

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor referses, employees, subsidiaries, and lisofficers, and designed, intended, or authorized for uses, and reasonable attorney fees arising out or, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an eg

January 2005 Revised August 2005

USB1T1105A **Universal Serial Bus Peripheral Transceiver** with Voltage Regulator

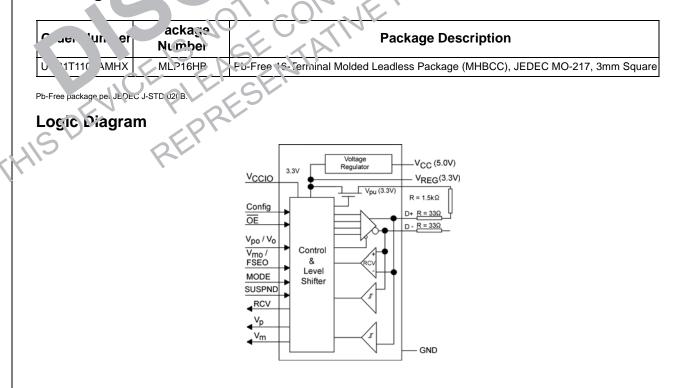
General Description

The USB1T1105A is an Universal Serial Bus Specification Rev 2.0 compliant transceiver. The device provides an USB interface for Full-Speed (12Mbit/s) USB applications. The USB1T1105A provides excellent flexibility, allowing differential and single ended inputs while an integrated voltage regulator sets the I/O level to 1.65V to 3.6V. Utilizing an integrated 5.0V to 3.3V voltage regulator, the part can be powered directly from the USB host (V_{BUS}) to minimize the power consumed from the local sources while used in devices with low supply voltages.

The USB1T1105A provides 15kV ESD protection on the USB bus pins (D+/D-). This eliminates the need for any external ESD devices while providing excellent protection to larger and more expensive ASICs and USB controllers.

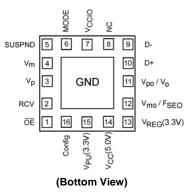
Features

- Complies with Universal Serial Bus Specification 2.0
- Integrated 5V to 3.3V voltage required or top wering VBus


speed data rates

- Utilizes digital inputs and out its to ansmit ind receive USB cable data
- Supports full spee 2ML
- Ideal for por le elec nic
- 15kV co. ct F M ESE rotection on bus pins
- laat is pullinge 3
 - ndu. vistan. ..d HBCC inotprint is RMATH

Ap, 'ications


- Cell phone FDA
- 🖪 Ligital can era
- MΓ3

Ordering (Jae:

USB1T1105A

Connection Diagram

Terminal Descriptions

Terminal Terminal I/O						
Terminal Number	Terminal Name	I/O	Termina Desci tio.			
1	ŌĒ	Ι	Output Enable: Active LOW is to transmit data on the bus. When not active the transceive in the mode (CN OS level is relative to V _{CCIO})			
2	RCV	0	Receive Data Over to Non-erte CMOS level on tput for USP thiferential inplit (CMOS output level is state to V _{CC} . Driven LO V when SUSP's 's fillGH' RCV output is stable indirectived during SE0 condition.			
3	V _p	0	Sing receive output V _P (CMOS lovel relative to V _{CCIC}): Used e. detection of SEO, error conditions, speed of connected device; D. In TH when no supply connected to V _{CC} and V _{REG} .			
4	V _m	0	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
5	S' ND		Suspend: Enables a low covier state (CMGS level is relative to V _{CCIO}). While the SUSPND pin is octive (HIGH) it will drive the RCV pin to logic "0" state.			
	MODE	SNO	MODE input (CMCS 'evol is relative to V _{CCIO}). A HIGH selects the differential input MODE (V _{po} , V _{nc}) whereas a LOW enables the single-ended MODE (V _o , V _{FSEO}) see Table 2 and Table 3			
7	7000		Surply Volage for digital I/O pins (1.65V to 3.6V): when not connected the D+ and D- pins are in 3-STATE. This supply bus is totally independent of V_{CC} (5V) and V_{REG} (3.3V).			
Ø	NC	N°				
10, 9	D+, D-	<u> 41/O</u>	Data +, Data -: Differential data bus conforming to the USB standard.			
11	V _{po} / V _c		Driver Data Input (CMOS level is relative to $V_{\mbox{CCIO}}$); Schmitt trigger input; see Table 2 and Table 3			
12	V_{mo} / F_{SEO}	Ι	Driver Data Input (CMOS level is relative to $V_{\mbox{CCIO}}$); Schmitt trigger input; see Table 2 and Table 3			
13	V _{REG} (3.3V)		Internal Regulator Option: Regulated supply output voltage (3.0V to 3.6V) during 5V operation; decoupling capacitor of at least 0.1 μ F is required.			
14	V _{CC} (5.0V)		Internal Regulator Option: Used as supply voltage input (4.0V to 5.5V); can be connected directly to USB line Vbus.			

