ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

20 W T-lamp Direct AC LED Driver with Analog Dimming

This reference design covers specification, theory of operation and testing. This reference design can be applied to 20 W analog dimming using the NCL30170 driver, and accurate current calibration and low–THD performance can be implemented.

ON Semiconductor®

www.onsemi.com

REFERENCE DESIGN

Table 1. SPECIFICATIONS TABLE

Input Voltage	108–132 Vac	Low line
	198–264 Vac	High line
Line Frequency	50 Hz/60 Hz	
Input Power	20 W	
Power Factor	0.973	Min
THD	18.5%	Тур
Line Current Regulation	±0.1%	
Analog Dimming Range	< 5%	
Start Up Time	< 150 ms	Тур.
Lighting Surge	±2.0 kV (Line to Neutral)	ANSI/IEEE C62.41-1991 Class A
EMI	Conducted	150 kHz–30 MHz

Key Features

- Accurate Constant LED Current across Input Voltage Range
- Selectable LED Channel Counts using Advanced Topology
- Excellent Power Factor and THD with Sinusoidal Current Shape
- Wide Analog Dimming Range < 5%
- Excellent Phase-cut Dimmer Compatibility
- Protections
- Input Over Voltage Protection
- Thermal Shut Down
- Sensing Resistor Short Protection

1

SCHEMATIC

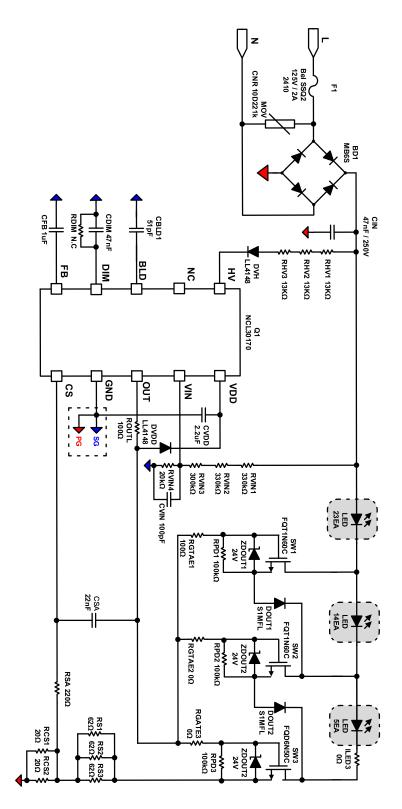


Figure 1. Schematic for Low Line 20 W ADIM

Table 2. BILL OF MATERIALS FOR LOW LINE (BOM)

Part Reference	Part Description	Qty	Vendor	Value
PCB	NCL30170 20 W ADIM EVB	1	ANY	
NCL30170	IC SOIC10 1 ON Semiconductor		Controller	
F1	fast Acting 125 V 2 A SSQ2 2410	1	Bel fuse	
MOV	CNR10D221K	1	ANY	
BD1	Bridge diode 600 V 0.5 A, MB6S SOIC-4	1	ON Semiconductor	
ZOUT1-3	SMD 24 V Zener Diode, SOD-523	2	ON Semiconductor	
DHV, DVDD	SMD Diode LL4148 (LL-34)	3	ON Semiconductor	
SW1, SW2	MOSFET FQT1N60C SOT-223	2	ON Semiconductor	
SW3	MOSFET FQD6N50C D-PAK	1	ON Semiconductor	
DOUT1, DOUT2	SMD Diode, 1000 V, 1 A, Fast recovery, RS1M	2	ON Semiconductor	
RHV1, RHV2, RHV3	3216 Resistor, 13 k Ω	3	ANY	
ILED3	3216 Resistor, 0 Ω	4	ANY	
RVIN1, RVIN2	3216 Resistor, 330 k Ω	2	ANY	
RVIN3	3216 Resistor, 300 k Ω	1 ANY		
RVIN4	3216 Resistor, 20 k Ω	1	ANY	
RPD1-3	1608 Resistor, 100 k Ω	r, 100 kΩ 3		
RCS1, RCS2	3216 Resistor, 20 Ω	2 ANY		
RSA	2012 Resistor, 220 Ω	1 ANY		
RS1, RS2, RS3	3216 Resistor, 62 Ω	3	ANY	
ROUTL	2012 Resistor, 100 Ω	1	ANY	
RGATE1	1608 Resistor, 100 Ω	1	ANY	
RGATE2,3	1608 Resistor, 0 Ω	2	ANY	
CIN1	Axial Flim Capacitor, 47 nF/250 V	1 ANY		
CVDD	3216 Capacitor, 50 V 2.2 μF	1 ANY		
CBLD1	3216 Capacitor, 51 pF	3216 Capacitor, 51 pF 1 ANY		
CVIN	3216 Capacitor, 100 pF 1		ANY	
CDIM	1608 Capacitor 47 nF	1 ANY		
CSA	2012 Capacitor 22 nF	1 ANY		
CFB	2012 Capacitor 1 μF	1	ANY	
LED Configuration	JK3030AWT-00-0000-000A0HL250E (3.2 V 400 mA 5000K)	42	Cree	

