## ON

ON Semiconductor ${ }^{\text {® }}$

## Simulating Power Supplies with SPICE

## Agenda

Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
Conclusion

## Agenda

Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
$\square$ The current-mode model at work

- Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion


## Why Simulate Switch Mode Power Supplies?

$\square$ Simulation helps feeling how the product behaves before breadboard
$\square$ Experiment What If? at any level. Power libraries do not blow!
$\square$ Easily shows impact of parameter variations: ESR, Load etc.
$\square$ Draw Bode plots without using costly equipments
$\square$ Avoid trials and errors: compensate the loop on the PC first!
$\square$ Use SPICE to assess current amplitudes, voltage stresses etc.
$\square$ Go to the lab. and check if the assumptions were valid.

## SPICE does NOT replace the breadboard!



## Why Average Simulations?

$\square$ An average model is made of equations that are continuous in time
$\square$ The switching component has disappeared, leading to:

* a simpler ac analysis of the power supply
* the study of the stability margins in various conditions
* the assessment of the ESRs contributions in the loop stability
* a flashing simulation time!



## Why Switching Simulations?

$\square$ An switching model is like breadboarding on the PC
The switching component is back in place, leading to:

* the analysis of current and voltage stresses
$\star$ the study of leakage and stray elements impacts
$\%$ the analysis of the input current signature - EMI
* a longer simulation time...



## Agenda

$\square$ Why simulating power supplies?
Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work

- Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion


## Average Modeling, the SSA

$\square$ State-Space Averaging (SSA)
$\square$ Introduced by Slobodan Ćuk in the 80'
$\square$ Long and painful process
$\square$ Fails to predict sub-harmonic oscillations


## Average Modeling, the PWM Switch

The PWM Switch
$\square$ Introduced by Vatché Vorpérian in the mid-80'
$\square$ Easy to derive and fully invariant
$\square$ No auto-toggling mode models
$\square$ Can predict sub-harmonic oscillations in CCM
$\square$ DCM model in current-mode was never published!


## The PWM Switch Concept

$\square$ Identify the guilty network: the transistor and the diode

* Average their voltage and current waveforms: large-signal model
* Linearize the equations around a dc point: small-signal model



## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
$\square$ The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## The PWM Switch Concept

$\square$ The transistor is a highly non-linear device:

* Replace the transistor with its small-signal model
* Solve a system of linear equations


Replace $Q_{1}$ by its small-signal model

## The PWM Switch Concept

$\square$ The PWM switch model works in all two switch converters:

* Rotate the model to match the switch and diode connections
* Solve a system of linear equations



## The PWM Switch Concept

$\square$ The keyword with average modeling: waveforms averaging


$\left\langle I_{a}(t)\right\rangle_{T_{\mathrm{sw}}}=I_{a}=\frac{1}{T_{\mathrm{sw}}} \int_{0}^{T_{\mathrm{sw}}} I_{a}(t) d t=d\left\langle I_{c}(t)\right\rangle_{T_{\mathrm{sw}}}=d I_{c}$

$\left\langle V_{c p}(t)\right\rangle_{T_{s w}}=V_{c p}=\frac{1}{T_{s w}} \int_{0}^{T_{s w}} V_{c p}(t) d t=d\left\langle V_{a p}(t)\right\rangle_{T_{s w}}=d V_{a p}$

## The PWM Switch Concept

$\square$ The obtained set of equations is that of a transformer
$\rightarrow$ A CCM two-switch DC-DC can be modeled like a 1:D transformer!

$\xrightarrow[\sim]{\longrightarrow}$ Large-signal (non-linear) model

## The PWM Switch Concept

$\square$ SPICE only deals with linear equations
$\square$ It first computes a bias point then it linearizes the network


Always verify the dc operating point!
$\square$ No equations, result appears in a second!
$\square$ Make sure the bias point is correct...

## The PWM Switch Concept

We have a set of non-linear equations: can't derive transfer functions!
We need a small-signal model: linearize the equations by hand

* two options: perturbation or partial derivatives...