USB1T1105A

Terminal Number	Terminal Name	I/O	Terminal Description
15	V _{PU} (3.3V)		Pull-up Supply Voltage $(3.3V \pm 10\%)$: Connect an external $1.5k\Omega$ resistor on D+ (FS data rate); Pin function is controlled by Config input pin: Config = LOW – V _{PU} (3.3V) is floating (High Impedance) for zero pull-up current. Config = HIGH – V _{PU} (3.3V) = 3.3V; internally connected to V _{REG} (3.3V).
16	Config	Ι	USB connect or disconnect software control input. Configures 3.3V to external 1.5k Ω resistor on D+ when HIGH.
Exposed Diepad	GND	GND	GND supply down bonded to exposed diepad to be connected to the PCB GND.

Functional Description

The USB1T1105A transceiver is designed to convert CMOS data into USB differential bus signal levels and to convert USB differential bus signal to CMOS data.

To minimize EMI and noise the outputs are edge rate controlled with the rise and fall times controlled and defined for full speed data rates. The rise, fall times are balanced between the differential pins to minimize skew.

 Table 1 describes the specific pin functionality election. Collig

 2, Table 3, and Table 4

 Scribe he s, for the s, for the state of the state

The USB1T11 A also s the collity of various power supply configuration to supply t mixed voltage supply applications (see Table and wer upply Configurations and Options for deta task. tions.

Functional Tables

			T∕ BL⊂ 1	nction lect
SUSPND	OE	D+, D-	۲С۷	V Vm Function
L	L	Drivin Rec /ing	rtive	Active Normal Oriving (Differential Receiver Active)
L	н	Rec ring (Not.	Active	Active Receiving
Н	L	E ring	Inactive (Note 2)	Antive Driving during Suspend (Differential Receiver Inactive)
Н		3-STATE (Ncte 1)	Inacuve (Note 2)	Active Low Power State

1: Signa (els) notion of connection and/or poll-up/pull-down resistor ?.

Not. For SI PND = HIG I mode the differential receiver is incluse ind the output RCV output is forced LOW. The out-of-suspend signaling (K) is detected via the singleended or outputs of the V₁ and V_m pins.

TAE (F 2. Driver Function ($\overline{OE} = L$) using Differential Input Interface Mode Pin = H

	V _{mo}	V _{po}	Data
1	S ^L	L	SE0 (Note 3)
<pre>N</pre>	L	Н	Differential Logic 1
	Н	L	Differential Logic 0
	Н	Н	Illegal State

Note 3: SE0 = Single Ended Zero

TABLE 3. Driver Function ($\overline{OE} = L$) using Single-ended Input Interface Mode Pin = L

FSE0	Vo	Data
L	L	Differential Logic 0
L	Н	Differential Logic 1
Н	L	SE0 (Note 4)
Н	Н	SE0 (Note 4)

Note 4: SE0 = Single Ended Zero

TABLE 4. Receiver Function ($\overline{OE} = H$)

D+, D-	RCV	V _p	V _m
Differential Logic 1	Н	Н	L
Differential Logic 0	L	L	Н
SE0	Х	L	L
Sharing Mode	L	Н	Н

X = Don't Care

Power Supply Configurations and Options

The three modes of power supply operation are:

- Normal Mode: Regulated Output and Regulator Bypass
 - Regulated Output: V_{CCIO} is connected and V_{CC} (5.0) is connected to 5V (4.0V to 5.5V) and the internal voltage regulator then produces 3.3V for the USB connections.
 - 2. Internal Regulator Bypass Mode: V_{CCIO} is connected and both $V_{CC}(5.5)$ and $V_{REG}(3.3)$ are connected to a 3.3V source (3.0V to 3.6V).

In both cases for normal mode the V_{CCIO} is an independent voltage source (1.65V to 3.6V) that is a function of the e^v nal circuit configuration.

• Sharing Mode: V_{CCIO} is only supply connected. V_{c} and V_{REG} are not connected. In this mode the D+ c pin are

3-STATE and the USB1T1105A a" is explanal signals up to 3.6V to share the D+ and D- bus is. Interplay the circuit y limits leakage from D+ ar is D- pin 'maxim m 10 μ A) and V_{CCIO} such that device is in ' is point uspended's state. Terminals Vbusme and is are force a LOW as a hindication of this mode v. VL more using ignared during this state.

• Disable In the: The indicate of the connected v_{CC} is connected, or $V_{L} \rightarrow V_{K}$, are the connected 0.4 to 3.3V in this mode D+ and D- e to TE and V_{PU} is HIGH Impedance (switch is rine off). The USE171105A allow, external signals up to 5.4 to have the D+ and D- birs in estimation of the circuitry lim. leakage from D+ and D- technicals (maximum 10µA).

summary of the Supply Contigurations is described in Table 5.

		Power Supriy	Mode Configuration	
Pins	harir	Disable	Normal (Regulated Output)	Normal (Regulator Bypass)
V _C (5V)	< 3.6V	Connected to 5V Spurce	Connected to 5V Source	Connected to V _{REG} (3.3V) [max drop of 0.3V] (2.7V to 3.6V)
V _{REG} (3V)	Pulled LOW Regulator OFF	3 3V 300 μA Regulated Output	3.3V, 300 μA Regulated Output	Connected to 3.3V Source
Vccio	1.65% is 3.6% Source	Not Connected	1.65V to 3.6V Source	1.65V to 3.6V Source
V _{⊵U} (?.3V)	3-STATE (O'f)	3-STATE (Off)	3.3V Available if Config = HIGH	3.3V Available if Config = HIGH
D+, D-	2-STATE	3-STATE	Function of Mode Set Up	Function of Mode Set Up
V _p , V _m	Н	Invalid	Function of Mode Set Up	Function of Mode Set Up
RCV	L	Invalid	Function of Mode Set Up	Function of Mode Set Up
OE, SUSPND, Config, V _{po} /V _o , V _{mo} /F _{SEO} , MODE	Hi-Z	Hi-Z	Function of Mode Set Up	

TABLE . Perer Supply Configuration Options

Note 5: Hi-Z or forced LOW.

USB1T1105A

Absolute Maximum Ratir		Recommended Operation	ng Conditions
Supply Voltage (V _{CC})(5V)	-0.5V to +6.0V	DC Supply Voltage V _{CC} (5V)	4.0V to 5.5V
I/O Supply Voltage (V _{CCIO})	-0.5V to $+4.6V$	I/O DC Voltage V _{CCIO}	1.65V to 3.6V
Latch-up Current (I _{LU})		DC Input Voltage Range (V _I)	0V to V _{CCIO} + 0.5V
$V_{I} = -1.8V$ to +5.4V	150 mA	DC Input Range for AI/O (V _{IA/O})	0V to 3.6V
DC Input Current (I _{IK})		Pins D+ and D-	0V to 3.6V
V ₁ < 0	–18 mA	Operating Ambient Temperature	
DC Input Voltage (V _I)		(T _{AMB})	-40°C to +85°C
(Note 7)	-0.5V to V _{CCIO} +0.5V		
DC Output Diode Current (I _{OK})			
$V_{O} > V_{CC}$ or $V_{O} < 0$	±18 mA		
DC Output Voltage (V _O)			
(Note 7)	–0.5V to V _{CCIO} + 0.5V		NEW DES
Output Source or Sink Current (I _O)			IE V
$V_{O} = 0$ to V_{CC}			
Current for D+, D– Pins	±12 mA		
Current for RCV, V_m/V_p	±12 m		
DC V _{CC} or GND Current		NDEDFORS	
(I _{CC} , I _{GND})	±; ∖mA		Vb,
ESD Immunity Voltage (V _{ESD});		CALIK 2	
Contact HBM		Note 6: The Absulute Maximum Ratings are those	values beyond which the safety of
Pins D+, D–, and GND	15k∖	the device call not be guaranteed. The device sho The parametric values defined in the Electrical Ch	uld not be operated at these limits.
All Other Pins	2.5k\	teed at the absolute maximum rating. The "Rec	ommended Operating Conditions"
Storage Temperature (T _{S1}	−40°C †J + 125°C	table will define the conditions for actual device op	
Power Dissipat (PTOT)	1KUNI	Note 7: O Abrol ¹ te Maximum Rating must be obs	served.
I _{CC} (5V,	48 mW		
	9 m/v (//	

D Elev rical Characteristics (Supply Plas) Over reconded range of rupply voltage and operating free Virtual temperature (unless otherwise noted). V_{CC} (5 $_{J}$ = 4.0V to 5.5V or V_{RFG} (3.5V) = 3.0V to 5.6V, V_{CCIO} = 1.65V to 3.6V

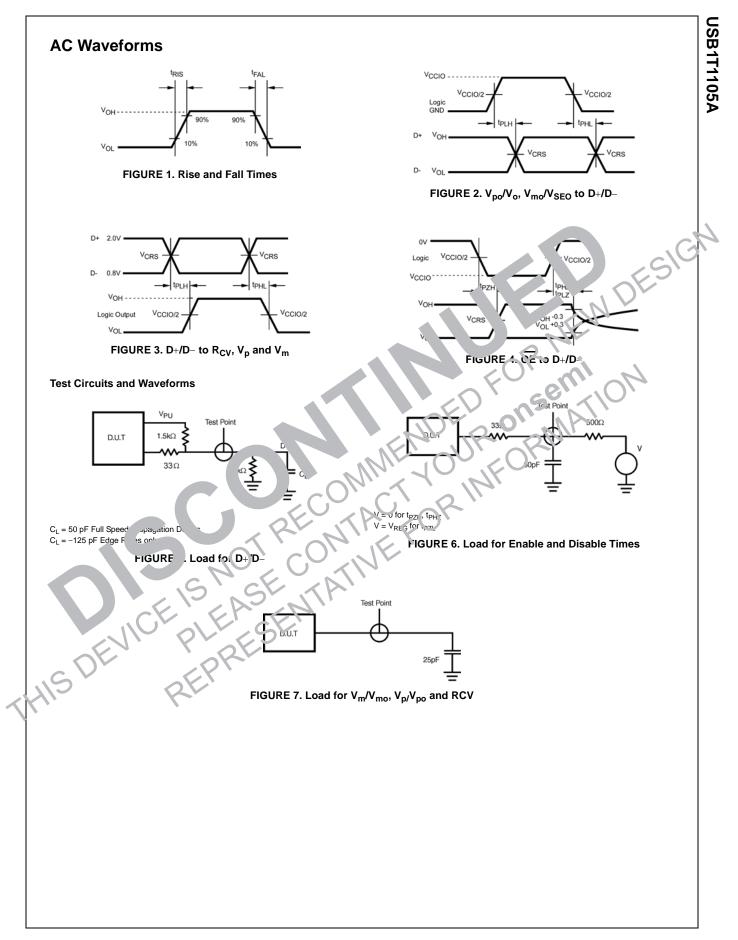
				Limits		
દvmt ol	Parem.ste:	Conditions		-40°C to +85°C		Units
D	0E		Min	Тур Мах		
V _{REG} (3.3V)	Regulated S oply Output	Internal Regulator Option;	3.0	3.3	3.6	v
		$I_{LOAD} \le 300 \ \mu A$	(Note 8)(Note 9)			v
Icc	Operating Supply Current (V _{CC} 5.0)	Transmitting and Receiving at		4.0	8.0	mA
		12 Mbits/s; C_{LOAD} = 50 pF (D+, D-)		(Note 10)		mA
I _{CCIO}	I/O Operating Supply Current	Transmitting and Receiving at		1.0	2.0	mA
		12 Mbits/s		(Note 10)		mA
I _{CC (IDLE)}	Supply Current during	IDLE: $V_{D+} \geq 2.7 V, \ V_{D-} \leq 0.3 V;$			500	٨
	FS IDLE and SE0 (V_{CC} 5.0)	SE0: $V_{D+} \leq 0.3 V \text{, } V_{D-} \leq 0.3 V$			(Note 11)	μA
ICCIO (STATIC)	I/O Static Supply Current	IDLE, SUSPND or SE0			20.0	μA
I _{CC(SUSPND)}	Suspend Supply Current	SUSPND = HIGH			25.0	
	USB1T1105A	OE = HIGH			(Note 11)	μA
		$V_m = V_p = OPEN$				
ICCIO(SHARING)	I/O Sharing Mode Supply Current	V _{CC} (5V) Not Connected			20.0	μA

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions		Units		
			Min	Тур	Max	
ID±(SHARING)	Sharing Mode Load Current on	V _{CC} (5V) Not Connected			40.0	
	D+/D- Pins	Config = LOW; $V_{D\pm}$ = 3.6V			10.0	μΑ
V _{CCTH}	V _{CC} Threshold Detection Voltage	$1.65V \leq V_{CCIO} \leq 3.6V$				
		Supply Lost			3.6	V
		Supply Present	4.1			
V _{CCHYS}	V _{CC} Threshold Detection	V _{CCIO} = 1.8V		70.0		mV
	Hysteresis Voltage			70.0		IIIV
V _{CCIOTH}	V _{CCIO} Threshold Detection Voltage	$2.7V \leq V_{REG} \leq 3.6V$				
		Supply Lost			0.5	v
		Supply Present	1.4			S
V _{CCIOHYS}	V _{CCIO} Threshold Detection	V _{REG} = 3.3V				
	Hysteresis Voltage					

DC Electrical Characteristics (L Tuc.

VCCIOHYS	V _{CCIO} Threshold Detection	$V_{\text{REG}} = 3.3V$			m
	Hysteresis Voltage				V
ote 8: I _{LOAD} inclu	ides the pull-up resistor current via pin V _{PI}	L		NK.	
ote 9: The minim	um voltage in Suspend mode is 2.7V.		2		
ote 10: Not teste	d in production, value based on characteri	zation.			
ote 11: Excludes	any current from load and V_{PU} current to	the 1.5k Ω resistor.			17
ote 12: Includes	current between V_{pu} and the 1.5k internal	pull-up resistor.	0, 6	emi)`
ote 13: When V _C	$_{CIO}$ < 2.7V, minimum value for V _{REGTH} = 2	2.0V for supp ₁ resent cor. n.			
				Nr.	
C Elect	rical Characteristics	د الد الد excludes J+, D- Pins)	110 02	14	
ver recommende	d range of supply voltage and or uting fr	e ten rature (unless of orwise noted). VCCIO	= 1.0V to 3.6V		
			Lir	nits	
Symbol	Parameter	Ter & Cond. tions	-40°C 1	to +85°C	Units
			Min	Max	
Input Levels		<u> Rovinso</u>	1	Г – Г	
VIL	it Voitage			0.3	V
VIH	HIGH Level ' ut Voltage		0.6*V _{CCIO}		V
V	'yste voltage P11 + P1∠	$Pins V_{n0}/V_{1.0}, V_{CCIO} = 3.3V$	0.3	0.7	V
'put Leve	19.5		·		
V _{o.}				0.4	V
۷O.	LOW Level Output Voltage	$D_L = 2 \text{ mA}$		0.4	
vo.	LOW Level Output Voltage	_{DL} = 2 mA I _{OL} = 100 μA		0.15	
	LOW Luve' Output Voltage		V _{CCIO} - 0.4	-	V
	10 V	I _{OL} = 100 μA	V _{CCIO} - 0.4 V _{CCIO} - 0.15	-	V
V _{OH}	HIGH Level Oursut Voitage	l _{OL} = 100 μA l _{OH} = 2 mA		-	V
V _{OH} Loakayo Curren	HIGH Level Oursut Voitage	l _{OL} = 100 μA l _{OH} = 2 mA		-	V μA
	HIGH Level Oursut Voitage	$I_{OL} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OH} = 100 \ \mu A$		0.15	