SCHEMATIC

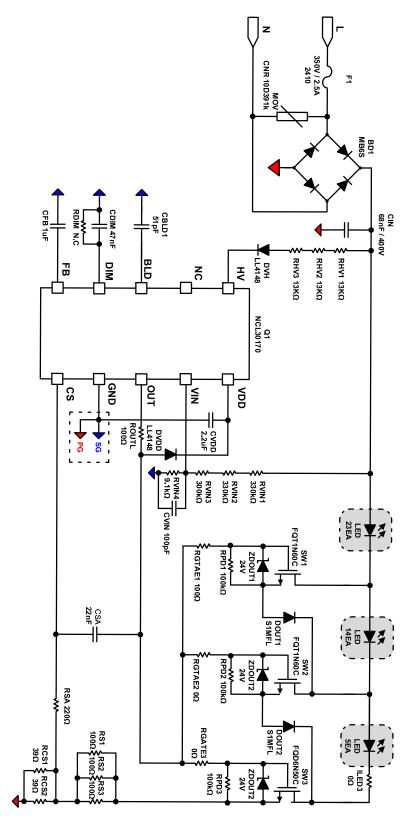


Figure 2. Schematic for High Line 20 W ADIM

Part Reference	Part Description	Qty	Vendor	Value
PCB	NCL30170 20 W ADIM EVB	1	ANY	
NCL30170	IC SOIC10	1	ON Semiconductor Contro	
F1	fast Acting 350 V 2.5 A SSQ2 2410	1	Bel fuse	
MOV	CNR10D391K	1	ANY	
BD1	Bridge diode 600 V 0.5 A, MB6S SOIC-4	1	ON Semiconductor	
ZOUT1-3	SMD 24 V Zener Diode, SOD-523	2	ON Semiconductor	
DHV, DVDD	SMD Diode LL4148 (LL-34)	3	ON Semiconductor	
SW1, SW2	MOSFET FQT1N60C SOT-223	2	ON Semiconductor	
SW3	MOSFET FQD6N50C D-PAK	1	ON Semiconductor	
DOUT1, DOUT2	SMD Diode, 1000 V, 1 A, Fast recovery, RS1M	2	ON Semiconductor	
RHV1, RHV2, RHV3	3216 Resistor, 13 k Ω	3	ANY	
ILED3	3216 Resistor, 0 Ω	4	ANY	
RVIN1, RVIN2	3216 Resistor, 330 k Ω	2	ANY	
RVIN3	3216 Resistor, 300 k Ω	1	ANY	
RVIN4	3216 Resistor, 9.1 k Ω	1	ANY	
RPD1-3	1608 Resistor, 100 k Ω	3	ANY	
RCS1, RCS2	3216 Resistor, 36 Ω	2	2 ANY	
RSA	2012 Resistor, 220 Ω	1	ANY	
RS1, RS2, RS3	3216 Resistor, 100 Ω	3	ANY	
ROUTL	2012 Resistor, 100 Ω	1	ANY	
RGATE1	1608 Resistor, 100 Ω	1	ANY	
RGATE2,3	1608 Resistor, 0 Ω	2	ANY	
CIN1	Axial Flim Capacitor, 68 nF/400 V	nF/400 V 1 ANY		
CVDD	3216 Capacitor, 50 V 2.2 μF	1	ANY	
CBLD1	3216 Capacitor, 51 pF	1	ANY	
CVIN	3216 Capacitor, 100 pF	1	ANY	
CDIM	1608 Capacitor 47 nF	1	ANY	
CSA	2012 Capacitor 22 nF	1 ANY		
CFB	2012 Capacitor 1 μF	1	ANY	
LED Configuration	LED Luxeon 3030 2D 6 V 240 mA	42	Luxeon	

