To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
SGL50N60RUFD
600 V, 50 A Short Circuit Rated IGBT

General Description
Fairchild’s RUFD series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUFD series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature.

Features
- 50 A, 600 V, T_C = 100°C
- Low Saturation Voltage: V_CE(sat) = 2.2 V @ I_C = 50 A
- Typical Fall Time: 261 ns at T_J = 125°C
- High Speed Switching
- High Input Impedance
- Short Circuit Rating

Applications
Motor Control, UPS, General Inverter.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_CES</td>
<td>Collector-Emitter Voltage</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_GES</td>
<td>Gate-Emitter Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current @ T_C = 25°C</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Collector Current @ T_C = 100°C</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>I_CPM</td>
<td>Pulsed Collector Current</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>I_F</td>
<td>Diode Continuous Forward Current @ T_C = 25°C</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Diode Continuous Forward Current @ T_C = 100°C</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>I_FPM</td>
<td>Diode Maximum Forward Current</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>T_Sc</td>
<td>Short Circuit Withstand Time @ T_C = 100°C</td>
<td>10</td>
<td>us</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation @ T_C = 25°C</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Maximum Power Dissipation @ T_C = 100°C</td>
<td>100</td>
<td>W</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_M</td>
<td>Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temp. for Soldering Purposes, 1/8” from Case for 5 Seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_JUC(IGBT)</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>--</td>
<td>0.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_JUC(DIO)D</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>--</td>
<td>1.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_JUA</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>--</td>
<td>25</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics of the IGBT $T_C = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{V_{CES}}$</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>$V_{GE} = 0 V, I_C = 250 \mu A$</td>
<td>600</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta B_{V_{CES}}/\Delta T_J$</td>
<td>Temperature Coefficient of Breakdown Voltage</td>
<td>$V_{GE} = 0 V, I_C = 1 mA$</td>
<td>--</td>
<td>0.6</td>
<td>--</td>
<td>V/$^\circ C$</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Cut-Off Current</td>
<td>$V_{GE} = V_{CES}, V_{CE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>I_{GES}</td>
<td>G-E Leakage Current</td>
<td>$V_{GE} = V_{GES}, V_{CE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>± 100</td>
<td>nA</td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE(th)}$</td>
<td>G-E Threshold Voltage</td>
<td>$I_C = 50 mA, V_{GE} = V_{GE}$</td>
<td>5.0</td>
<td>6.0</td>
<td>8.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector to Emitter Saturation Voltage</td>
<td>$I_C = 50 A, V_{GE} = 15 V$</td>
<td>--</td>
<td>2.2</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CES}</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>± 100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{C}</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CES}</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0 V$</td>
<td>--</td>
<td>--</td>
<td>± 100</td>
<td>nA</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{i_{ds}}$</td>
<td>Input Capacitance</td>
<td>$V_{CE}=30 \text{ V}, V_{GE}=0 \text{ V}, f=1 \text{ MHz}$</td>
<td>--</td>
<td>3311</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>$C_{o_{es}}$</td>
<td>Output Capacitance</td>
<td>$V_{CE}=30 \text{ V}, V_{GE}=0 \text{ V}, f=1 \text{ MHz}$</td>
<td>--</td>
<td>399</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>$C_{r_{es}}$</td>
<td>Reverse Transfer Capacitance</td>
<td>$V_{CE}=30 \text{ V}, V_{GE}=0 \text{ V}, f=1 \text{ MHz}$</td>
<td>--</td>
<td>139</td>
<td>--</td>
<td>pF</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{on}</td>
<td>Turn-On Delay Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>26</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>89</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>t_{off}</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>66</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>118</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>1.68</td>
<td>--</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>1.03</td>
<td>--</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{s}</td>
<td>Total Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>2.71</td>
<td>3.8</td>
<td>mJ</td>
</tr>
<tr>
<td>t_{on}</td>
<td>Turn-On Delay Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>28</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>91</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>t_{off}</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>68</td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>261</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>1.7</td>
<td>--</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{s}</td>
<td>Total Switching Loss</td>
<td>$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>4.01</td>
<td>5.62</td>
<td>mJ</td>
</tr>
<tr>
<td>T_{sc}</td>
<td>Short Circuit Withstand Time</td>
<td>$V_{CC} = 300 \text{ V}, V_{GE} = 15 \text{ V}$</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>us</td>
</tr>
<tr>
<td>Q_g</td>
<td>Total Gate Charge</td>
<td>$V_{CE} = 300 \text{ V}, I_C = 50 \text{ A}$</td>
<td>--</td>
<td>145</td>
<td>210</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{ge}</td>
<td>Gate-Emitter Charge</td>
<td>$V_{CE} = 300 \text{ V}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>25</td>
<td>35</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gc}</td>
<td>Gate-Collector Charge</td>
<td>$V_{CE} = 300 \text{ V}, V_{GE} = 15 \text{ V}$</td>
<td>--</td>
<td>70</td>
<td>100</td>
<td>nC</td>
</tr>
<tr>
<td>L_e</td>
<td>Internal Emitter Inductance</td>
<td>Measured 5mm from PKG</td>
<td>--</td>
<td>18</td>
<td>--</td>
<td>nH</td>
</tr>
</tbody>
</table>