## Pertubation

$$
\begin{array}{ll}
I_{a}=d I_{c} & V_{c p}=d V_{a p} \\
I_{a}=I_{a 0}+\hat{i}_{a} & V_{c p}=V_{c p}+\hat{v}_{c p} \\
I_{c}=I_{c 0}+\hat{i}_{c} & d=d_{0}+\hat{d} \\
d=d_{0}+\hat{d} & \quad \text { same } \\
I_{a 0}+\hat{i}_{a}=\left(d_{0}+\hat{d}\right)\left(I_{c 0}+\hat{i}_{c}\right)
\end{array}
$$

## Partial derivatives

$$
\left.\begin{array}{|ll}
\hline I_{a 0}=d_{0} I_{c 0} & V_{c p 0}=d_{0} V_{a p 0} \\
\hline \hat{i}_{a}=d_{0} \hat{i}_{c}+\hat{d} I_{c 0} & \hat{V}_{c p}=d_{0} \hat{v}_{a p}+\hat{d} V_{a p 0}
\end{array}\right\} \begin{aligned}
& \text { ac and dc } \\
& \text { equations }
\end{aligned}
$$

$$
\begin{aligned}
& I_{a}=d I_{c} \\
& V_{c p}=d V_{a p} \\
& \hat{i}_{a}=\frac{\partial I_{a}}{\partial I_{c}} \hat{i}_{c}+\frac{\partial I_{a}}{\partial d} \hat{d} \\
& \hat{i}_{a}=d_{0} \hat{i}_{c}+\hat{d} I_{c 0} \\
& \begin{array}{c}
\hat{v}_{c p}=\frac{\partial V_{c p}}{\partial V_{a p}} \hat{v}_{a p}+\frac{\partial V_{c p}}{\partial d} \hat{d} \\
\downarrow
\end{array} \\
& \hat{v}_{c p}=d_{0} \hat{v}_{a p}+\hat{d} V_{a p 0} \\
& \text { ac equations } \\
& \text { No dc point }
\end{aligned}
$$

## The PWM Switch Concept

$\square$ Put the small-signal sources in the large-signal model

* You obtain the small-signal model of the CCM PWM switch


You can now analytically find the dc bias and the ac response!

## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## The PWM Switch in DCM

$\square$ The original model could not be auto-toggling
$\square$ A new DCM-CCM model has been derived


## The PWM Switch in DCM

By clamping the $d_{2}$ equation, the circuit toggles between the modes


$$
\begin{gathered}
\text { Clamp } d_{2} \text { : } \\
d_{2} \text { CCM }=1-d_{1} \\
d_{2} \text { DCM }=1-d_{1}-d_{3} \\
\{ \\
d_{2}<1-d_{1} \\
\text { model is in DCM! }
\end{gathered}
$$

$$
d_{2}=\frac{2 I_{c} L-V_{a c} d_{1}{ }^{2} T_{s w}}{V_{a c} d_{1} T_{s w}}=\frac{2 L F_{s w}}{d_{1}} \frac{I_{c}}{V_{a c}}-d_{1}^{-1}<\text { Model input }
$$

## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## The PWM Switch in DCM

$\square$ In voltage-mode, the duty-cycle is built with a ramp generator $\square$ The transition occurs when the error voltage crosses the ramp



$$
\left.\begin{array}{l}
V_{\text {err }}(t)=V_{\text {peak }} \frac{t_{\text {on }}(t)}{T_{\text {sw }}}=V_{\text {peak }} d(t) \\
d(t)=\frac{V_{\text {err }}(t)}{V_{\text {peak }}}
\end{array}\right\} \frac{d}{d}\left(\frac{d(t)}{V_{\text {err }}(t)}\right)=\frac{1}{V_{\text {peak }}}=K_{P W M}
$$

## The Voltage-Mode Model at Work

- Let us compensate a buck converter operated in CCM and DCM

1. Run an open-loop Bode plot at full load, lowest input
2. Identify the excess/deficiency of gain at the selected cross over
3. Place a double zero at $f_{0}$, a pole at the ESR zero and a pole at $F_{\text {sw }} / 2$


## The Voltage-Mode Model at Work

The Bode plot reveals a gain loss of -15 dB at 7 kHz
The compensator provides a +15 dB gain increase plus phase boost



The final loop gain shows a comfortable phase margin
The transient response at both input levels shows a stable signal

## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
Current-mode modeling
$\square$ The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## Current-Mode Operation

In voltage-mode, the error signal directly controls the duty cycle
In current mode, the error voltage sets the inductor peak current
$\square$ To derive a model, observe the current signals and average them!