PERFORMANCE

Test Data – Analog Dimming Mode

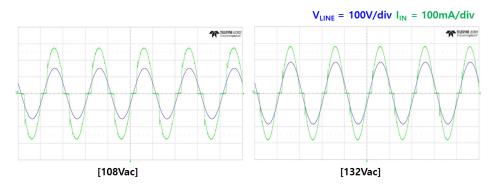


Figure 3. Normal Operation for Low Line ADIM

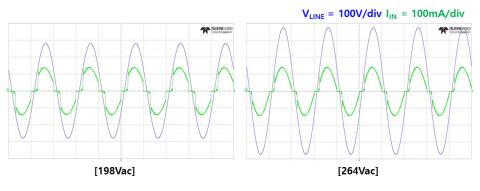


Figure 4. Normal Operation for High Line ADIM

Table 4. POWER FACTOR AND THD OVER INPUT VOLTAGE	

20 W Low Line EVB			20 W High Line EVB				
Input Voltage [Vac]	Input Power [W]	PF	THD [%]	Input Voltage [Vac]	Input Power [W]	PF	THD [%]
108	19.6	0.977	21.5	198	18.4	0.973	21.4
120	21.7	0.982	18.5	220	20.4	0.979	18.0
132	23.9	0.984	17.5	264	24.4	0.982	15.6

NOTE: See LED configuration design guidance in the section 5.4 if PF and THD need to be further improved.

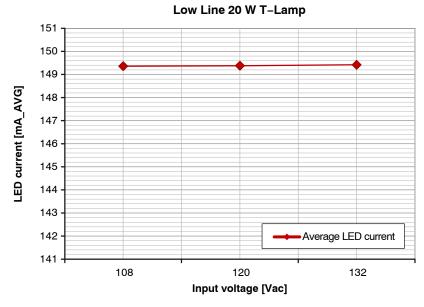
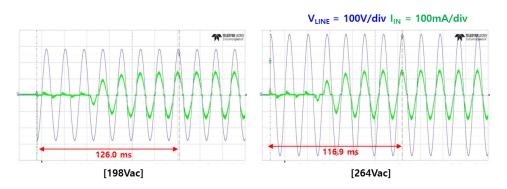
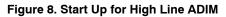


Figure 5. Line Regulation Performance for Low Line




Figure 6. Line Regulation Performance for High Line

Start Up Performance

Figure 7. Start Up for Low Line ADIM

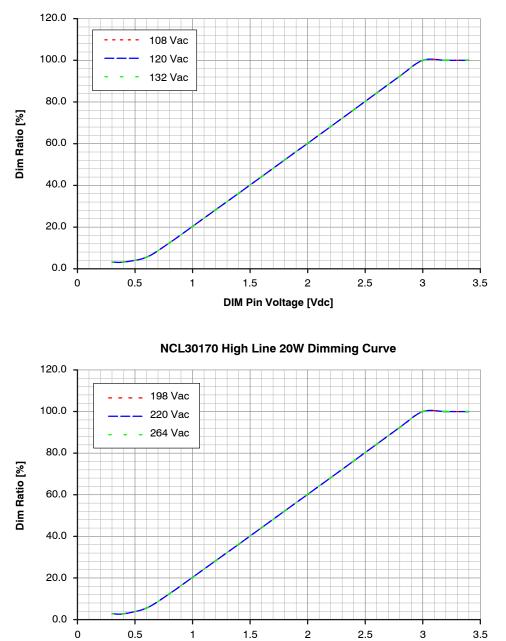


Table 5. START UP TIME

20 W Low Line EVB		20 W High Line EVB		
Input Voltage [Vac]	Start Up Time [ms]	Input Voltage [Vac]	Start Up Time [ms]	
108	114.2	198	126.0	
132	114.2	264	116.9	