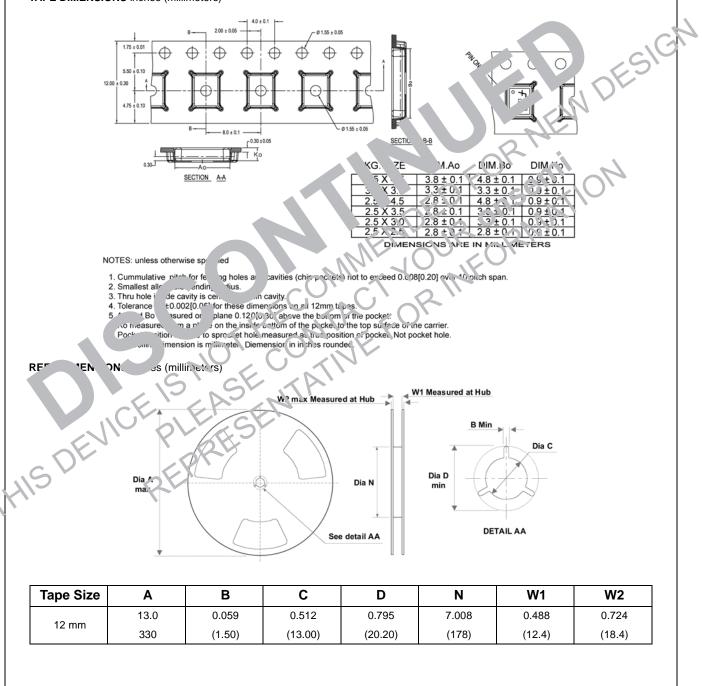

Note 14: If $V_{CCIO} \geq V_{REG}$ then leakage current will be higher than specified.

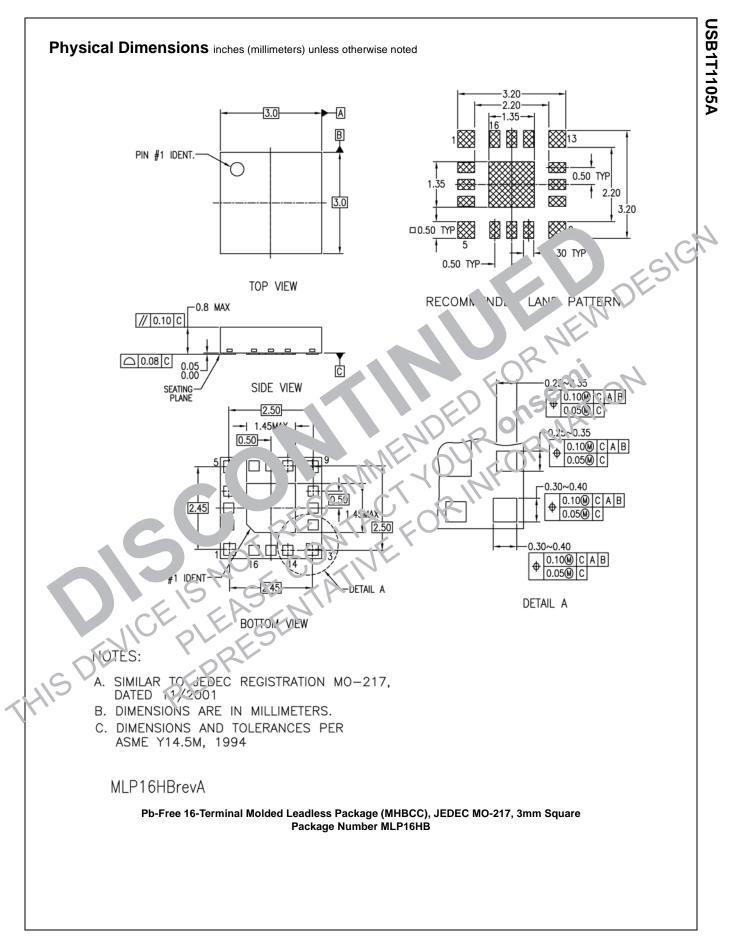
Symbol			I	_imits	
	Parameter	Test Condition	-40°	C to +85°C	Units
			Min	Typ Max	
Input Levels – D	Differential Receiver				
V _{DI}	Differential Input Sensitivity	V _{I(D+)} - V _{I(D-)}	0.2		V
V _{CM}	Differential Common Mode Voltage		0.8	2.5	V
	Single-ended Receiver				
V _{IL}	LOW Level Input Voltage			0.8	V
V _{IH}	HIGH Level Input Voltage		2.0		V
V _{HYS}	Hysteresis Voltage		0.4	0.7	V
Output Levels					
V _{OL}	LOW Level Output Voltage	$R_L = 1.5 k\Omega$ to 3.6V		0.	VC
V _{OH}	HIGH Level Output Voltage	$R_L = 15k\Omega$ to GND	2.8 (No ⁺)		
Leakage Currer					
	Input Leakage Current Off State	OE = H		±1.0	μΑ
Capacitance	1/0.0				
C _{I/O}	I/O Capacitance	Pin to GND		20.0	pF
Resistance					
Z _{DRV}	Driver Output Impedance		34.0	41.0 44.0 lote 10	2
Z _{IN}	Driver Input Impedance		10.0	SUIT	MΩ
R _{SW}	Switch Resistance			10.0	Ω
V _{TERM}	Termination Voltage	Up am Port	:.0 (, rote 17)	3.6	V
	vor je is z.7V in tu experimode.	s. CONCE			

AC Electrical Characteristics (A I/O Pins Full Speed)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} = 4.0V to 5.5V or V_{REG} = 3.0V to 3.6V, V_{CCIO} = 1.65V to 3.6V, C_L = 50 pF; R_L = 1.5K on D+ to V_{PU}

Symbol	Parameter	Test Conditions		Limits -40°C to +85°C		
Symbol					Max	Unit
Driver Character	ristics		Min	Тур	IVIdX	
t _{FR}	Output Rise Time	C _L = 50 – 125 pF	4.0		20.0	
Ϋ́́		10% to 90%	4.0		20.0	ns
t _{FF}	Output Fall Time	Figures 1, 5	4.0		20.0	113
frfM	Rise/Fall Time Match	t _F / t _R Excludes First Transition			2010	
		from Idle State	90.0		111.1	%
/ _{CRS}	Output Signal Crossover Voltage	Excludes First Transition from				
Note 19)		Idle State see Waveform	1.3			V
Driver Timing						
PLH	Propagation Delay					
ЧL	$(V_p/V_{po}, V_m/V_{mo} \text{ to } D_+/D)$	Figures 2, 5			18.0	ns ns
ΉZ	Driver Disable Delay	Firmer 4.0				
LZ	(OE to D+/D-)	Figures 4, 6		-	15.0	ns
ZH	Driver Enable Delay			2	45.0	
ZL	(OE to D+/D-)	Figures 4, 6		$\mathcal{N}_{\mathcal{L}}$	15.0	ns
eceiver Timing	- • 1			-		14
LH	Propagation Delay (Diff)			SC	15.0	
ЧL	(D+/D- to Rev)	Figu 3, 7			12.0	ns
ĽH	Single Ended Receiver Propagation Delay	, 0, re 7	.0.		18.0	ns
ЧL	(D+/D- to V_p/V_{po} , V_m/V_{mo})	,5		~~	10.0	115
	NCE IS NOT	RECONTREFO	2112.			


USB1T1105A


Tape and Reel Specification

Tape Format for MHBCC

Package	Таре	Number	Cavity	Cover Tape Status	
Designator	Section	Cavities	Status		
	Leader (Start End)	125 (typ)	Empty	Sealed	
MHX	Carrier	2500/3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)

DISCLAIMER

FOR NEW DESIGN FAIRCHILD SEMICONDUTER RESIDENT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IPROVER LITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY PRODUCTS HEREIN TO IPROVE RE LITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE A PLICAT IN OR USE OF ANY PROLUCTION CLICCTIC DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LUGE UPER FOR TAICHTS, NOR THE RIGHTS OF OTHERS.

LIFE S VP. *`OLICY* **.**

STATE OF A CONTRACTION OF A CONTRACTION OF A CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES SYSTEM VITEOUT THE EXPRESS VIGITIEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION FAI

used h ein:

e sur ort devices or systems are devices or systems in , are intended for surgical implant into the body, or 1. whic (b) support or sustain life or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for ref- erence information only.		

PRODUCT STATUS DEFINITIONS

finition of torm

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC