QOCVO

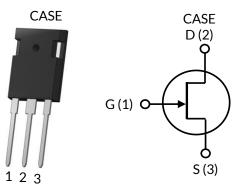
SiC JFET Division

Is Now Part of

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actal performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asso



Silicon Carbide (SiC) JFET - EliteSiC, Power N-Channel, TO-247-3L, 1200 V, 66 mohm

Rev. B, January 2025

DATASHEET

UJ3N120065K3S

Part Number	Package	Marking
UJ3N120065K3S	TO-247-3L	UJ3N120065K3S

Description

UnitedSiC offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{DS(ON)}$) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(ON)}$ at V_{GS} = 0 V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Features

- Typical on-resistance $R_{DS(on),typ}$ of 66m Ω
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		1200	V
Gate-source voltage	V _{GS} –	DC	-20 to +3	V
	V GS	AC ¹	-30 to +20	V
Continuous drain current ²	1	T _C = 25°C	34	А
	I _D	T _C = 100°C	25	А
Pulsed drain current ³	I _{DM}	T _C = 25°C	90	А
Power dissipation	P _{tot}	T _C = 25°C	254	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	TJ,TSTG		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

1. +20V AC rating applies for turn-on pulses <200ns applied with external R_G > 1 Ω .

2. Limited by $T_{J,max}$

3. Pulse width t_p limited by $T_{J,max}$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
Parameter			Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{ ext{ heta}JC}$			0.45	0.59	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			Unite
Parameter			Min	Тур	Max	– Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =-20V, I_{D} =1mA	1200			V
Total drain leakage current	I _{DSS}	V _{DS} =1200V, V _{GS} =-20V, T _J =25°C		5	30	- μΑ
		V _{DS} =1200V, V _{GS} =-20V, T _J =175°C		56		
Total gate leakage current	1	V _{GS} =-20V, T _J =25°C		0.1	50	μA
	I _{GSS}	V _{GS} =-20V, T _J =175°C		1		μA
Drain-source on-resistance	R _{DS(on)}	V _{GS} =2V, I _D =10A, T _J =25°C		55		mΩ
		V _{GS} =0V, I _D =10A, T _J =25°C		66	90	
		V _{GS} =2V, I _D =10A, T _J =175°C		122		
		V _{GS} =0V, I _D =10A, T _J =175°C		142		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =35mA	-9.3	-6.6	-4.7	V
Gate resistance	R _G	f=1MHz, open drain		2.6		Ω

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			Unite
			Min	Тур	Max	- Units
Input capacitance	C _{iss}	1/-100/(1/-20)/		1008		
Output capacitance	C _{oss}	- V _{DS} =100V, V _{GS} =-20V - f=100kHz		100		pF
Reverse transfer capacitance	C _{rss}	1-100KHZ		95		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 800V, V_{GS} =-20V		56		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =800V, V _{GS} =-20V		18		μJ
Total gate charge	Q _G	– V _{DS} =800V, I _D =25A, –		114		nC
Gate-drain charge	Q_{GD}	$V_{\rm DS} = -18V \text{ to } 0V$		75		
Gate-source charge	Q_{GS}	VG5 10V 100V		16		
Turn-on delay time	t _{d(on)}			32		- ns
Rise time	t _r	V _{DS} =800V, I _D =25A, Gate		43		
Turn-off delay time	$t_{d(off)}$	Driver =-18V to 0V, $R_G=1\Omega$, Inductive Load, FWD: UJ2D1215T $T_J=25^{\circ}C$		19		
Fall time	t _f			16		
Turn-on energy	E _{ON}			785		
Turn-off energy	E_{OFF}			150		μJ
Total switching energy	E _{TOTAL}			935		
Turn-on delay time	t _{d(on)}	V_{DS} =800V, I_D =25A, Gate Driver =-18V to 0V, R_G =1 Ω , Inductive Load, FWD: UJ2D1215T T_J =150°C		28		ns
Rise time	t _r			42		
Turn-off delay time	$t_{d(off)}$			18		
Fall time	t _f			15		
Turn-on energy	E _{ON}			730		
Turn-off energy	E _{OFF}			146		μJ
Total switching energy	E _{TOTAL}			876		