Dimming Performance

NCL30170 Low Line 20 W Dimming Curve

Figure 9. Dimming Curve for Analog Dimming

DIM Pin Voltage [Vdc]

1

Current Balancing at Analog Dimming

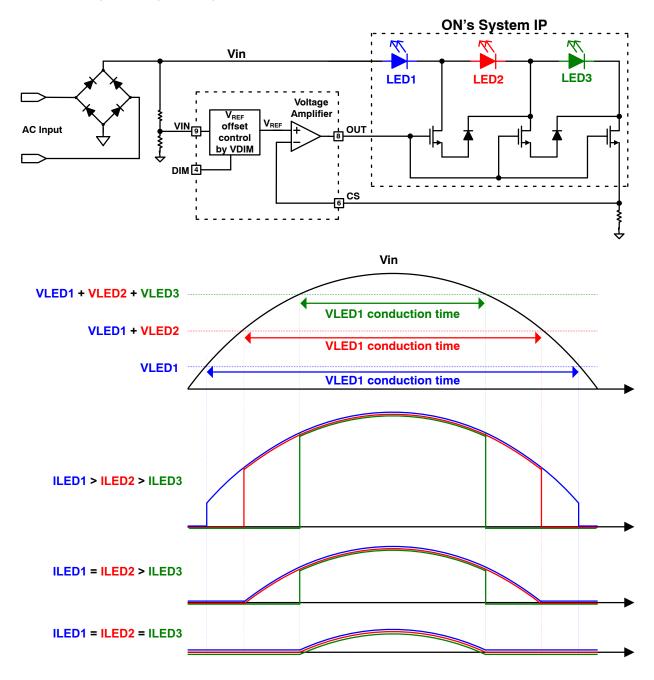


Figure 10. Uniform LED Channel Current Driving in Low VDIM Range

In the low V_{DIM} range, CC regulation reference, V_{REF} drops by a negative offset in the V_{REF} equation of " $V_{VIN} - V_{OFFSET}$ ". Therefore, the currents in each LED loads become closer so that the currents of each LED channels are finally equal thanks to NCL30170 V_{REF} generation method as shown in Figure 10.

In the high V_{DIM} range, the duration of LED current conduction in each channel is determined by adjusting the

number of LEDs. Increasing the number of first channel LEDs and reducing the number of second and third channel LEDs can reduce the current unbalance. However, it degrades PF and THD.

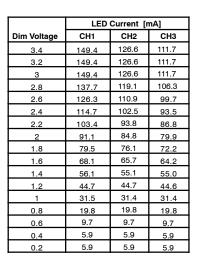

The tradeoff of PF, THD, efficiency and current balance in each LED channel is described as below.

Table 6. LED CHANNEL DESIGN GUIDE

	PF/THD	Efficiency	Channel Current Balance	BOM Cost
Increasing the number of LED channels	Better (If 1st channel V _f is reduced by more number of channels)	Better	Worse	Worse (by more CC regulation FETs)
Increasing the number of series LEDs (total channel V _f)	Little worse (If 1 st channel V _f is slightly increased by more series LEDs)	Better	Worse	Worse (by more LEDs)
Increasing the number of 1st channel LEDs (1 st channel V _f)	Worse	Better	Better	Same

The number of LED channels would be less than 5 under 100 W design. At higher power design up to 200 W, the number of LED channels needs to be increased to reduce the thermal stress in CC regulation FETs.

Figure 11 shows the current per channel of an application using 23 LEDs for channel 1, 14 LEDs for channel 2 and 5 LED numbers for channel 3.

LED Current [mA]

CH2

63.3

63.3

63.3

59.3

54.8

50.6

46.7

42.6

38.4

34.0

29.1

22.7

16.8

10.7

5.1

2.7

27

CH1

77.7

77.7

77.7

71.8

65.6

60.3

54.6

48.3

42.0

35.9

29.7

22.9

17.2

10.7

5.1

2.7

27

Dim Voltage

3.4

3.2

3

2.8

2.6

2.4

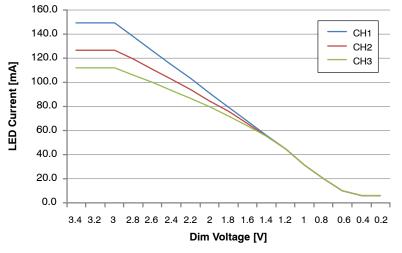
2.2

2

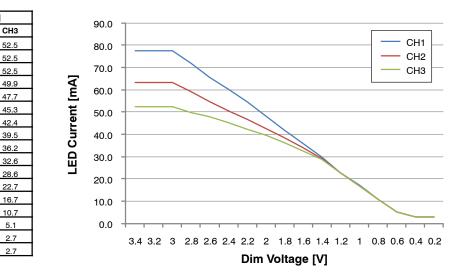
1.6

1.4

1.2

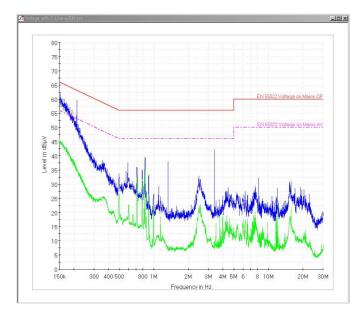

1

0.8

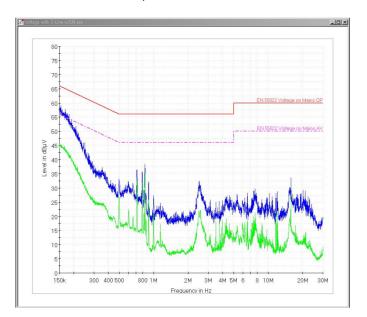

0.6

0.4

02



a) Low Line Performance for Channel Current at 120 Vac



b) Low Line Performance for Channel Current at 220 Vac

Figure 11. Current Balancing at Analog Dimming

a) EMI for Low Line

b) EMI for High Line

Figure 12. EMI Test Result

Surge Test

Test Condition:

DM: Differential Mode test applies surge between Line and Neutral Combination wave: 3strikes

Table 7. TEST RESULT FOR COMBINATION WAVE

Test EVB	Test Result	Surge Immunity Component
20 W Low Line	±2 kV passed	MOV 10D221K (10pi)
20 W High Line	±2 kV passed	MOV 10D391K (10pi)

LAYOUT GUIDANCE

PCB in T-lamp is designed in the form of a long bar. In order to stabilize the CC regulation, PG and SG are separated not to inject the powering noise into the IC control ground as shown in the below figure. Detail layout guidance for controller parts is described in the datasheet.

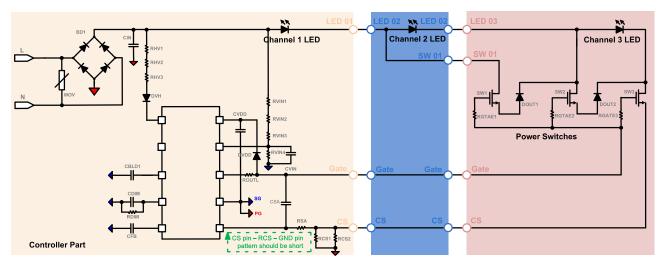


Figure 13. PCB Layout Guidance

Figure 13 is an example of three channels T–lamp design with three separate PCBs. First PCB contains controller part and first channel LEDs and second PCB contains only second channel LEDs. The last PCB is composed of CC regulation switches and third channel LEDs.

CS – RCS – GND distance should be as short as possible. The source of the last channel MOSFET is connected to the CS pin by jumper wires between PCBs which would induce the oscillation in the CC loop. When the CC oscillation happens, the gate resistor (R_{GATE}) of each channel MOSFET relieves the oscillation. When increasing R_{GATE} , THD should be monitored together not to seriously distort the input current by large R_{GATE} .

Figure 14 shows the PCB layout example based on the schematic in Figure 13.

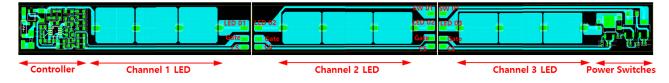


Figure 14. PCB Layout Example

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product o circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "rupical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative