Ct = 4.7 nF
• Cbulk = 100 µF
• rC = 500 mΩ (ESR)
• fc = 50 Hz
and Φm = 60°
@ high line (265 V)
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Simulation Validation
• The simulation circuit is based on the large signal model:

Feedback and 
regulation circuit 
(including type-2 
compensation)

Generation and 
injection of the ac
perturbation

Large signal model 
of the NCP1605-
driven PFC stage

1
C5
100u
IC = {Vrms*1.414}

C1
150nF

R3
{Rlower}

5

R4
{Rupper}

FB

7

B1
Current

{gm}*(2.5-V(FB))
4

R1
12k

C3
2.2u

6

V4
AC = 1

B5
Voltage

V(EAout)

R10
50m

B6
Current

{Ct*Vbulk*Vbulk*Vrms*Vrms}*V(control)/(6*{L}*370u*V(Vout)*V(Vout)*V(Vout))

Vout

control

Vin

L1
1kHC6

1kF

Rload
{Vbulk*Vbulk/Pout}

EAout

Vout

EAout

R2
100



Open Loop Characteristic – Full Load
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Open Loop Characteristic – Mid Load
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Experimental Results at Full Load
• A 19 V / 7 A loads the PFC stage
• The downstream converter swings between 6.3 A and 7.7 A (+/-10%) 

with a 2 A/µs slope

• The high-line, larger bandwidth reduces the Vbulk deviations and speeds-
up the output voltage recovery

Ac line current (5 A/div) Ac line current (2 A/div)

Load Current (5 A/div)

Bulk Voltage (20 VA/div – 380-V offset)

Load Current (5 A/div)

Bulk Voltage (20 VA/div – 380-V offset)

Vin,rms = 90 V Vin,rms = 265 V

372 V < Vbulk < 396 V 375 V < Vbulk < 394 V



Experimental Results at Medium Load
• A 19 V / 7 A loads the PFC stage
• The downstream converter swings between 3.1 A and 3.9 A (+/-10%) 

with a 2 A/µs slope

• The circuit still exhibits a first order response

Ac line current (2 A/div) Ac line current (1 A/div)

Load Current (2 A/div)

Bulk Voltage (20 VA/div – 380-V offset)

Load Current (2 A/div)

Bulk Voltage (20 VA/div – 380-V offset)

Vin,rms = 90 V Vin,rms = 265 V

376 V < Vbulk < 392 V 379 V < Vbulk < 390 V



Abrupt Load Changes
• A 19 V / 7 A loads the PFC stage
• The downstream converter swings from 7.0 A to 3.5 A (2 A/µs slope)

• The dynamic response enhancer reduces the undershoot at low line

Ac line current (2 A/div) Ac line current (2 A/div)

Load Current (5 A/div)

Bulk Voltage (20 VA/div – 380-V offset)

Load Current (5 A/div)

Bulk Voltage (20 VA/div – 385-V offset)

Vin,rms = 90 V Vin,rms = 230 V

Vcontrol (2 V/div) Vcontrol (1 V/div)

The dynamic response enhancer speeds-up the loop reaction in case of a large undershoot
Implemented in NCP1605 (FCCrM), NCP1654 (CCM) and NCP1631 (Interleaved)

365 V < Vbulk < 411 V
365 V < Vbulk < 404 V

OVP



Agenda
• Introduction

• Deriving a small-signal model
– General method
– Practical example: NCP1605-driven PFC stages

• Compensating the loop
– Type-2 compensation
– Influence of the line and power level
– Computing the compensation
– Practical example

• Conclusion



Conclusion
• General considerations were illustrated by the case of 

NCP1605-driven PFC stages
• A small signal model of PFC boosts can be easily derived
• The proposed method is independent of the operating mode
• A type-2 compensation is recommended
• If no feed-forward is implemented, the loop bandwidth and 

phase margin vary as a function of the line magnitude
• The crossover frequency does not vary as a function of the 

load
• A resistive load can be used for the computation even if the 

PFC stage feeds a power supply (negative impedance) –
See back-up



For More Information

• View the extensive portfolio of power management products from ON 
Semiconductor at www.onsemi.com

• View reference designs, design notes, and other material supporting 
the design of highly efficient power supplies at 
www.onsemi.com/powersupplies