CCM


## Current-Mode Operation

Do the same for DCM signals
$\square$ Match the previous structure to build a CCM/DCM model


## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## The Current-Mode Model at Work

$\square$ To study a converter, we can write down the equations
$\square$ Or use a SPICE simulation to get the Bode plot in a second $\square$ Take the example of a current-mode flyback converter

$$
\begin{aligned}
& |H(f)|=20 \log _{10}\left[G_{0} \frac{\sqrt{1+\left(\frac{f}{f_{z 1}}\right)^{2}} \sqrt{1+\left(\frac{f}{f_{z_{2}}}\right)^{2}} \sqrt{1+\left(\frac{f}{f_{z 3}}\right)^{2}}}{\sqrt{1+\left(\frac{f}{f_{p_{1}}}\right)^{2}}} \frac{1}{\sqrt{\left(1-\left(\frac{f}{f_{n}}\right)^{2}\right)^{2}+\left(\frac{f}{f_{n} Q_{p}}\right)^{2}}}\right] \\
& \arg H(f)=\tan ^{-1}\left(\frac{f}{f_{z_{1}}}\right)-\tan ^{-1}\left(\frac{f}{f_{z_{2}}}\right)+\tan ^{-1}\left(\frac{f}{f_{z_{3}}}\right)-\tan ^{-1}\left(\frac{f}{f_{p_{1}}}\right)-\tan ^{-1}\left(\frac{f}{f_{n} Q_{p}} \frac{1}{1-\left(\frac{f}{f_{n}}\right)^{2}}\right)
\end{aligned}
$$

## Stabilizing a CCM Flyback Converter

$\square$ Capture a SPICE schematic with an averaged model


Look for the bias points values: $V_{\text {out }}=19 \mathrm{~V}$, ok
$\square \mathrm{V}_{\text {setpoint }}<1 \mathrm{~V}$, enough margin on current sense

## Stabilizing a CCM Flyback Converter

Capture a SPICE schematic with an averaged model


```
parameters
Vout=19
lbridge=250u
Rlower=2.5/lbridge
Rupper=(Vout-2.5)/Ibridge
Lp=350u
Se=20k
fc=1k
pm=60 from
Gfc=-22
Bode
pfc=-71
G=10^(-Gfc/20)
boost=pm-(pfc)-90
pi=3.14159
K=tan((boost/2+45)*pi/180)
Fzero=fc/k
Fpole=k*fc
Rpullup=20k
RLED=CTR*Rpullup/G
Czero=1/(2*pi*Fzero*Rupper)
Cpole=1/(2*pi*Fpole*Rpullup)
CTR=1.5
Pole=6k
```


## Stabilizing a CCM Flyback Converter

- Capture a SPICE schematic with an averaged model



## Stabilizing a CCM Flyback Converter

The easiest way to damp the poles:
> Calculate the equivalent quality coefficient at $F_{\text {sw }} / 2$
> Calculate the external ramp to make $Q$ less than 1

$$
\begin{aligned}
& Q=\frac{1}{\pi\left(D^{\prime} \frac{S_{e}}{S_{n}}+\frac{1}{2}-D\right)}=\frac{1}{3.14 \times(0.5-0.46)}=8 \\
& S_{e}=\frac{S_{n}}{D^{\prime}}\left(\frac{1}{\pi}-0.5+D\right)=\frac{V_{i n} R_{i}}{L_{p} D^{\prime}}\left(\frac{1}{\pi}-0.5+D\right)=\frac{90 \times 0.25}{320 u \times(1-0.46)}\left(\frac{1}{3.14}-0.5+0.46\right)=36 \mathrm{kV} / \mathrm{s}
\end{aligned}
$$



$$
\begin{aligned}
& M_{r}=\frac{S_{e}}{S_{n}}=\frac{36 k}{70 k}=51 \% \\
& S_{\text {ramp }}=\frac{2.3}{15 u}=153 \mathrm{kV} / \mathrm{s} \\
& R_{\text {current }}=\frac{M_{r} S_{n} R_{r a m p}}{S_{r a m p}}=\frac{0.51 \times 70 \mathrm{k} \times 18 \mathrm{k}}{153 \mathrm{k}}=4.1 \mathrm{k} \Omega
\end{aligned}
$$

## Stabilizing a CCM Flyback Converter

$\square$ Boost the gain by +22 dB , boost the phase at $f_{c}$


## Stabilizing a CCM Flyback Converter

Test the response at both input levels, 90 and 265 Vrms

- Sweep ESR values and check margins again



## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
$\square$ The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion

## Power Factor Correction

$\square$ The bulk capacitor connects to a low-impedance source

- At the bulk capacitor refueling, a narrow peak current flows
- This peak conveys a large harmonic content




## Power Factor Correction

$\square$ A pre-converter is installed as a front-end section
$\square$ The pre-converter draws a sinusoidal current
$\square$ The energy is stored and released in/by the bulk capacitor


## Power Factor Correction

- One of the most popular techinique uses Borderline mode
- The MC33262 operates in peak current mode control


The NCP1606 also operates in constant-on time

## Power Factor Correction

The core is always reset from cycle to the other

the average inductor current is half the inductor peak current value

## Power Factor Correction

- A 150 W BCM PFC average example with the MC33262



## Power Factor Correction

$\square$ Average models can also work in transient conditions


## Power Factor Correction

U Use the model to boost the phase at the cross over point


## Power Factor Correction

$\square$ The zero improves the overshoot but degrades the THD...



## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
$\square$ The current-mode model at work

- Power factor correction
$\square$ Switching models
$\square$ EMI filtering
$\square$ Conclusion


## Switching Models, the Breadboard on PC

$\square$ Turn your PC into a virtual breadboard


## Switching Models, the Breadboard on PC

$\square$ Wire your device as you would do in the lab.


## Simulations (Really) Work!!

$\square$ Assess the average, rms currents in your circuit
$\square$ Check if enough margins exist on your semiconductors

simulated

measured


## Simulations (Really) Work!!

$\square$ With accurate models, the simulation results are excellent
$\square$ You can then vary the parasitic terms and see their impact



simulated
measured


## Agenda

$\square$ Why simulating power supplies?
$\square$ Average modeling techniques
$\square$ The PWM switch concept, CCM
$\square$ The PWM switch concept, DCM
$\square$ The voltage-mode model at work
$\square$ Current-mode modeling
The current-mode model at work
$\square$ Power factor correction
$\square$ Switching models

## $\square$ EMI filtering

$\square$ Conclusion

## EMI Filtering on a DC-DC

$\square$ DC-DC are highly EMI polluting systems
$\square$ A filter has to be installed to avoid noise in the source


## EMI Filtering on a DC-DC

- Use SPICE to extract the current signature
- Run Fourier analysis to look at the spectrum



## EMI Filtering on a DC-DC

- ALC configuration offers the best efficiency
- As any $L C$ network, it is subject to resonances


$$
\begin{aligned}
& L=100 \mu H \\
& C=\frac{1}{4 \pi^{2} f_{0}^{2} L}=5.2 \mu F \underset{\substack{\uparrow \\
7.7 \mathrm{kHz}}}{ } \xrightarrow[\begin{array}{c}
\text { Check } \\
\text { impedance } \\
\text { peaking }
\end{array}]{ }\left\|Z_{\text {oufLITER }}\right\|_{\max }=\frac{Z_{0}^{2}}{R_{1}} \sqrt{1+\left(\frac{R_{1}}{Z_{0}}\right)^{2}}
\end{aligned}
$$

## EMI Filtering on a DC-DC

The incremental input resistance of a DC-DC in negative

- A LC filter loaded by a negative resistance can oscillate!




## EMI Filtering on a DC-DC

$\square$ If the resonance is too peaky, problems can arise


## EMI Filtering on a DC-DC

$\square$ A resistor is damping the LC filter by creating losses
$\square$ A dc-block capacitor is installed to limit dissipation


## EMI Filtering on a DC-DC

The right resistor prevents the overlaps between curves


## EMI Filtering on a DC-DC

- A final check shows a noise amplitude under control



## A Book on Power Supply Design

$\square$ To learn more about power supplies and simulations...


Learn DC-DC converters theory
$\square$ Understand average modeling
$\square$ Feedback and loop control
$\square$ Design examples of DC-DC and AC-DC
$\square$ Power Factor Correction
Chapters on flyback and forward converters
$\square$ Supplied CDROM with working examples


## Conclusion

$\square$ SPICE can be seen as a design companion
$\square$ It shields us from going through complex equations
$\square$ Simulation time is short and PC helps to run tests
$\square$ Use SPICE before going to the bench: NO trial and error!
O Once the simulation is stable, build the prototype
$\square$ Simulations and laboratory debug: the success recipe!

## For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