Electrical Characteristics of DIODE $T_C = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FM}</td>
<td>Diode Forward Voltage</td>
<td>$I_F = 30 A$</td>
<td>$T_C = 25^\circ C$</td>
<td>--</td>
<td>1.9</td>
<td>2.8</td>
</tr>
<tr>
<td>t_{tr}</td>
<td>Diode Reverse Recovery Time</td>
<td>$I_F = 30 A$</td>
<td>$T_C = 25^\circ C$</td>
<td>--</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>I_{tr}</td>
<td>Diode Peak Reverse Recovery Current</td>
<td>$I_F = 30 A$, $di/dt=200 A/\mu s$</td>
<td>$T_C = 25^\circ C$</td>
<td>--</td>
<td>6</td>
<td>7.8</td>
</tr>
<tr>
<td>Q_{tr}</td>
<td>Diode Reverse Recovery Charge</td>
<td></td>
<td>$T_C = 25^\circ C$</td>
<td>--</td>
<td>200</td>
<td>360</td>
</tr>
</tbody>
</table>

©1999 Fairchild Semiconductor Corporation
SGL50N60RUFD Rev. C1 www.fairchildsemi.com
Fig 1. Typical Output Characteristics

Fig 2. Typical Saturation Voltage Characteristics

Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level

Fig 4. Load Current vs. Frequency

Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. V_{GE}
Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs. Gate Resistance

Fig 9. Turn-Off Characteristics vs. Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

Fig 11. Turn-On Characteristics vs. Collector Current

Fig 12. Turn-Off Characteristics vs. Collector Current
SGL50N60RUFD — 600 V, 50 A Short Circuit Rated IGBT

Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

Fig 17. Transient Thermal Impedance of IGBT
Fig 18. Forward Characteristics

- **Forward Voltage Drop, \(V_{FM} \) [V]**
 - \(T_C = 25\,^\circ C \)
 - \(T_C = 100\,^\circ C \)

- **Forward Current, \(I_F \) [A]**
 - \(V_R = 200\,V \)
 - \(I_F = 30\,A \)
 - \(T_C = 25\,^\circ C \)
 - \(T_C = 100\,^\circ C \)

Fig 19. Reverse Recovery Current

- **Reverse Recovery Current, \(I_{rr} \) [A]**
 - \(V_R = 200\,V \)
 - \(I_F = 30\,A \)
 - \(T_C = 25\,^\circ C \)
 - \(T_C = 100\,^\circ C \)

Fig 20. Stored Charge

- **Stored Recovery Charge, \(Q_{rr} \) [nC]**
 - \(V_R = 200\,V \)
 - \(I_F = 30\,A \)
 - \(T_C = 25\,^\circ C \)
 - \(T_C = 100\,^\circ C \)

Fig 21. Reverse Recovery Time

- **Reverse Recovery Time, \(t_{rr} \) [ns]**
 - \(V_R = 200\,V \)
 - \(I_F = 30\,A \)
 - \(T_C = 25\,^\circ C \)
 - \(T_C = 100\,^\circ C \)
Figure 22. TO-264 3L - 3LD; TO264; MOLDED; JEDEC VARIATION AA

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO264-003
TRAD MARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
+ Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FastCore™
FETBench™
FPS™
FRFET®
Global Power ResourceSM
Green FPS™
GreenBridge™
Gmax™
GTO™
IntelliMAX™
ISOLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MicroCOUPLE™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver®
OptiFET™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
SystemX®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiC™
TriFault Detect™
TRUECURRENT™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. i66

©1999 Fairchild Semiconductor Corporation
SGL50N60RUDF Rev. C1
8 www.fairchildsemi.com