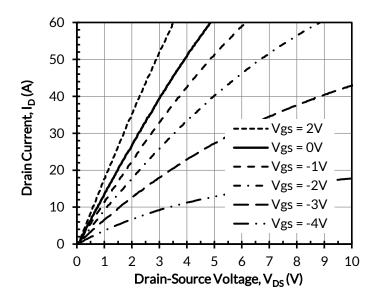
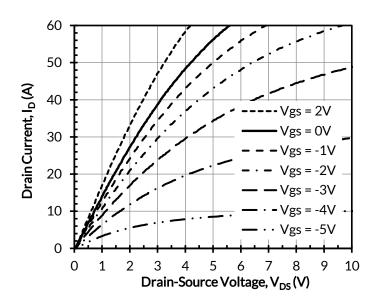



Figure 1. Typical output characteristics at $T_{\rm J}$ = - 55°C, tp < 250 μs

Spice Models

Buy Online Contact Sales Learn

More

Related Devices

Figure 2. Typical output characteristics at $T_J = 25^{\circ}C$, tp < 250 μ s

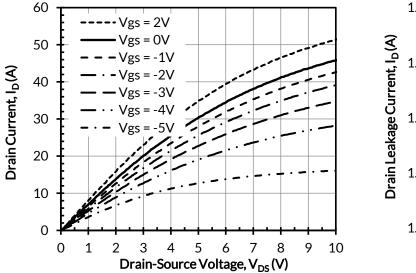


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

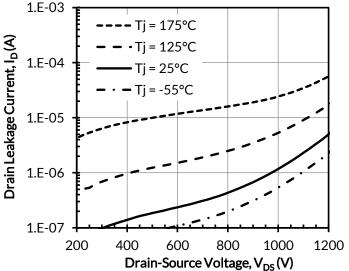
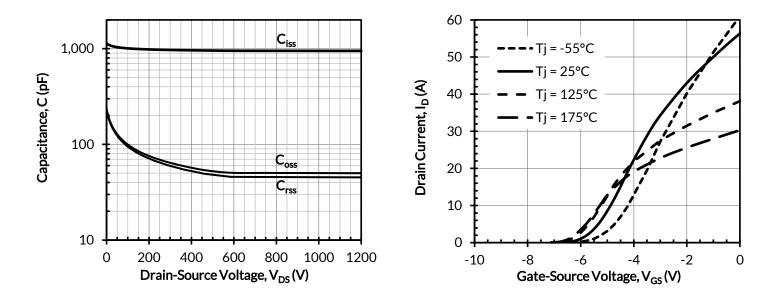



Figure 4. Typical drain-source leakage at V_{GS} = -20V

Related Devices

Figure 5. Typical capacitances at f = 100kHz and V_{GS} = -20V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

Spice Models

Buy Online Contact Sales Learn

More

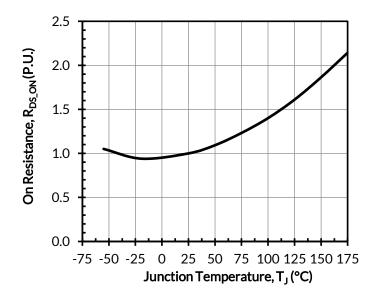


Figure 7. Normalized on-resistance vs. temperature at V_{GS} = 0V and $I_{\rm D}$ = 10A

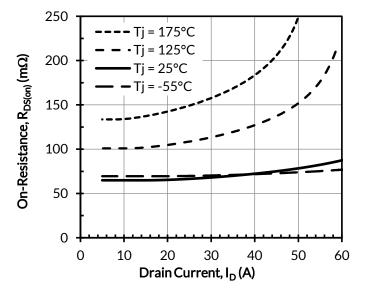


Figure 8. Typical drain-source on-resistances at V_{GS} = 0V

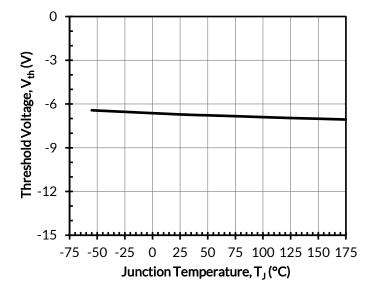


Figure 9. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 35mA

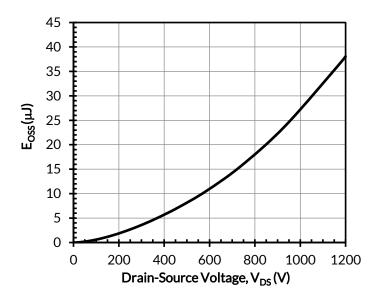


Figure 10. Typical stored energy in C_{OSS} at V_{GS} = -20V

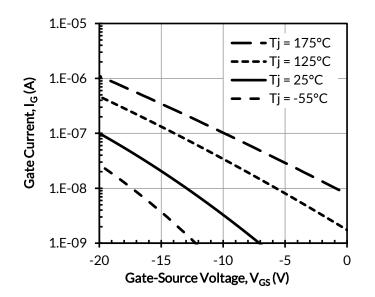


Figure 11. Typical gate leakage at $V_{DS} = 0V$

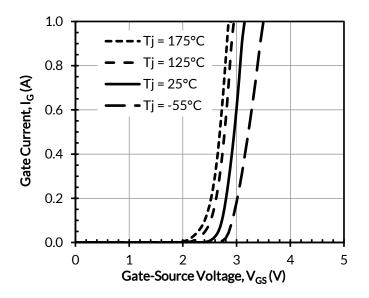
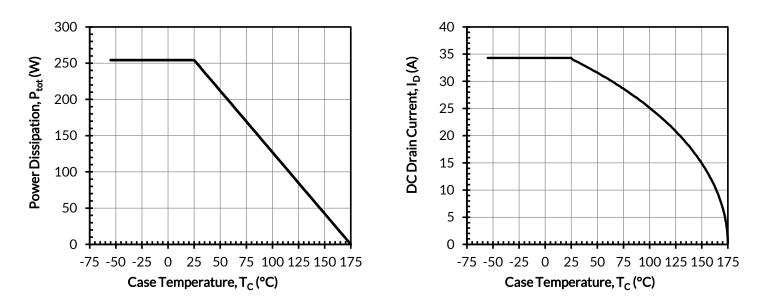



Figure 12. Typical gate forward current at V_{DS} = 0V

Related Devices

Figure 13. Total power Dissipation

Figure 14. DC drain current derating

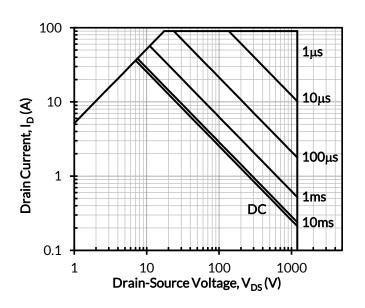
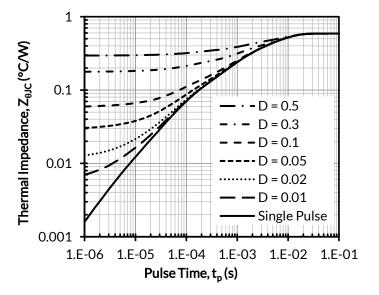



Figure 15. Safe operation area at $T_C = 25^{\circ}$ C, Parameter t_p

Spice Models

Contact

More

Buy Online

Figure 16. Maximum transient thermal impedance

United **SiC**

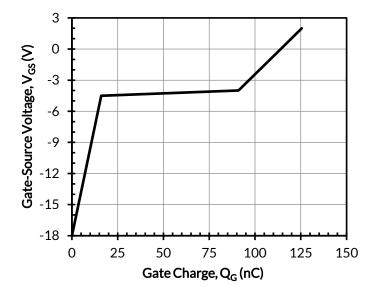


Figure 17. Typical gate charge at V_{DS} = 800V and I_{D} = 25A

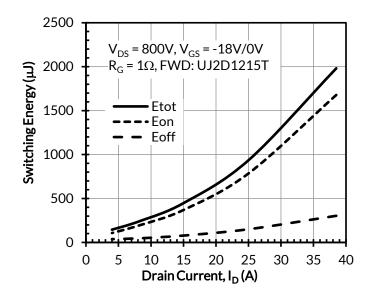


Figure 18. Clamped inductive switching energy vs. drain current at $T_J = 25^{\circ}C$

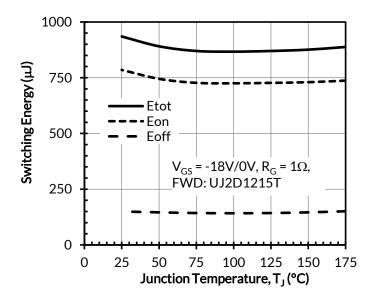


Figure 19. Clamped inductive switching energy vs. junction temperature at V_{DS} = 800V and I_{D} = 25A

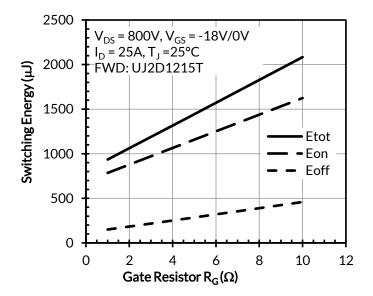
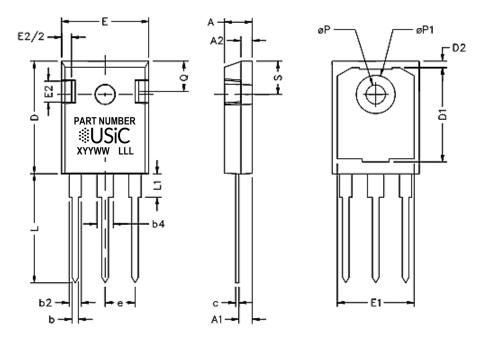


Figure 20. Clamped inductive switching energy vs. gate resistor $\rm R_{\rm G}$

Disclaimer


UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document. UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.

TO-247-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKAGE OUTLINE

SYM	INCHES		MILLIN	NETERS	
	MIN	MAX	MIN	МАХ	
A	0.185	0.209	4.699	5.309	
A1	0.087	0.102	2.21	2.61	
A2	0.059	0.098	1.499	2.489	
b	0.039	0.055	0.991	1.397	
b2	0.065	0.094	1.651	2.388	
b4	0.102	0.135	2.591	3.429	
С	0.015	0.035	0.381	0.889	
D	0.819	0.845	20.803	21.463	
D1	0.515	-	13.081	-	
D2	0.02	0.053	0.508	1.346	
E	0.61	0.64	15.494	16.256	
е	0.214	BSC 5.		4 BSC	
E1	0.53	-	13.462	-	
E2	0.135	0.157	3.429	3.988	
L	0.78	0.8	19.812	20.32	
L1	-	0.177	-	4.496	
ØР	0.14	0.144	3.556	3.658	
ØP1	0.278	0.291	7.061	7.391	
Q	0.212	0.244	5.385	6.198	
S	0.243	3 BSC	6.17 BSC		

PART MARKING

PART NUMBER SUSSE XYYWW LLL

PART NUMBER = REFER TO DS_PN DECODER FOR DETAILS

X = ASSEMBLY SITE YY = YEAR WW = WORK WEEK LLL = LOT ID

PACKING TYPE

ANTI-STATIC TUBE

QUANTITY / TUBE : 30 UNITS

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>