onsemi

Auto Gain Control using the NSVP264SDSF3, NSVR351SDSA3 and NCV2904

AND9612/D

Overview

This application note explains about an Auto Gain Control (AGC) for FM Radio Frequency using **onsemi**'s NSVP264SDSF3, NSVR351SDSA3 and NCV2904.

<u>NSVP264SDSF3</u> is a dual type PIN diode best suited for high–frequency applications which is assembled in the 3–pin surface mount package. For information about the performance, please refer to the datasheet of this product.

<u>NSVR351SDSA3</u> is a dual type silicon schottky barrier diode best suited for high–frequency applications which is assembled in the 3–pin surface mount package. For information about the performance, please refer to the datasheet of this product. <u>NCV2904</u> is a Single Supply Dual Operational Amplifiers which is assembled in the 8–pin surface mount package. For information about the performance, please refer to the datasheet of this product.

The evaluation board is adjusted to achieve the most suitable performance on FM Radio Frequency (90 MHz).

A standard material FR4 is used for the printed circuit board (PCB). Please note that the losses of the PCB and the SMA connector are not excluded from the Power level.

Evaluation Board

Figure 1. Evaluation Board

1

AND9612/D

SUMARY OF DATA

Parameter		Symbol	Result			Unit		
Ta = 25°C, CIRCUIT VOLATGE = 5.0 V, f = 70 MHz								
	Input Power	Pin	-20.0	-10.0	0.0	10.0	dBm	
R = 3.9 kΩ	Output Power	Pout	-19.99	-10.00	-1.98	-0.89	mA	
	Power Gain	PG	-0.14	-0.14	-2.16	-11.09	dBm	
	Circuit Current	I _{CC}	0.39	0.44	0.56	1.34	dBm	
R = 820 Ω	Output Power	Pout	-20.00	-10.13	-7.77	-6.71	mA	
	Power Gain	PG	-0.14	-0.26	-7.95	-16.91	dBm	
	Circuit Current	I _{CC}	0.42	0.47	0.90	3.10	dBm	
Ta = 25°C, CIRCUIT VOLATGE = 5.0 V, f = 90 MHz								
	Input Power	Pin	-20.0	-10.0	0.0	10.0	dBm	
R = 3.9 kΩ	Output Power	Pout	-20.07	-10.08	-3.76	-2.84	mA	
	Power Gain	PG	-0.17	-0.17	-3.89	-13.00	dBm	
	Circuit Current	I _{CC}	0.38	0.44	0.65	1.60	dBm	
R = 820 Ω	Output Power	Pout	-20.07	-10.96	-9.65	-8.66	mA	
	Power Gain	PG	-0.16	-1.05	-9.78	-18.82	dBm	
	Circuit Current	I _{CC}	0.43	0.51	1.09	3.58	dBm	
Ta = 25°C, CIRCUIT VOLATGE = 5.0 V, f = 108 MHz								
	Input Power	Pin	-20.0	-10.0	0.0	10.0	dBm	
R = 3.9 kΩ	Output Power	Pout	-20.13	-10.14	-5.04	-4.18	mA	
	Power Gain	PG	-0.20	-0.21	-5.15	-14.31	dBm	
	Circuit Current	I _{CC}	0.40	0.45	0.71	1.83	dBm	
R = 820 Ω	Output Power	Pout	-20.14	-12.06	-11.04	-10.00	mA	
	Power Gain	PG	-0.21	-2.12	-11.15	-20.13	dBm	
	Circuit Current	lee	0.44	0.55	1.23	4.09	dBm	

Block Diagram

Figure 2. Block Diagram

Circuit Design

Figure 3. Circuit Design

BILL	OF	MAT	ERIAL	S

Part	Ref.	Size	Specification	Manufacturer
PIN-Di	-	MCP	NSVP264SDSF3	onsemi
Driver	-	Micro8	NCV2904	onsemi
Detector	-	CP	NSVR351SDSA3	onsemi
Resistor	R1	1005	68 Ω	Various
	R2	1005	470 kΩ	Various
	R3	1005	1.2 kΩ	Various
	R4	1005	82 kΩ	Various
	R5	1005	33 kΩ	Various
	R6	1005	3.9 kΩ / 820 Ω	Various
	R7	1005	220 Ω	Various
	R8	1005	47 kΩ	Various
	R9	1005	3.9 kΩ	Various
	R10	1005	68 Ω	Various
Capacitor	C1, C2	1005	1000 pF	TAIYOYUDEN
	C3	1005	4 pF	TAIYOYUDEN
	C4 to C7	1005	1000 pF	TAIYOYUDEN
	C8, C9	1608	0.1 μF	ROHM MCH182CN104KK
	C10, C11	1005	1000 pF	TAIYOYUDEN
Material	-	25.4 imes 12.7 mm	FR4	

Figure 5. Pin – Pout (f = 90 MHz)

Figure 6. Pin – Pout (f = 108 MHz)

Figure 8. Pin – PG (f = 90 MHz)

Circuit Current

Figure 12. Pin – I_{CC} (f = 108 MHz)

AND9612/D

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** lata sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not onvey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative