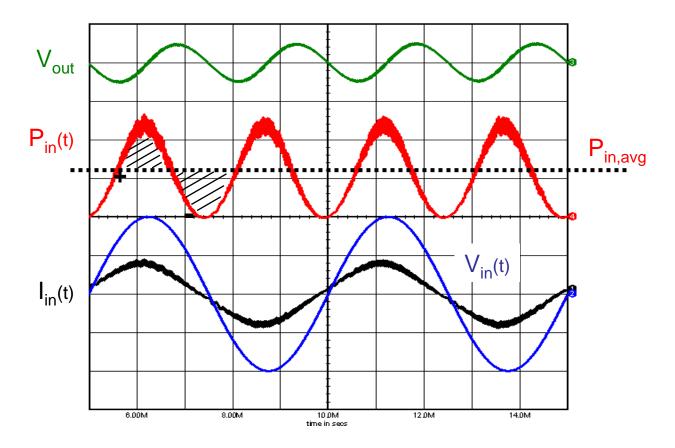
Enabling Energy Efficient Solutions

www.onsemi.com

ON Semiconductor[®]


Compensating a PFC Stage

Agenda

- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages
- Compensating the loop
 - Type-2 compensation
 - Influence of the line and power level
 - Computing the compensation
 - Practical example
- Conclusion

Output Voltage Low Frequency Ripple

The load power demand is matched in average only
 A low frequency ripple is inherent to the PFC function

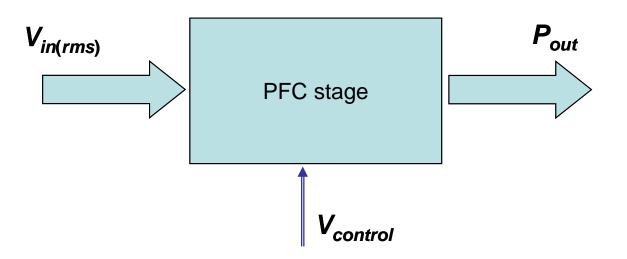
PFC Stages are Slow Systems...

□ The output ripple must be filtered to avoid current distortion.

□ In practice, the loop frequency is selected in the range of 20 Hz, which is very low.

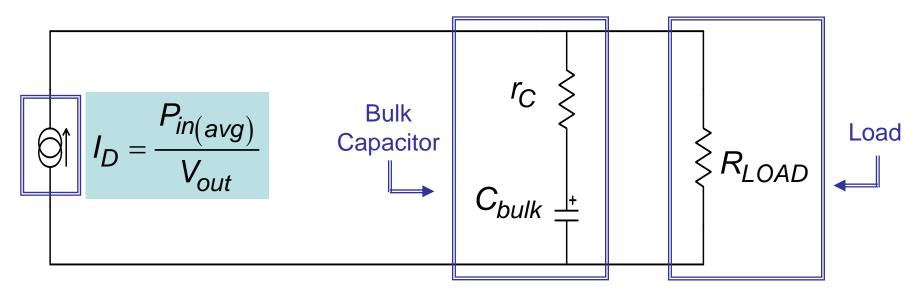
Even if the bandwidth is low, the loop must be compensated!

Agenda


- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages
- Compensating the loop
 - Type-2 compensation
 - Influence of the line and power level
 - Computing the compensation
 - Practical example
- Conclusion

A Simple Representation

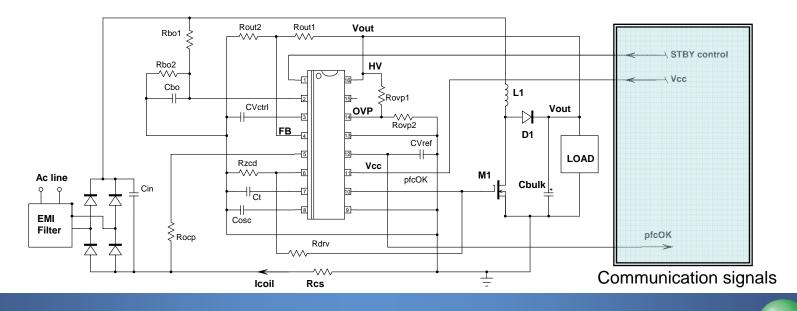
• We will consider the PFC stage as a system delivering a power under an input rms voltage and a control signal



- Details of the power processing are ignored:
 - Operation mode (CrM, CCM, Voltage or Current mode...)
 - 100% efficiency, only the average power contribution of the sinusoidal signals is considered

A Simple Large Signal Model

• Let's represent the PFC stage as a current source delivering the power to the bulk capacitor and the load:



- $P_{in(avg)}$ depends on $V_{control}$ (always), on $V_{in(rms)}$ (in the absence of feedforward) and sometimes on V_{out}
- 3 possible sources of perturbations: $V_{control}$, V_{out} and $V_{in(rms)}$.

NCP1605

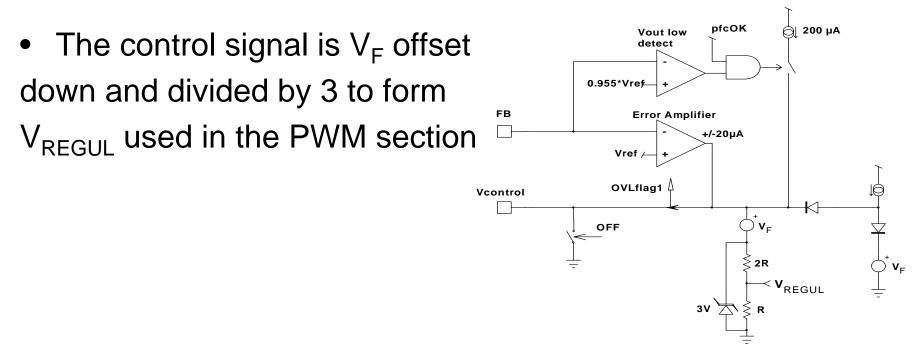
- Frequency Clamped Critical Conduction Mode (FCCrM)
- Key features for a master PFC:
 - High voltage current source, Soft-Skip[™] during standby mode
 - "pfcOK" signal, dynamic response enhancer
 - Bunch of protections for rugged PFC stages
- Markets: high power AC adapters, LCD TVs

ON Semiconductor^{*}

NCP1605 – Follower Boost

- Voltage mode operation: the circuit adjusts the power level by modulating the MOSFET conduction time
- The charge current of the timing capacitor is proportional to the FB square and hence to (V_{out})²:

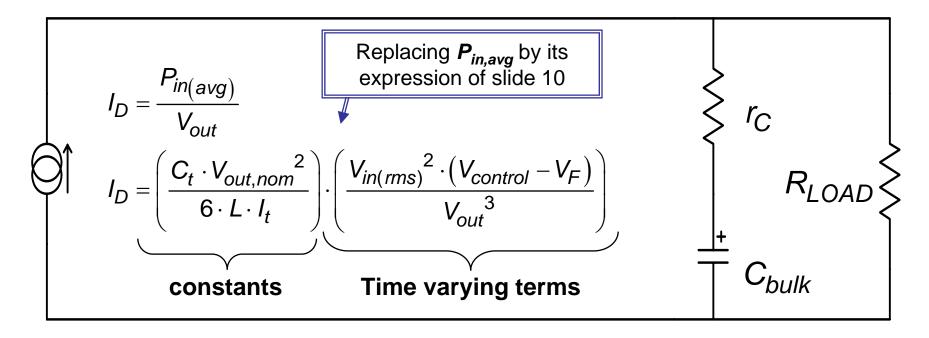
$$I_{charge} = I_t \cdot \left(\frac{V_{out}}{V_{out,nom}}\right)^2$$


where :

- *V_{out,nom}* is the V_{out} regulation voltage
- I_t is a 370-µA current source
- The on-time is inversely proportional to $(V_{out})^2$ allowing the Follower boost function:

$$t_{on} = \frac{C_t \cdot V_{ton}}{I_t} \cdot \left(\frac{V_{out,nom}}{V_{out}}\right)^2$$

NCP1605 - Power Expression


 Hence due to the follower boost function, the power is inversely dependent on (V_{out})²:

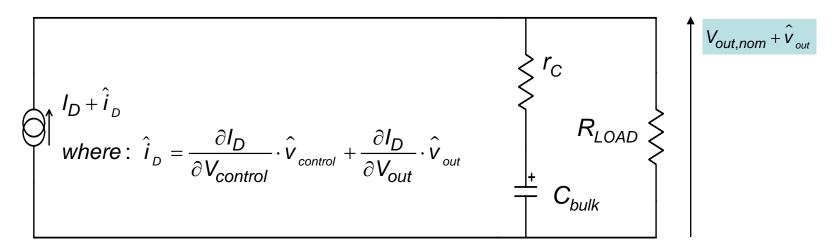
$$P_{in(avg)} = \frac{C_t \cdot V_{in(rms)}^2}{2 \cdot L \cdot I_t} \cdot \left(\frac{V_{out,nom}}{V_{out}}\right)^2 \cdot \frac{(V_{control} - V_F)}{3}$$

ON Semiconductor*

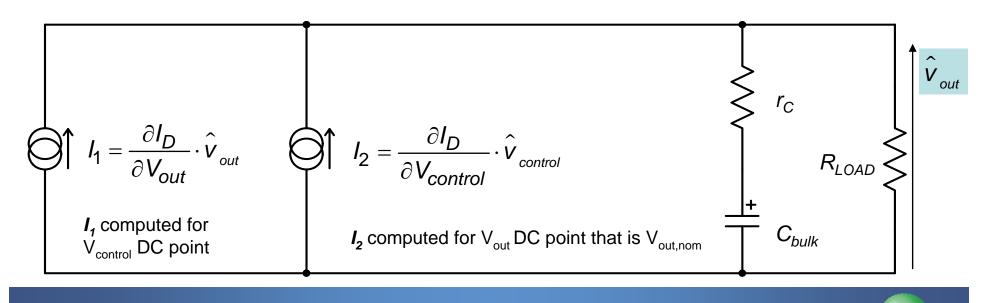
NCP1605 - Large Signal Model

• Let's represent the PFC stage as a current source delivering the power to the bulk capacitor and the load:

• 3 sources of perturbations: $V_{CONTROL}$, V_{out} and $V_{in(rms)}$.


Small Signal Model

- A large signal model is nonlinear because I_D is formed of the multiplication and division of $V_{control}$, $V_{in.rms}$ and V_{out} .
- This model needs to be linearized to assess the AC contribution of each variable
- The model is perturbed and linearized around a quiescient operating point (DC point)


Considering Variations Around the DC Value...

- Let's omit the perturbations of the line magnitude (assumed constant)
- Let's consider small variations around the DC values for V_{out} and $V_{control}$: $\hat{i}_{D} = \frac{\partial I_{D}}{\partial V_{control}} \cdot \hat{v}_{control} + \frac{\partial I_{D}}{\partial V_{out}} \cdot \hat{v}_{out}$
- We then obtain:

Deriving a Small Signal Model...

- The DC portion can be eliminated
- The partial derivatives are to be computed at the DC point that is for:
 - $-V_{control}$ that is the control signal DC value for the considered working point
 - $-V_{out,nom}$ that is the nominal (DC) output voltage
- Replacing the derivations by their expression, we obtain:

ON Semiconductor^{*}

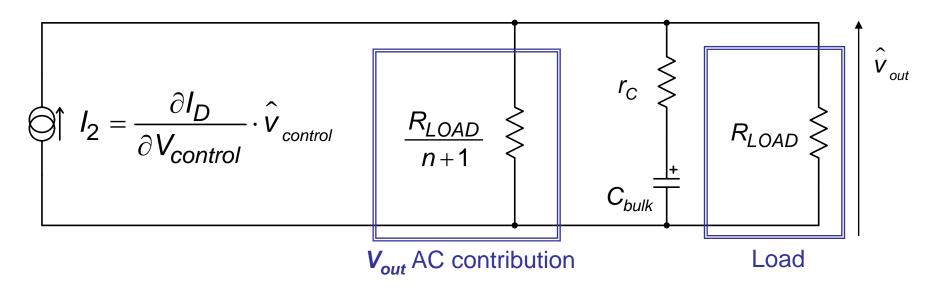
Contribution of the *V_{out}* **Perturbations**

• Depending on the controller scheme

$$I_{D} = \frac{P_{in,avg}}{V_{out}} = \frac{f(V_{in(rms)}, V_{control})}{(V_{out})^{n+1}} \quad \text{where } n = 0,1 \text{ or } 2$$

- n=0 for NCP1607
- n=1 for NCP1654 (predictive CCM PFC for which $P_{in,avg} \propto \frac{V_{control} \cdot V_{in,rms}}{V_{out}}$)
- n=2 for NCP1605 (follower boost see slide 10)
- At the DC point

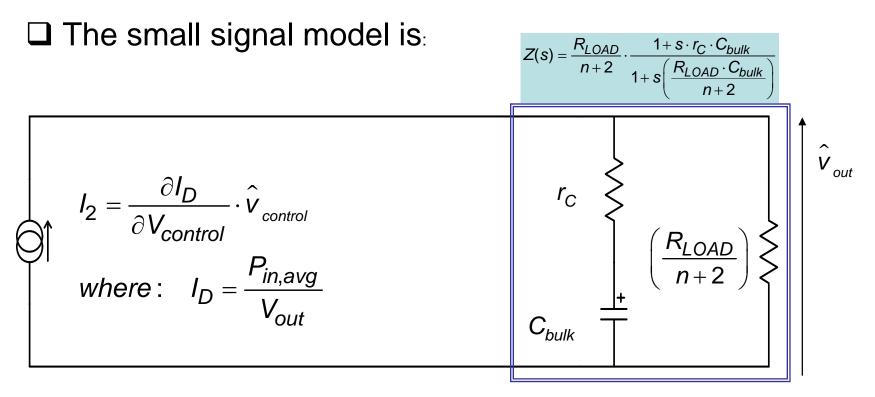
$$V_{out} = V_{out,nom}$$
 and $\frac{P_{in(avg)}}{(V_{out,nom})^2} = \frac{1}{R_{LOAD}}$


• Finally:

$$I_{1} = \frac{\partial I_{D}}{\partial V_{out}} \cdot \hat{v}_{out} = -\frac{\left(n+1\right) \cdot f\left(V_{in(rms)}, V_{control}\right)}{\left(V_{out}\right)^{n+2}} \bigg|_{V_{out} = V_{out,nom}} \cdot \hat{v}_{out} = -\frac{\left(n+1\right) \cdot P_{in(avg)}}{\left(V_{out,nom}\right)^{2}} \cdot \hat{v}_{out} = -\frac{\left(n+1\right)}{R_{LOAD}} \cdot \hat{v}_{out}$$

2 Resistors...

• Hence, the small signal model can be simplified as follows:


• Noting that: $\frac{R_{LOAD}}{n+1} \square R_{LOAD} = \frac{R_{LOAD}}{n+2}$

the model can be further simplified

ON Semiconductor*

Finally...

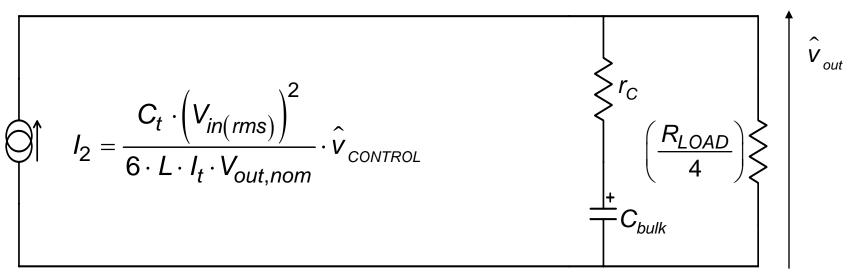
□ The transfer function is:

$$\frac{\hat{v}_{out}}{\hat{v}_{control}} = \frac{R_{LOAD}}{n+2} \cdot \left(\frac{\partial I_D}{\partial V_{control}}\right) \cdot \frac{1 + s \cdot r_C \cdot C_{bulk}}{1 + s \left(\frac{R_{LOAD} \cdot C_{bulk}}{n+2}\right)}$$

NCP1605 Example

• The large signal model instructed that:

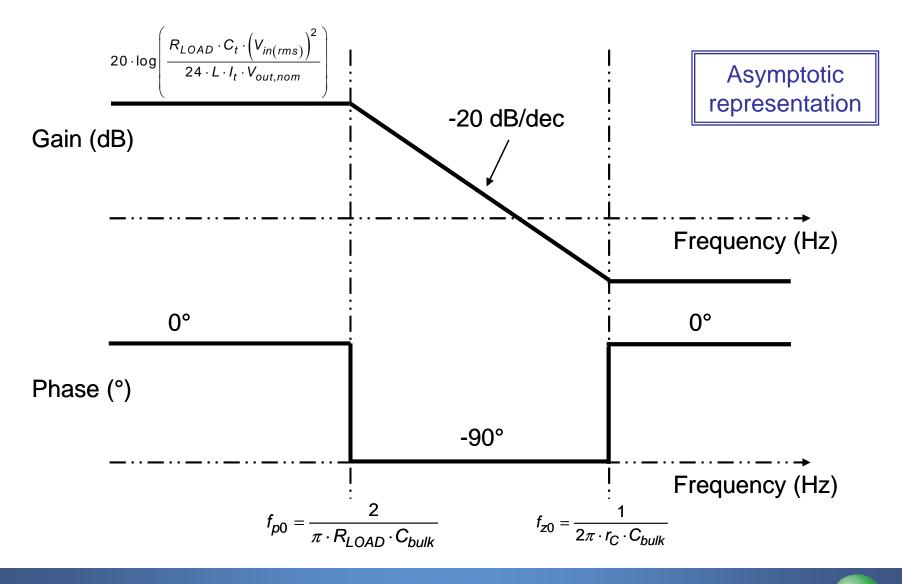
•


$$I_{D} = \frac{P_{in(avg)}}{V_{out}} = \left(\frac{C_{t} \cdot V_{out,nom}^{2}}{6 \cdot L \cdot I_{t}}\right) \cdot \left(\frac{V_{in(rms)}^{2} \cdot (V_{control} - V_{F})}{V_{out}^{3}}\right)$$

Hence:
$$n = 2$$
$$\frac{\partial I_{D}}{\partial V_{control}} = \frac{C_{t} \cdot \left(V_{in(rms)}\right)^{2}}{6 \cdot L \cdot I_{t} \cdot V_{out,nom}}$$

NCP1605 - Small Signal Model

• Finally:



• The transfer function is:

$$\frac{\hat{v}_{out}}{\hat{v}_{CONTROL}} = \frac{R_{LOAD} \cdot C_t \cdot \left(V_{in(rms)}\right)^2}{24 \cdot L \cdot I_t \cdot V_{out,nom}} \cdot \frac{1 + s \cdot r_C \cdot C_{bulk}}{1 + s \cdot \left(\frac{R_{LOAD} \cdot C_{bulk}}{4}\right)}$$

Power Stage Characteristic – Bode Plots

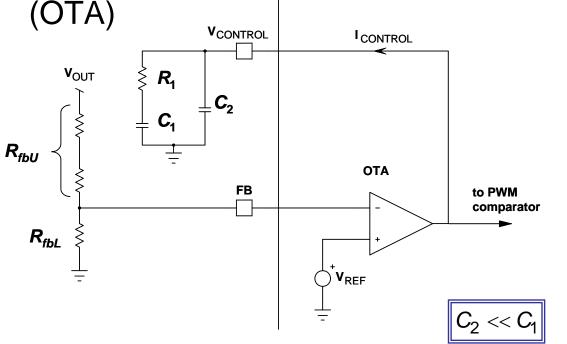
ON

Agenda

- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages
- Compensating the loop
 - Type-2 compensation
 - Influence of the line and power level
 - Computing the compensation
 - Practical example
- Conclusion

Compensation Phase Boost

- The zero brought by the bulk capacitor ESR is too high to bring some phase margin. It is ignored.
- The PFC open loop inherently causes a -360° phase shift:

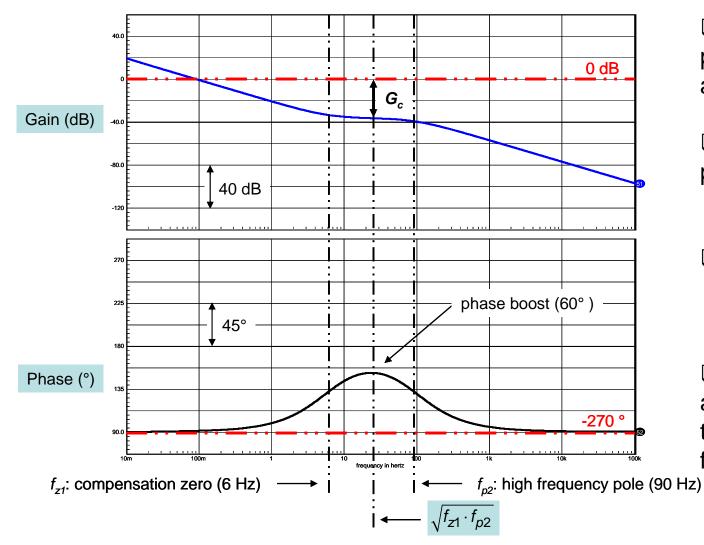

 Power stage pole 	→ -90°
 Error amplifier inversion 	→ -180°
 Compensation origin pole 	→ -90°

- The compensation must then provide some phase boost
- A type-2 compensation is recommended

Type-2 Compensation

• The NCP1605 embeds a transconductance error amplifier

- No direct influence of the
- R_{fbU} impedance on the compensation
- Only the feedback scale factor interferes


 $f_{Z1} = \frac{1}{2\pi \cdot R_1 \cdot C_1}$ $f_{p2} = \frac{1}{2\pi \cdot R_1 \cdot C_2}$ $f_{p1} = \frac{1}{2\pi \cdot R_0 \cdot C_1}$ pole at the origin $R_0 = \frac{V_{out,nom}}{V_{ref} \cdot G_{EA}}$

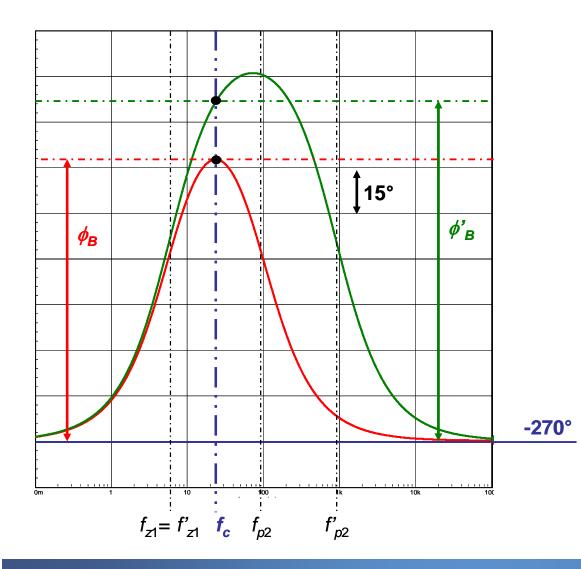
V_{ref} is the reference voltage (generally 2.5 V in ON semi devices)
G_{EA} is the OTA

(200-µS transconductance gain for NCP1605, NCP1654 and NCP1631)

Type-2 Characteristic - Example

 \Box f_{p2} and f_{z1} set the phase boost magnitude and location (frequency)

□ The phase boost peaks at: $(f_{PhB} = \sqrt{f_{z1} \cdot f_{p2}})$ that is 27 Hz


The phase boost is: $f(f_{phB}) = f(f_{phB})$

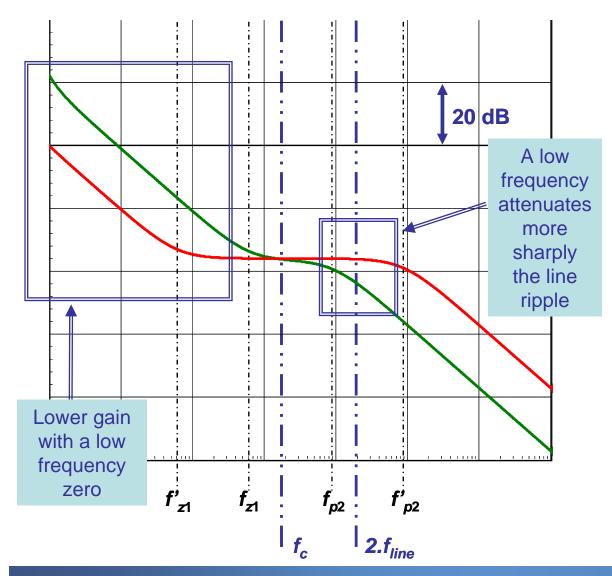
 $\tan^{-1}\left(\frac{f_{phB}}{f_z}\right) - \tan^{-1}\left(\frac{f_{phB}}{f_p}\right)$

□ The origin pole f_{p1} adjusts the gain G_c at the phase boost frequency

ΠN

Phase Boost at the Crossover Frequency

$$\phi_{B} = \tan^{-1} \left(\frac{f_{c}}{f_{z1}} \right) - \tan^{-1} \left(\frac{f_{c}}{f_{p2}} \right)$$


□ The lower f_{z1} and/or the higher f_{p2} , the higher the phase boost (max. value: 90°)

□ Assuming the PFC power stage pole is well below the crossover frequency (f_c), the phase boost equates the phase margin ($\phi_m = \phi_B$)

□ Target a phase boost between 45° and 75°

Gain Considerations

- In the red trace, the distance between the zero and the pole frequencies is increased
- Both characteristics generate the same attenuation at the crossover frequency
- The lower the *f_{z1}* frequency, the lower the gain in the low frequency region
- The higher *f_{p2}*, the lower the (2.*f_{line}*) ripple rejection

Type-2 Compensator - Summary

- The zero should not be placed at a too low frequency (not to penalize the low-frequency gain)
- The high frequency pole must be placed at a frequency low enough to attenuate the line ripple
- The phase boost (and phase margin) depends on the zero and high-frequency pole locations
- The origin pole is set to force the open loop gain to zero at the targeted crossover frequency

Agenda

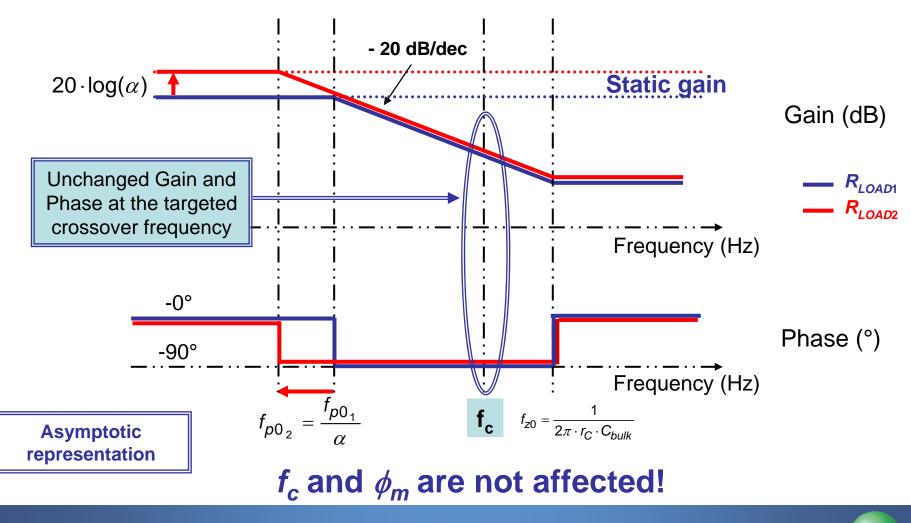
- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages
- Compensating the loop
 - Type-2 compensation
 - Influence of the line and power level
 - Computing the compensation
 - Practical example
- Conclusion

Compensating for the Full Range?...

• The static gain depends on the load and if there is no feedforward, on the line magnitude

$$G_{static(dB)} = 20 \cdot \log\left(\frac{R_{LOAD}}{n+2} \cdot \left(\frac{\partial I_D}{\partial V_{control}}\right)\right) = 20 \cdot \log\left(\frac{R_{LOAD} \cdot C_t \cdot \left(V_{in(rms)}\right)^2}{24 \cdot L \cdot I_t \cdot V_{out,nom}}\right)$$
(NCP1605)

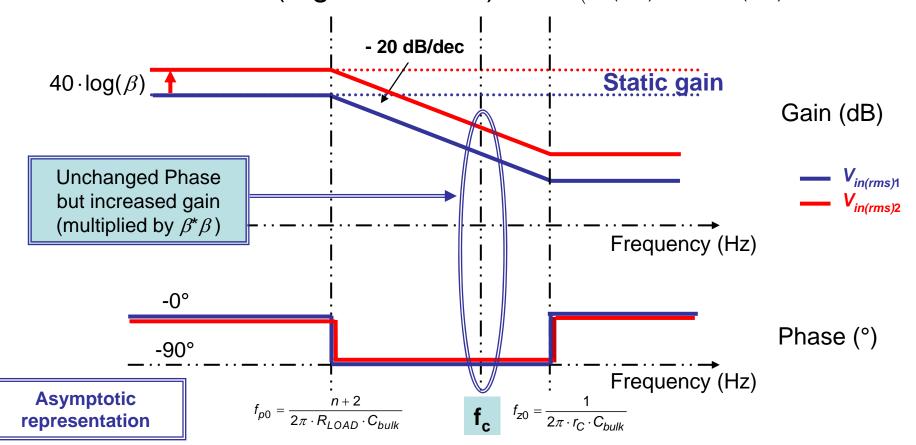
• The power stage pole varies as a function of the load:


$$f_{p0} = \frac{n+2}{2\pi \cdot R_{LOAD} \cdot C_{bulk}} = \frac{2}{\pi \cdot R_{LOAD} \cdot C_{bulk}}$$
(NCP1605)

• What is the worst case when closing the loop?

Load Influence on the Open Loop Plots

• Let's increase R_{LOAD} $(R_{LOAD2} = \alpha \cdot R_{LOAD1}$ with $\alpha > 1)$



ON Semiconductor*

ΠN

Line Influence on the Open Loop Plots

• No feedforward (e.g. NCP1607) and $(V_{in(rms)2} = \beta \cdot V_{in(rms)1}$ with $\beta > 1)$

The loop crossover frequency is β^2 increased

ON Semiconductor*

Load and Line Considerations

- Compensate at full load
 - Same crossover frequency at lighter loads
 - The zero frequency is set optimally (not at a too low frequency)
- Compensate at high line
 - High line is the worst case as in the absence of feedforward, the static gain is proportional to $(v_{in(rms)})^2$
 - This leads to:

$$(f_{c})_{HL} = \left(\frac{\left(V_{in(rms)}\right)_{HL}}{\left(V_{in(rms)}\right)_{LL}}\right)^{2} \cdot (f_{c})_{LL}$$

Where HL stands for Highest Line and LL for Lowest Line

- In universal mains applications, the high-line crossover frequency is 9 times higher than the low-line one: $(265)^2$

$$(f_c)_{HL} = \left(\frac{265}{90}\right)^2 \cdot (f_c)_{LL} \cong 9 \cdot (f_c)_{LL}$$

Crossover Frequency Selection

- In the absence of feedforward, $(f_c)_{HL} \leq f_{line}$ is a good option
- With feedforward, $(f_c)_{HL} \leq \frac{f_{line}}{2}$ is rather selected for a better attenuation of the low frequency ripple
- Get sure that on the line range, the PFC boost pole remains lower than the crossover frequency at full load!

$$f_{p0} \leq \left(f_c\right)_{LL}$$

• If not, increase C_{bulk}

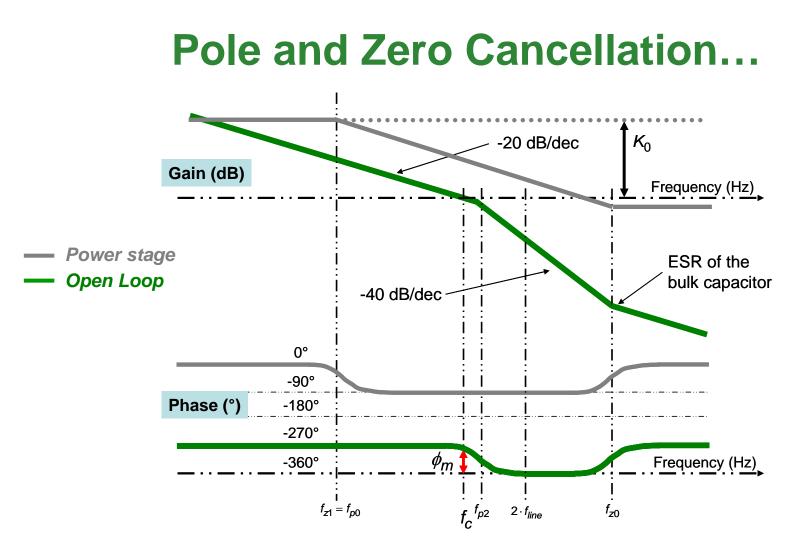
Agenda

- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages

Compensating the loop

- Type-2 compensation
- Influence of the line and power level
- Computing the compensation
- Practical example
- Conclusion

Compensation Techniques


- Several techniques exist:
 - manual placement, "k factor" (Venable)...
 - + Systematic
 - The PFC boost gain is to be computed at f_c
 - No flexibility in the zero and high pole locations $f_c = k \cdot f_{z1} = \frac{t_{p2}}{k}$
 - Pole and zero cancellation:

 \checkmark Place the compensation zero so that it cancels the power stage pole:

✓ Force the pole at the origin to cancel the PFC boost gain when $(f = f_c)$

 \checkmark Adjust the phase margin with the high frequency pole

□ The higher f_{p2} , the larger the phase margin □ The lower f_{p2} , the better the rejection of the low frequency ripple □ $\phi_m = 45^\circ$ if $f_{p2} = f_c$.

ON Semiconductor*

ON

Poles and Zero Placement

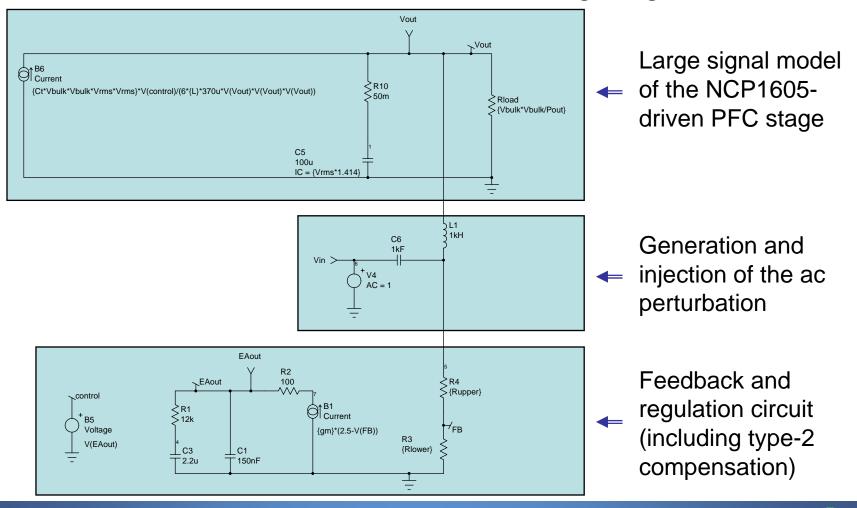
- Design the compensation for full load, high line: RLOAD = RLOAD(min)
- Place the origin pole to cancel K_0 , the static gain at f_c :

$$f_{p0} = \frac{f_c}{K_0} \quad \text{for} \quad R_{LOAD} = R_{LOAD(\min)}$$

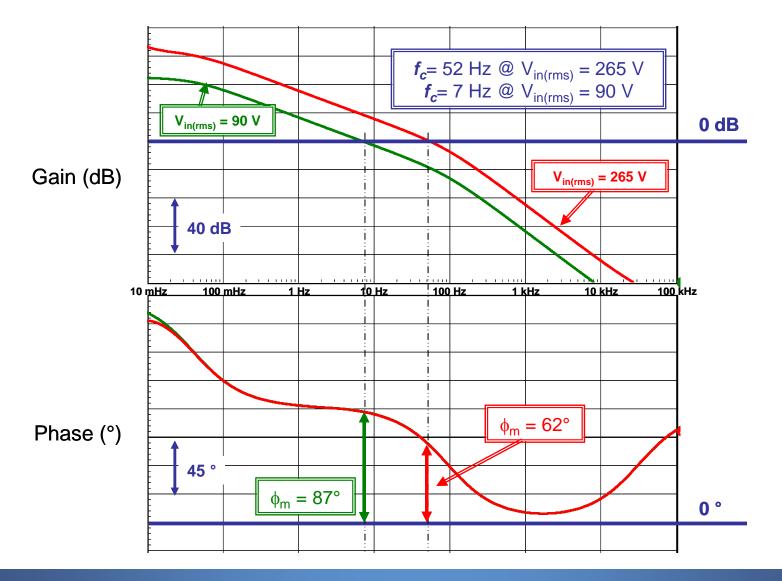
where: $\frac{\hat{v}_{out}}{\hat{v}_{CONTROL}} = K_0 \cdot \frac{1 + s \cdot r_C \cdot C_{bulk}}{1 + s \cdot \left(\frac{R_{LOAD(\min)} \cdot C_{bulk}}{n + 2}\right)}$

- Place the zero so that it cancels the PFC boost pole $(f_{z1} = f_{p0})$ for $R_{LOAD} = R_{LOAD(min)}$
- Place f_{p2} to obtain the targeted phase margin: $f_{p2} = \frac{f_c}{\tan(90^\circ \phi_m)}$

Example

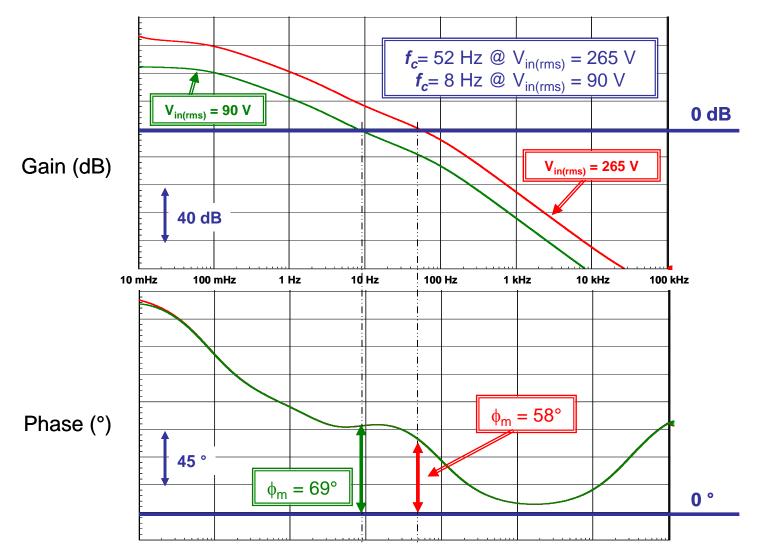

- A wide mains, 150-W application driven by the NCP1605
- $V_{out,nom} = 390 \text{ V}$
- $(V_{in(rms)})_{LL} = 90 V$
- $(V_{in(rms)})_{HL} = 265 \text{ V}$
- *L* = 150 μH
- $C_t = 4.7 \text{ nF}$
- $C_{bulk} = 100 \,\mu\text{F}$
- $r_{\rm C} = 500 \text{ m}\Omega \text{ (ESR)}$
- $f_c = 50 \text{ Hz}$ and $\Phi_m = 60^\circ$ @ high line (265 V)

$$\begin{aligned} \frac{\hat{v}_{out}}{\hat{v}_{COMTROL}} &= K_0 \cdot \frac{1 + s \cdot t_C \cdot C_{bulk}}{1 + s \cdot \left(\frac{R_{LOAD} \cdot C_{bulk}}{4}\right)} \quad \text{where} : \quad K_0 = \frac{R_{LOAD} \cdot C_l \cdot \left(V_{ln(rms)}\right)^2}{24 \cdot L \cdot l_l \cdot V_{out,nom}} \\ R_{LOAD(\min)} &= \frac{\left(\frac{V_{out,nom}}{P_{out}\right)_{\max}}\right)^2}{\left(\frac{R_{OAD}}{P_{out}\right)_{\max}}} = \frac{390^2}{150} \equiv 1 \ k\Omega \\ R_0 &= \frac{V_{out,nom}}{V_{ref} \cdot G_{EA}} = \frac{390}{2.5 \cdot 200 \cdot 10^{-6}} = 780 \ k\Omega \quad (OTA) \\ C_1 &= \frac{K_{0(\min)}}{2\pi \cdot t_c \cdot R_0} = \frac{R_{LOAD(\min)} \cdot C_l \cdot \left(V_{in(rms)}\right)_{HL}}{2\pi \cdot t_c \cdot R_0 \cdot 24 \cdot L \cdot l_l \cdot V_{out,nom}}} = \frac{10^3 \cdot 4.7 \cdot 10^{-9} \cdot 265^2}{2\pi \cdot 50 \cdot 780k \cdot 24 \cdot 150\mu \cdot 370\mu \cdot 390} \equiv 2.59\mu F \implies 2.2 \ \mu F \\ R_1 &= \frac{R_{LOAD(\min)} \cdot C_{bulk}}{(n+2) \cdot C_1} = \frac{10^3 \cdot 100 \cdot 10^{-6}}{(2+2) \cdot 2.2 \cdot 10^{-6}} \equiv 11.36 \ k\Omega \implies 12 \ k\Omega \\ C_2 &= \frac{\tan(90^\circ - \phi_m)}{2\pi \cdot t_c \cdot R_1} = \frac{\tan(90^\circ - 60^\circ)}{2\pi \cdot 50 \cdot 12 \cdot 10^3} \equiv 153 \ nF \implies 150 \ nF \\ f_{p1} &= \frac{1}{2\pi \cdot R_0 \cdot C_1} = 93 \ mHz \qquad f_{z1} = \frac{1}{2\pi \cdot R_1 \cdot C_1} = 6 \ Hz \qquad f_{z1} = \frac{1}{2\pi \cdot R_1 \cdot C_2} = 88 \ Hz \end{aligned}$$


Simulation Validation

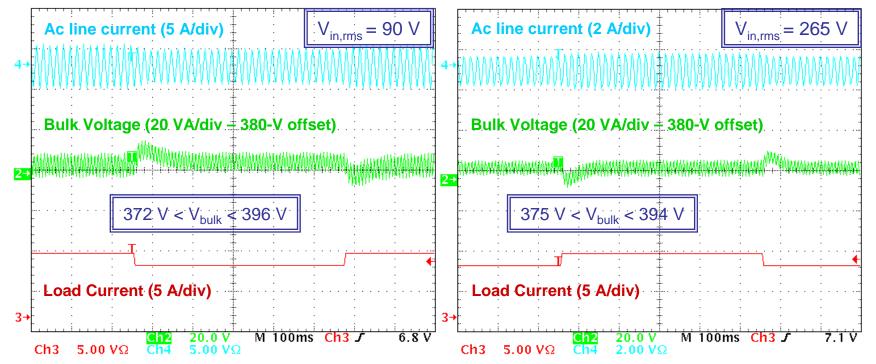
• The simulation circuit is based on the large signal model:

ÛN


Open Loop Characteristic – Full Load

ON Semiconductor*

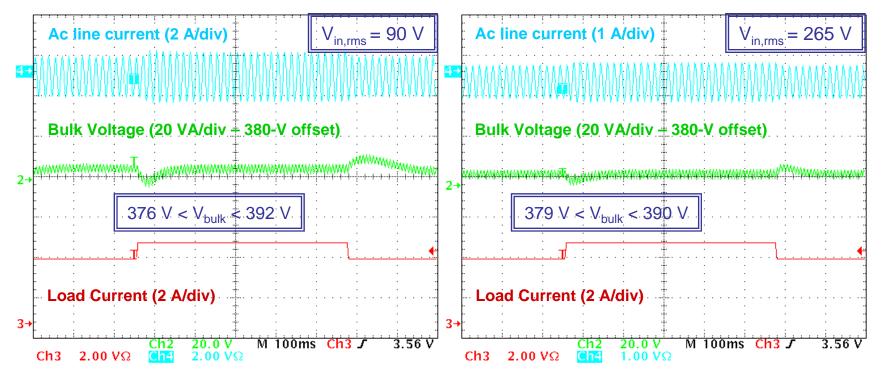
Open Loop Characteristic – Mid Load



ON Semiconductor*

Experimental Results at Full Load

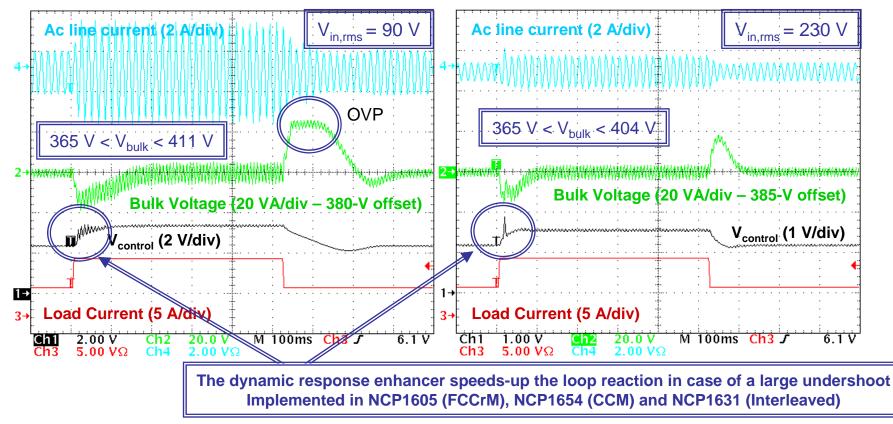
- A 19 V / 7 A loads the PFC stage
- The downstream converter swings between 6.3 A and 7.7 A (+/-10%) with a 2 A/µs slope



 The high-line, larger bandwidth reduces the V_{bulk} deviations and speedsup the output voltage recovery

Experimental Results at Medium Load

- A 19 V / 7 A loads the PFC stage
- The downstream converter swings between 3.1 A and 3.9 A (+/-10%) with a 2 A/µs slope



• The circuit still exhibits a first order response

Abrupt Load Changes

- A 19 V / 7 A loads the PFC stage
- The downstream converter swings from 7.0 A to 3.5 A (2 A/µs slope)

• The dynamic response enhancer reduces the undershoot at low line

Agenda

- Introduction
- Deriving a small-signal model
 - General method
 - Practical example: NCP1605-driven PFC stages
- Compensating the loop
 - Type-2 compensation
 - Influence of the line and power level
 - Computing the compensation
 - Practical example
- Conclusion

Conclusion

- General considerations were illustrated by the case of NCP1605-driven PFC stages
- A small signal model of PFC boosts can be easily derived
- The proposed method is independent of the operating mode
- A type-2 compensation is recommended
- If no feed-forward is implemented, the loop bandwidth and phase margin vary as a function of the line magnitude
- The crossover frequency does not vary as a function of the load
- A resistive load can be used for the computation even if the PFC stage feeds a power supply (negative impedance) – See back-up

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at <u>www.onsemi.com/powersupplies</u>

