onsemi

Secure Bootloader Guide

M-20892-004
January 2025

©SCILLC, 2025
Previous Edition © 2023

OoNsSemii.

onsemi

Secure Bootloader Guide

Table of Contents

Page

Secure Bootloader GUIAC.................ooo i 1
Table Of CONENLS. e 2

Lo IntrodUCtion. ... 12
Ll SUMMATY. .o 12
1.2 Document CONVENTIONS.ttt e 12
1.3 Further Reading 13
2 OVRIVIBW. ..o 15
2.1 Common Features........ ... 15
2.2 RSL15 Secure Bootloader Usage Options...................... 18
2.2.1 Functionality AcCess OPtiOnsS...............cooiiii e 18
2.2.2 ConfiUIatioN. 18

2.3 Memory Partitioning OVerview. ... 18

3. PSA Compliance Background............... 21
3.1 Overview of PSA Complianee.... ... 21
4. Basic Bootloader ... 23
4.1 General USage.o 23
5.8ecure BOOtloader. ... 26
5.1 Booting a Secure APpliCation.o 26
5.2 Updating a Secure Application ... 26
5.3 Updating the Secure Bootloader Itself 28
5.4 Support for Immutable Portions in the Secure Bootloader.. 29

6. SECUTE STOTAZE. e e 30
6.1 Secure StOrage ATCa.............ooo 30
6.2 Content to be Stored in SeCUre STOTaE. 30

www.onsemi.com

2

onsemi

Secure Bootloader Guide

6.3 AP 30
6.4 Basic OPCration. 30
T ATESTALIONL 32
7.1 Overview and Background........................ 32
7.2 Attestation Interface ... 32
7.2.1 KeY INJECTION ... 32
T2.2 G TOKEIL ..o 33
7.2.3 Get TOKeN S1Z€ ... oo 33
7.2.4 Key Injection Process................... 33
7.3 Attestation TOKEIL ... 35
7.3.1 Format of TOKeN ... 35
7.3.2 EAT Additional Details........... ... 36
7.3.3 Attestation Token Request 36

8. Secure Bootloader Sample Reference ... 38
8.l SUMMIATY. ... 38
8.2 Detailed DeSCriPtion. 43
8.3 Secure Bootloader Sample Reference Typedef Documentation.................................co . 43
8.3, 1 BL FC St 43
8.3.2 BL FSFileld o 43
8.3.3 BL BootAPPId t. ..o o 44
8.4 Secure Bootloader Sample Reference Variable Documentation...o. 44
8.4.1 DRBGCONEXL 44
8.4.2 BL ImageWoOrKSpace. 44
8.5 Secure Bootloader Sample Reference Enumeration Type Documentation.. 44
8.5.1 BL_AMesStStatus T 44
8.5, 2 B AtestK ey Ty P . 45

www.onsemi.com

3

onsemi

Secure Bootloader Guide

8.5.3 BL_AttestationChallengeSize t......................... 45
8. 5.4 B AtteSt T agS b 46
8.5.5 B Update Ty Pe t o 46
8.5.6 BL ConfigStatus t.................. 47
8.5.7 BL_CryptoStatus t... ... 47
8.5.8 BL CryptoR S AK Y Ty Pe f. 48
8.5.9 BL EAT S atUS t .. 48
8.5.10 BL B AT T a@S f.. i e 49
8.5.11 BL_FCSSIAtUS L. .. oo e 50
8.5.12 BL FCSAlgorithm t. 50
8.5.13 BL _EncryptionStatus To 50
8.5.14 BL IMage T yPe L. . i 51
8.5.15 BL ImageStatus t. 51
8.5.16 BL LoaderCommand t................. 52
8.5.17 BL _LoaderStatus t.o 53
8.5.18 BL LoaderCertType t.. 54
8.5.19 BL LoaderStatusType ... 54
8.5.20 BL_CBORSHAtUS f. ... oo 55
8.5.21 bISecureBootStatus t. 55
8.5.22 BL FStoreStatus t.... ... 56
8.5.23 BL FSFlagS . 56
8.5.24 BL FSReservedFilename ...l 57
8.5.25 BL UARTSHAMUS t. ..o 57
8.6 Secure Bootloader Sample Reference Macro Definition Documentation... 58
8.6.1 VT _OFFSET _STACK _POINTER ...t 58
8.6.2 VT _OFFSET _RESET VECTORo, 58

www.onsemi.com

4

8.6.3

8.6.4

8.6.5

8.6.6

8.6.7

8.6.8

8.6.9

8.6.10

8.6.11

8.6.12

8.6.13

8.6.14

8.6.15

8.6.16

8.6.17

8.6.18

8.6.19

8.6.20

8.6.21

8.6.22

8.6.23

8.6.24

8.6.25

8.6.26

8.6.27

8.6.28

onsemi

Secure Bootloader Guide

VT OFFSET VERSION INFOL........o oot e 58
VT _OFFSET IMAGE SIZE............ciii oot 59
VT _OFFSET CERT SIZE..........oiiii oo oo 59
BL_CONFIGURATION BASE ...\ oo, 59
BL_CONFIGURATION WORDS........... oo oo oo, 59
BL_CRYPTO BOOT SEED LENGTH.............oo oo oo 59
BL_CRYPTO SHA256 DIGEST LENGTH................coioi oo 60
BL_ENCRYPT KEY SIZE BITS........ooo oot 60
BL _ENCRYPT KEY SIZE BYTES.........o oo, 60
BL_ENCRYPT BLOCK SIZE BITS..........coo\ oot 60
BL_ENCRYPT BLOCK SIZE BYTES. ...t 61
FLASH BOND INFO SIZE............oci oo oot 61
BL_CODE_SECTOR _SIZE..........cooi it 61
BL_DATA SECTOR SIZE............i ittt 61
BL _FLASH RESERVED SIZE..............cciiiiii oo 61
BL _SECURE _STORAGE BASE........... oo oo, 62
BL SECURE STORAGE SIZE............ooi oot 62
BL_SECURE_STORAGE TOP...........oooi oot e, 62
BL BOOTLOADER BASE..........ooi oot oo 62
BL BOOTLOADER SIZE. ...\ oo 63
BL _FLASH CODE BASE..... ...t 63
BL_FLASH DATA BASE. ... oo e, 63
BL FLASH CODE TOP..........oi oo oo 63
BL FLASH DATA TOP.........oi oot 63
BL _FLASH CODE SIZE............ooi oot oo, 64
BL_FLASH DATA SIZE. i\ 64

www.onsemi.com

5

8.6.29

8.6.30

8.6.31

8.6.32

8.6.33

8.6.34

8.6.35

8.6.36

8.6.37

8.6.38

8.6.39

8.6.40

8.6.41

8.6.42

8.6.43

8.6.44

8.6.45

8.6.46

8.6.47

8.6.48

8.6.49

8.6.50

8.6.51

8.6.52

8.6.53

8.6.54

onsemi

Secure Bootloader Guide

BL_APPLICATION BASE........0oo oot 64
BL_AVAILABLE SIZE.c.i it e 64
BL_APPLICATION SIZE. ...\ oo oo, 65
BL DOWNLOAD BASE........ooi oo 65
BL DOWNLOAD SIZE....... ..ot 65
BL_OPT FEATURE ENABLED.............c oottt e, 65
BL_OPT_FEATURE DISABLED.............c.cii oot 65
BL_OPT FEATURE BOOTLOADERcoi it oo, 66
BL_OPT FEATURE BOOTLOADERc.oii oo 66
BL_OPT FEATURE _SECURE BOOTLOADERccoii it 66
BL_OPT FEATURE SECURE BOOTLOADERcciii oo 66
BL_OPT FEATURE SECURE STORAGE................co oot oo 67
BL_OPT FEATURE SECURE STORAGE...............c.oii oot 67
BL_OPT FEATURE ATTESTATION............oii ittt 67
BL_OPT ATTEST KEY AES.......cii i 67
BL OPT ATTEST KEY RSA ..o 67
BL_OPT ATTEST KEY ECC..........coo oot oo 68
BL_OPT SECURE FILE SYSTEM RESET............cocoi ittt 68
DEBUG CATCH. GPIO........oooo oo, 68
BL _SEC IGNORE KEY........oo oo oo e 68
BL_SEC DEFER KEY........ooi it 68
BL_FS MAX _FILE SIZE. ... oo oo 69
UART CLK .o 69
SENSOR CLK ... oo e 69
USER_CLK ... e, 69
VCC BUCK _ENABLE. ... 69

www.onsemi.com

6

onsemi

Secure Bootloader Guide

8.6.55 BL_TICKER TIME MS. . . 70
8.6.56 BL_DEBUGot e 70
8.6.57 BL_TRACE ... e 70
8.6.58 BL_WARNING ... 70
8.6.59 BL_ERRORo o 71
8.6.60 BL_UART _RX TIMEOUT _MS. ... 71
8.6.601 BL_WATCHDOG_FEED_ME_MS. 71
8.6.62 BL_UART TX TIMEOUT _MS 71
8.6.63 BL_ UART MAX RX LENGTH. ... 71
8.6.64 BL_UART MAX TX _LENGTH. ... 72
8.6.65 BL_ BAUD RATE e 72
8.6.66 BL_ UART DELAY _CYCLES. 72
8.6.67 UPDATE _GPIO... ... 72
B.0.08 MIN. ... o 72
BL0.69 M A X 73
8.6.70 BITS 2B Y TES .. 73
8.6.71 BITSZHALFWORDS. 73
8.6.72 BL_VERSION_ENCODE.. 73
8.6.73 BL_VERSION_DECODE. 74
8.6.74 BL_BOOT _VERSION.o 74
8.6.75 BL WATCHDOG MAX HOLD_ OFF SECONDS.t 74
8.7 Secure Bootloader Sample Reference Function Documentation.. 74
8.7.1 BL_AttestInitialize........... ... 74
8.7.2 BL AeStACCEPIK Y. .. . 75
8.7.3 BL_AttestFindPublicKeyHash. ... 75
8.7.4 BL AttestInjectKey. 76

www.onsemi.com

7

onsemi

Secure Bootloader Guide

8.7.5 BL_AttestGetToKen ... 77
8.7.6 BL AttestGetToKeNnSIZel 77
8.7.7 BL_CheckRemapAddresSSPace. 78
8.7.8 BL CheckGetApplicationSize. ... 78
8.7.9 BL_CheckRelocated ApplicationSIZe.o 79
8.7.10 BL_CheckIflmageUpdateAvailable............. 79
8.7.11 BL_ChecklIfSecurelmageUpdateAvailable.............. 80
8.7.12 BL_CheckFindSecondarylmageLocation............................. 80
8.7.13 BL _ConfiglsValid ... 81
8.7.14 BL ConfigCertificate Address........... ... 81
8.7.15 BL Cryptolnitialize................oo i 82
8.7.16 BL CryptoGetBootSeed 82
8.7.17 BL _CryptoHash 83
8.7.18 BL _CryptoRSAKeYSIZe 83
8.7.19 BL CryptoRSASerialiseKey... 84
8.7.20 BL CryptoRSADeserialiseKey...... ... 84
8.7.21 BL_CryptoRSAGenerateKey................... 85
8.7.22 BL CryptoRSASignHash 86
8.7.23 BL _CryptoRSASIGNMESSAZE.o 86
8.7.24 BL CryptoRSAVerifyMesSage.o 87
8.7.25 BL _EATPOPUIAtE. ... 88
8.7.26 BL_EATSIZCooi oo 88
8.7.27 BL_FCSINItIAlIZE. ... e 89
8.7.28 BL FCSQUeTY. ... oo 90
8.7.29 BL_FCSAuthenticationRequired.................................. 90
8.7.30 BL FC S SeleCt .. oo 90
www.onsemi.com

8

8.7.31

8.7.32

8.7.33

8.7.34

8.7.35

8.7.36

8.7.37

8.7.38

8.7.39

8.7.40

8.7.41

8.7.42

8.7.43

8.7.44

8.7.45

8.7.46

8.7.47

8.7.48

8.7.49

8.7.50

8.7.51

8.7.52

8.7.53

8.7.54

8.7.55

8.7.56

onsemi

Secure Bootloader Guide

BL FCSCRECK ... 91
BL FCSCalculate ... 91
BL FCSAccumulateCRC 92
BL EncryptInitialize................. 92
BL_EncryptResetEncryption..................... 93
BL _EncryptResetDecryption........ 93
BL EncryptEncryptBulfer ... 94
BL EncryptDecryptBuffer ... 94
BL _EncryptComplete ... 95
BL FlashInitialize 95
BL FlashSaveSector 96
BL Imagelnitialize 96
BL ImageAddress...... ... 97
BL ImageAddressRange ... 97
BL ImageCopyMemoryRange. ... 98
BL ImageSaveBlock 98
BL ImageVerify 99
BL ImageAuthenticate 99
BL ImageAuthenticateCurrent ... 100
BL ImagelsValid. ... 100
BL ImageSaveAddress..... ..o 101
BL ImageStart Application. ... 101
BL LoaderPerformFirmwareLoad ... 102
BL LoaderCertificate Address....... ...t 102
BL CBORINItAlZE. 102
BL CBORRESEL ... 103

www.onsemi.com

9

8.7.57

8.7.58

8.7.59

8.7.60

8.7.61

8.7.62

8.7.63

8.7.64

8.7.65

8.7.66

8.7.67

8.7.68

8.7.69

8.7.70

8.7.71

8.7.72

8.7.73

8.7.74

8.7.75

8.7.76

8.7.77

8.7.78

8.7.79

8.7.80

8.7.81

8.7.82

onsemi

Secure Bootloader Guide

BL CBORUSEA ... 103
BL CBOR U Nt . 104
BL CBORAAAINtC@OT 104
BL CBORAAABUTTRL ... 105
BL CBORAAAMAD. ... 105
BL CBORAAAMAPPAIL ... oo 106
BL CBORSIZEINtC@OT 106
BL CBORSIzZeBUTer 107
BL CBORSIZEMAD. ... e 107
BL CBORSIZEMaAPPAIL . .o 108
BL RecoveryInitialize.oo 108
BL _SecureBootInitialize. 109
BL SecureBootAuthenticate.......................... 109
BL FStoreInitialize. 110
BL _FStoreMakeFilesyStem.. 110
BL FStoreFileSize. 110
BL FStoreFileEXIStS. ... 111
BL _FStoreFileCanRead. 111
BL _FStoreFileCanWrite. 112
BL _FStoreFileCanDelete............ ... 112
BL FStOreWIite ... 113
B FStOreR A ... o 113
BL FStoreDeleteo 114
BL FStoreFileListo 115
BL TargetInitialize........... ... 115
B TargetReset ... 115

www.onsemi.com

10

onsemi

Secure Bootloader Guide

8.7.83 BL TickerInitialize..................... 116
8.7.84 BL_TickerTimeoooooiiiiii e 116
8.7.85 SysTick Handler. 116
8.7.86 BL Tracelnitialize............. ... 116
8.7.87 BL_UARTINItIAliZeoooiii i 117
8.7.88 BL UARTRECCIVEASYIC. 117
8.7.89 BL UARTReceiveComplete. 118
8.7.90 BL_UARTRECEIVE.ooiiiii e 118
8.7.91 BL UARTSENAASYNC. 119
8.7.92 BL UARTSendComplete. 120
8.7.93 BL UARTSENA ... oottt 120
8.7.94 BL UpdateInitialize..................... o 121
8.7.95 BL UpdateRequested.......... ... 121
8.7.96 BL UpdateProcessPendinglmages. 122
8.7.97 BL ImageSelectAndStartApplication..................oooiii i 122
8.7.98 BL_VersionsGetInformation........................ooo 122
8.7.99 BL VersionsGetHello........... ... 123
8.7.100 BL WatchdogInitialize 123
8.7.101 BL_ WatchdogSetHoldTime. 123
8.7.102 WATCHDOG _IRQHANAICT.ooooiiiii i 124

www.onsemi.com

11

onsemi

CHAPTER 1

Introduction

1.1 SUMMARY

IMPORTANT: onsemi plans to lead in replacing the terms “white list", "master" and "slave” as noted in this
product release. We have a plan to work with other companies to identify an industry wide solution that can
eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once new
terminologies are agreed upon, we will update all documentation live on the website and in all future released
documents.

This group of topics describes the functionality and usage of the secure bootloader with RSL15, along with
Platform Security Architecture (PSA) compliance, secure storage, and attestation. RSL15 includes a secure bootloader
sample application which can be used by developers to acquire familiarity with the secure bootloader.

1.2 DOCUMENT CONVENTIONS

The following typographical conventions are used in this documentation:

monospace font
Assembly code, macros, functions, registers, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets and bold>
Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

Bold
GUI items (text that can be seen on a screen).

Note, Important, Caution, Warning

Information requiring special notice is presented in several attention-grabbing formats depending on the
consequences of ignoring the information:

NOTE: Significant supplemental information, hints, or tips.

IMPORTANT: Information that is more significant than a Note; intended to help you avoid frustration.

CAUTION: Information that can prevent you from damaging equipment or software.

WARNING: Information that can prevent harm to humans.

www.onsemi.com

12

onsemi

Secure Bootloader Guide

Registers:

Registers are shown in monospace font using their full descriptors, depending on which core the register is
accessing. The full description takes the form <PREFIX><GROUP> <REGISTER>.

All registers are accessible from the Arm Cortex-M33 processor.
A register prefix of D_ is used in the following circumstances:

¢ In cases where there are multiple instances of a block of registers, the summary of the registers at the beginning
of the Register section have slightly different names from the detailed register sections below that table. For
example, the DMA* CFGO registers are referred to as DMA CFGO when we are defining bit-fields and settings.

The firmware provides access to these registers in two ways:

¢ In the flat header files (e.g.: sk5_hw flat cid*.h), each register is individually accessible by directly using the
naming provided in this manual. This is helpful for assembly and low-level C programming.

* In the normal header files (e.g.: sk5_hw_cid*.h), each register group forms a structure, with the registers being
defined as members within that structure. The structures defined by these header files provide access to registers
under the naming conventions PREFIX GROUP->REGISTER (for the structure) and GROUP->REGISTER (for the
register).

* For more information, see the Hardware Definitions chapter of the Montana Firmware Reference.

Default settings for registers and bit fields are marked with an asterisk (¥).
Any undefined bits must be written to 0, if they are written at all.

Numbers

In general, numbers are presented in decimal notation. In cases where hexadecimal or binary notation is more
convenient, these numbers are identified by the prefixes "0x" and "0Ob" respectively. For example, the decimal number
123456 can also be represented as 0x1E240 or 0b11110001001000000.

Sample Rates

All sample rates specified are the final decimated sample rates, unless stated otherwise.
1.3 FURTHER READING

The following documents are installed with the RSL15 system, in the default location C:/Users/<your_user_
name>/AppData/Local/Arm/Packs/ONSemiconductor/RSL15/<version_number>/documentation. These manuals are
available only in PDF format:

* Arm TrustZone CryptoCell-312 Software Developers Manual
¢ multiple CEVA manuals in the /ceva folder
For even more information, consult these publicly-available documents:

* Armv8M Architecture Reference Manual (PDF download available from
https://developer.arm.com/documentation/ddi0553/latest).

* Arm Cortex-M33 Processor Technical Reference Manual, revision r1p0, from
https://developer.arm.com/documentation/100230/0100

* Bluetooth Core Specification version 5.2, available from
https://www .bluetooth.com/specifications/adopted-specifications

www.onsemi.com

13

https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/100230/0100
https://www.bluetooth.com/specifications/adopted-specifications

onsemi

Secure Bootloader Guide

* TrustZone documentation available from the Arm website at
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m

¢ Other ArmCortex-M33 publications, available from the Arm website at
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33

For information about the Evaluation and Development Board Manual and its schematics, go to the RSL15 web
page and navigate to the EVB page.

www.onsemi.com

14

https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://www.onsemi.com/rsl15
https://www.onsemi.com/rsl15

onsemi

CHAPTER 2

Overview

The secure bootloader for RSL15 is a reference application, called secure bootloader, which can be used to
develop an end product bootloader that operates in a secure manner. The application has the following four modes
providing increasing levels of secure operation, available as needed depending on the end product's use cases:

1. Basic bootloader (non-secure)

2. Secure bootloader (maintains authenticated Root of Trust set up by the ROM)
3. Secure bootloader with secure storage

4. Secure bootloader with secure storage and device attestation

More detailed information about these four modes is found in Chapter 1 "RSL15 Secure Bootloader Usage
Options" on page 1

2.1 ComMON FEATURES

The four modes of operation build on each other, with available features in one also being available for the next
level. For example, all secure bootloader functionality is still available when using the secure storage mode of
operation. This is indicated in the figure "Bootloader Options" (Figure 1).

www.onsemi.com

15

../../../../../Content/secure_bootloader/sboot_BootUsageOpt_LP.htm
../../../../../Content/secure_bootloader/sboot_BootUsageOpt_LP.htm

onsemi

Secure Bootloader Guide

Basic Bootloader

« Serial loading of images to download area
« Copy of images from download to app area
« Basic verification of app prior to execution

« Start application if valid

« App and bootloader version reporting

Secure Bootloader

= Authenticated bootloader ensures continuity of Root of Trust
« Provides authenticated serial connection

« Authenticated image loading to download area
» Authentication of image prior to execution

Secure Storage

« Provides secure area of flash protected via unigue key
» Allows storage of “files™ which can only be accessed via APl
« Allows storage of secret assets such as attestation keys

Bootloader Options

Device Attestation

« Supports the injection and creation of device attestation
keys

= Supports various types of keys; initial implementation uses
RSA keys at 1024, 2048 and 3072 bit sizes

« Allows retrieval of public key

« Allows retrieval of device attestation token in a signed and
authenticated format

Figure 1. Bootloader Options

The bootloader divides the main flash memory into two areas: the app download area and the app execution area.
This division provides a starting point for users who want to use the bootloader for firmware update purposes.

www.onsemi.com

16

onsemi

Secure Bootloader Guide

The bootloader application is the first application entry point after reset. It is located at the base address of the main
flash (0x00100000).

Upon start, the bootloader checks the app download area for a valid boot image. This application can be a regular
application, or a new bootloader. If there is one, the bootloader copies/overwrites this image into the app execution
area, invalidates the data in the download area, and boots this new image. If no valid boot image is found in the
download area, the bootloader verifies and boots from the app execution area. If no valid image is found in either area,
the bootloader defaults to a mode where the UART can be used to provide updates or perform attestation queries. It
prints an error message in the RTT Viewer. Sequence diagrams in Chapter 4 "Basic Bootloader" on page 23, Chapter 5
"Secure Bootloader" on page 26, and Chapter 7 "Attestation" on page 32 show detailed step-by-step procedures.

A valid boot image consists of a binary file generated from a .%ex file. The .Aex file is created by building the
project as usual, but with certain requirements. A valid boot image for an application must have its .zext section starting
at the base address of the app execution area, instead of at the base address of the main flash. Therefore, making a
typical sample application—for example, blinky—compatible with the bootloader requires modifications to the linker
script (sections.ld) and startup code (startup.S). An example version of blinky is provided along with the secure
bootloader, in a utilities subfolder. The sections.ld file must include the correct start locations and sizes for the sections
of flash, and the startup.S must include the appropriate update to the IVT (ISR Vector Table) for the image descriptor.

IMPORTANT: For proper operation, the defined app excution area and the application’s IVT must be
aligned to a 512-byte boundary.

Updating the firmware image, as well as basic attestation operations, can be accomplished using the RSLUpdate
utility, packaged along with the RSLSec security tools. Examples of how to use RSLUpdate are included in the readme
file of the secure_bootloader sample application. More information about the secure operation and updating process is
described in Section 5 “Secure Bootloader” on page 26.

When GPIO14 is tied to ground, the device enters the bootloader state, expecting updates via the UART.

When GPIO14 it is not tied to ground, and an update is pending, the device tries to process the update and reset;
the bootloader tries to execute an application if one if available; and if no application is available, the device goes into
the bootloader state.

www.onsemi.com

17

onsemi

Secure Bootloader Guide

2.2 RSL15 SECURE BOOTLOADER USAGE OPTIONS

2.2.1 Functionality Access Options

The RSL15 secure bootloader sample application includes the following options for accessing increasing levels of
functionality depending on the end product needs:

1.
2.

Basic bootloader functionality
Secure bootloader with support for providing authenticated and validated loading of applications in addition to
the bootloader itself

¢ Authenticated transport layer

¢ Authenticated images verified on load

¢ Authenticated images verified again prior to overwriting an existing image

¢ Authenticated images booted by the bootloader
Secure storage

¢ A limited area of flash memory that is allocated as secure storage

¢ Enables the storage and retrieval of encrypted assets

* Simple filing system that also provides storage for general secure storage in addition to asset storage
Attestation

* Support for the injection or creation of attestation keys

¢ Attestation keys are stored in secure storage.

* A public key can be requested from application code using the bootloader interface.

* Support for an attestation token, which enumerates the hardware and firmware on the device

¢ Support for a standard attestation protocol that is robust against replay attacks

¢ Optional support for different types of attestation keys:

i. AES (not recommended due to lower level of security, and not available in the initial release)
ii. RSA (provides the smallest increase in bootloader image size, as RSA is already being included
in secure boot features)
iii. ECC (provides good balance between small keys, is robust against attack, requires the most
application code to support, and is not available in the initial release)

2.2.2 Configuration

The options are provided as preprocessor definitions, and are available in the API file b/ _options.h.

2.3 MEMORY PARTITIONING OVERVIEW

Depending on the feature set used by the bootloader, the amount of flash memory it occupies can change. This
allows a bootloader with a lower feature set to be used in cases where, for instance, the Root of Trust or secure storage
is not required. When a reduced feature set bootloader is used, the memory partitioning can be changed, allowing for
larger user applications to be loaded.

For illustrative purposes, the table "Build Configuration Memory Sizes" (Table 1) shows the expected sizes of each
optional build configuration, with expected allocations of memory for application and download areas depending on
build options. The precise values are subject to change depending on the actual optimization levels and feature sets you
select, but this provides some guideline figures to help you decide which configuration to use.

www.onsemi.com

18

onsemi

Secure Bootloader Guide

Table 1. Build Configuration Memory Sizes

Bootloader Secure Storage Application Download
Start Size Start Size Start Size Start Size
Address (KB) Address (KB) Address (KB) Address (KB)
Basic
Debug 0x100000 |24 0 0 0x106000 236 0x141000 236
Bootloader
Secure
0x100000 |52 0 0 0x10D000 224 0x145000 224
Bootloader
Secure Storage 0x100000 |64 0x15A400 11 0x110000 212 0x145000 212
Attestation 0x100000 108 0x15A400 11 0x11B000 192 0x14B000 192
Basi
Release | oo¢ 0x100000 |16 0 0 0x104000 | 240 0x140000 | 240
Bootloader
Secure
0x100000 |44 0 0 0x10B000 228 0x144000 228
Bootloader
Secure Storage 0x100000 |52 0x15A400 11 0x10D000 220 0x144000 220
Attestation 0x100000 |92 0x15A400 11 0x117000 200 0x149000 200

Derivation of these start addresses and sizes is available in bl_memory.h; this information is output to the RTT
Viewer when debugging the secure bootloader in the onsemi IDE with the RTT Viewer connected. This is also shown
in the figure "Memory Map Diagram" (Figure 2).

NOTE: There are variations for an RSL15 device with 284 KB of flash rather than 512 KB.

www.onsemi.com

19

0x00180000

0x00150000

0x00153000

0x0014B000

0x0011B0O00D

0x00100000

Figure 2. Memory Map Diagram

RSL15

512 KB Flash

Download
Space
Continued

onsemi

Secure Bootloader Guide

Download
Space
(192 KB)

Application
Code Space
{192 KB)

Bootloader
Code Space
{108 KB)

0x0015D000
Secure File
Storage 11 KB
0x0015A400
Resemned 4KB
0x00159400
Bond
Resemned 2KB
0x00158C00
ROM/ DEU
Reserved 3K
0x00158000

0x0015D000

0x00153000

0x00142000

0x0012E800

0x0011B000

0x00100000

RSL15
284 KB Flash

Download
Space
{78 KB)

Application
Code Space
(T8 KB)

Bootloader
Code Space
{108 KB}

www.onsemi.com

20

onsemi

CHAPTER 3

PSA Compliance Background

The RSL15 secure bootloader is a reference implementation that can be used with associated guidelines to achieve
a product that is compliant with Platform Security Architecture (PSA). The RSL15 secure bootloader sample
application can be adapted as needed and incorporated into an overall firmware solution. See
https://www.psacertified.org/ for the full background on the PSA certification requirements and components. An
overview and the specific implementation details for RSL15 are provided here.

3.1 OVERVIEW OF PSA COMPLIANCE

PSA is a concept originated by Arm and managed by third party labs and certification authorities, with the goal of
standardizing the security methods across the varying types of connected devices in the semiconductor industry. It
provides established best practices, as well as documentation and methods to determine whether a given device meets
the outlined standards.

PSA protects sensitive assets (keys, credentials and firmware) by separating them from the application firmware
and hardware. It defines a Secure Processing Environment (SPE) for this data, the code that manages it, and its trusted
hardware resources.

The figure "Updatable and Immutable Areas" (Figure 3) shows the updatable and the immutable (non-changable)
parts of an RSL15-based system that is intended for PSA compliance and follows the PSA Device Model guidelines.
This clearly shows the secure bootloader in relation to the other parts of the system. The secure bootloader forms part of
the chip scope, but is also part of the updateable components.

www.onsemi.com

21

https://www.psacertified.org/

onsemi

Secure Bootloader Guide

Updateable (Flash based)

Application Specific Software >

uswuollaug
Buissaosoly
2In29s-UoN

System Software (if required)

Updateable (Flash based)

Application
Root of Trust (RoT)

w

®

o

c

I

i

Updateable Platform iy g

Root of Trust (RoT) Secure Bootloader SPE Partition Management 8

> &

=]

«

g Immutable (Embedded in Hardware) m

0 2

5 5

Immutable Platform : 5

o Root of Trust (RoT) Boot ROM Isolation hardware 3

£ @

© =
Security Lifecycle Trusted Subsystems

Figure 3. Updatable and Immutable Areas

Similar to the PSA documentation and references available online, we use the following terms in this
documentation:

Entity
The device about which the attestation provides information

Manufacturer
The company that made the entity. This can be a chip vendor, a circuit board module vendor, or a
vendor of finished consumer products.

Relying Party

The server, service or company that makes use of the information in the Entity Attestation Token
(EAT) about the entity. (See Section 7.3 “Attestation Token” on page 35 for more information about
the EAT.)

www.onsemi.com

22

onsemi

CHAPTER 4

Basic Bootloader

The secure bootloader can be used as a non-secure bootloader if the security features are not needed. In this case,
the bootloader provides the following features:

¢ Booting of an application from flash
¢ Updating to store a new application in flash
¢ Updating the bootloader

4.1 GENERAL USAGE

The bootloader must be loaded onto the device. An application to be used with the bootloader must have its start
address in the location expected by the bootloader. See Section 2 “Overview” on page 15 for more information.

The figure "Standard Load and Update Sequence" (Figure 4) illustrates the process for updating the application
stored in flash.

www.onsemi.com

23

onsemi

Secure Bootloader Guide

Firmware Update Device Being Updated

Requester
|
Tie update pin to ground o
:
]
Res=et device ‘_i
"1 |Device enters bootloader
- mode on reset
Intiate HELLC and establish protocol -
>
HELLO response
including application name, version & block size
L
-
Request program load, provide load size -
al Repeat the block loading
4 !]]) process until all blocks
< Assuming request is valid, respond with NEXT are transmitted
Load next block of application .
Eal
h. -

Once all blocks have been loaded
werify the CRC on the full block
Res=pond with END, including success/fai status

A

Remove ground from update pin

Y

Reset device

A4

On reset, the bootloader verifies the
previously downloaded image and if
necessary, copies it to the application
space prior to executing it

Figure 4. Standard Load and Update Sequence

Each request has a frame consistency sequence on it (a simple CCITT CRC of the data in the request). A block
load request includes the length of the application being loaded, and the CRC32 for the whole application. Once a
number of blocks have been loaded, the CRC32 is checked to ensure that no frames have been lost or corrupted during
transmission. At any stage, if an error is detected (e.g., a timeout or a bad frame), the load process terminates with an
END message and an indicator of the reason for the failure.

www.onsemi.com

24

onsemi

Secure Bootloader Guide

The application used in the firmware update process must include bootloader.h and use SYS BOOT VERSION to set
the version number of the new application. The bootloader references this information. See the Device Firmware
Update (DFU) Guide for further information about this and other basic bootloader features. The standard bootloader
sample application is described there, but much of the information is also applicable to the basic bootloader (non-
secure) functionality of the secure bootloader operation.

www.onsemi.com

25

../../../../../Content/device_firmware_update_guide/dfu_LandingPage.htm
../../../../../Content/device_firmware_update_guide/dfu_LandingPage.htm

onsemi

CHAPTER 5

Secure Bootloader

The secure mode of the bootloader provides the following features:

¢ Booting of a secure application from flash

¢ Updating to store a new secure application in flash

¢ Updating the secure bootloader

¢ Support for PSA (Platform Security Architecture) level 1 compliance

5.1 BOOTING A SECURE APPLICATION

The secure bootloader provides firmware integrity and authenticity validation during a secure or trusted boot
process. The main interface consists of an initialization function and a function to authenticate a Root of Trust
certificate chain based on a given Root of Trust.

blSecureBootStatus_t BL SecureBootAuthenticate (
uint32 t opkeyl, uint32 t opkey2, uint32 t opcontent,
bool verifyImages, uint32 t relocation);

5.2 UPDATING A SECURE APPLICATION

When a secure application must be updated, the process is as follows:

¢ Request an update. The bootloader polls a flag to determine if an update is requested, so this must be set.

I BL UpdateType t BL UpdateIsAvailable(uint32 t address, uint32 t extent); I

* Provide a new secure application. The bootloader checks if there is a new image in the download area.

I BL UpdateType t BL UpdateIsAvailable (uint32 t address, uint32 t extent); I

¢ Update the image. The bootloader uses the function with this prototype to perform the update.

void BL UpdatelImage (BL UpdateType t request,
uint32 t srcAddress, uint32 t dstAddress, uint32 t dstLength);

The application must also be authenticated. There are options to share a Root of Trust between the secure
application and secure bootloader, such that a tradeoff can be made between boot time and the level of security needed.
Alternatively, they can use separate Roots of Trust for increased security, but with increased boot time. The sequence is
shown in the figure "Secure Authenticate/Load/Update Sequence" (Figure 5).

www.onsemi.com

26

onsemi

Secure Bootloader Guide

Firmware Update
Requester

Device

Being Updated

Tie update pin to ground

L.
Catl
Reset device -
Initiate HELLOr and establish secure protocol -
Eal

HELLO response
including application name, version & block size

»

Request authentication providing RoT cerfificate size

il

el
Eal

Aszsuming request is valid, respond with NEXT

%

Load the RoT certificate

Tl
Eal

Respond with EMD, including success/fail status

Request program load, providing load size

T
¥

]
]
]
i
|

"
i_' Assuming request is valid, respond with NEXT
i"l
i
i Load next block of application N
1l Eal

RN -
i
i
]
i
]
i
]
i_‘ Respond with EMD, including success/fail status
i"l
i
+ Remove ground from update pin -
T Ea
]
i Reset device o
i -
]]
]
i i
]
]
i
]
i
]
]
]
i
]
i i
]
]]
]]
]]
]]
i i
i i

Figure 5. Secure Authenticate/Load/Update Sequence

Device enters bootloader

mode on reset

Verify the CRC on the cerificate and
authenticate the cerfificate against the
appropriate RoT

Repeat the block loading
process until all blocks
are transmitted

Once all blecks have been loaded
verify the CRC on the full application

If this is valid authenticate the application
against the RoT cerificate chain

% 0n reset, the bootloader will verify the

previously downloaded image and if
necessary copy it to the application space
prior to execuling it

Az part of the verification process, the RoT
cerlificate chain will be authenticated on ever
boot

www.onsemi.com

27

onsemi

Secure Bootloader Guide

The update process for the simple bootloader is very similar to that for the secure bootloader, the main differences
being that the secure bootloader uses a different CCITT CRC algorithm on each frame and the connection must be pre-
authenticated using a valid key certificate.

5.3 UPDATING THE SECURE BOOTLOADER ITSELF

Updating the secure bootloader itself is much the same as updating a secure application. It uses the same function
but with a different image. Flags are used for differentiation between a basic bootloader and a secure bootloader to
determine the image size needed, since the secure bootloader uses more memory.

To prepare a secure bootloader, take the following steps:

¢ Ensure that you have, or make sure to create, all the necessary keys and key certificates. See the RSL15 Security
User's Guide for details on creating secure applications.

¢ Create a content certificate based on the key certificates.

¢ Sign the image using the created certificates.

The new bootloader must be fully validated prior to switching to it, so that a complete copy is held in memory.

IMPORTANT: When updating a bootloader via the secure bootloader download mechanisms, care must be
taken to ensure that the image being loaded is correct and that the update process is allowed to run to
completion.

The update process is in two parts:

1. Initially, the new application or bootloader is stored in the download area of flash memory.
2. When the system is reset, the secure bootloader verifies and, if necessary, authenticates the image in the
download area. If these checks pass, the image is copied to the secure bootloader area of flash memory.

This copying from the download area to the bootloader area by definition corrupts the bootloader at some
point before the full image has been copied. If the power is lost during this stage, the system cannot recover,
requiring a new bootloader to be loaded using the debug port.

Similarly, if the application or bootloader that has been loaded is faulty or is not a valid bootloader, this
renders the secure bootloader unable to function.

In the current design there is no way around this issue; however, there are several mitigation strategies that
can be employed to provide a more robust solution. These can include some combination of the following:

e Store a redundant copy of the bootloader, which can be reverted to in case of major system failure.

° This redundant copy can have limited verification and authentication capabilities if that meets
the customer needs.

e Partition the bootloader such that it has a mutable and immutable component. The immutable
component could be the part that handles the copying from the download area to the secure bootloader
area.

¢ Disable the ability to update the bootloader itself except under very specific and controlled
circumstances where the user cannot unintentionally render the device completely inoperable.

www.onsemi.com

28

onsemi

Secure Bootloader Guide

5.4 SUPPORT FOR IMMUTABLE PORTIONS IN THE SECURE BOOTLOADER

The concept of updateable and immutable portions of a secure processing environment is introduced in Section 3.1
“Overview of PSA Compliance” on page 21. RSL15 has the following support for the immutable portions of the secure
processing environment:

* A boot ROM that can handle a Secure Boot and Secure Debug process

¢ Hardware isolation of cryptographic functions and the storage of security-related assets

¢ Unique key storage and the concept of a hardware unique key

* A managed security life cycle as described in the RSL15 Security User's Guide

¢ Trusted subsystems providing a separation between the secure and non-secure environments, using TrustZone

www.onsemi.com

29

onsemi

CHAPTER 6

Secure Storage

Protected storage is required to hold the keys and any other context that must be maintained. Any secure code has
free access to the contents of the secure storage area.

6.1 SECURE STORAGE AREA

The bootloader's sections.ld file shows the size and start address of the secure storage area:

/* Reserve the remaining 11K from the first data sector for secure storage */
BL SECURE STORE (xrw) : ORIGIN = 0x0015A400, LENGTH = 11K

6.2 CONTENT TO BE STORED IN SECURE STORAGE

* RSA public/private key pair
e ECC public/private key pair
e AES key

6.3 API

The API for secure storage is defined in bl_simple_filer.h and bl_file_encryption.h. The former provides the basic
file system handler, and the latter provides the encryption layer. See the API reference or the files in the sample
implementation for details.

Some important functions are as follows.

From bl _simple_filer.h:

BL FStoreStatus t BL_FStoreWrite(BL_FSFileId_t id,
uint8 t *buffer, uintlé t size, uintlé t flags);

BL FStoreStatus t BL FStoreWrite (BL FSFileId t id,
uint8 t *buffer, uintlé t size, uintlé t flags);

BL FStoreStatus t BL FStoreDelete(BL FSFileld t id);

BL FStoreStatus t BL FStoreFileList(
uint8 t *buffer, uintl6 t *maxsize, bool showHidden);

From bl file encryption.h:

BL EncryptionStatus t BL EncryptBuffer (uint8 t *buffer, size t length);

BL EncryptionStatus t BL DecryptBuffer (uint8 t *buffer, size t length);

6.4 BAsIC OPERATION

The secure bootloader offers a simple file system, primarily for storing attestation keys, but it can also be used for
the general storage of small files.

The file system location is defined in 5/ memory.h and occupies a range of sectors in data flash. Due to the
limitations of the flash, the file system space is set to 11 KB.

www.onsemi.com

30

onsemi

Secure Bootloader Guide

The file system is organized in blocks that align with the underlying data sectors. Each data sector is 256 bytes in
length; therefore, 44 blocks are available for use.

NOTE: A single file can be stored in more than one block. A single block can only contain information
for a single file.

The first sector contains the inode table, which describes the blocks that are allocated to each file. There is a single
inode entry for each file held in the file system. Each inode is defined as 12 bytes; therefore, a maximum of 21 files are
supported by the file system.

Each inode/file contains the following information:

¢ The list of blocks allocated to the file. This is a 48-bit mask where a 1 indicates that the data block is used by
that file.

¢ The file ID, which is defined as a 16-bit value because space is limited. How this is derived from a textual
filename is left to the caller.

* A flags word, which contains a 16-bit value that indicates if the file is readable, writable, or can be deleted

» Size of the file in bytes. This is a 16-bit value because the maximum size of the store is defined as 11 KB. This
is large enough to handle any file that can be stored.

IMPORTANT: When using the bootloader in debug mode, the Hardware Unique Key (HUK) is used, and
appears differently when debugging compared with its appearance in typical usage. This means that when the
key checking is performed, the HUK appears to be invalid, causing all inodes and any prior data stored in the
secure storage area to be wiped.

www.onsemi.com

31

onsemi

CHAPTER 7

Attestation

Attestation, in this context, refers to providing information about the device to other parties using a very simple,
cryptographically secured token; this is part of PSA compliance. Attestation provides a device with the ability to sign an
array of bytes with a device private key and return the result to the caller. There are several use cases, ranging from
attestation of the device state to generating a key pair and proving that it has been generated inside a secure key store.

7.1 OVERVIEW AND BACKGROUND

To maintain the Root of Trust, the secure bootloader only lets you program the device if you prove that you are
allowed to do so. A challenge and response process matches certificates; if you do not have a matching certificate, it is
not possible for you to program the device.

Part of attestation is the Entity Attestation Token (EAT), which contains claims that are generated in the device
RoT. EAT token generation is expected to be performed many times, possibly for each transaction. It is relatively
inexpensive because the claims data is small and ECDSA signing is relatively fast. For further details about the EAT,
see Section 7.3 “Attestation Token” on page 35.

The token is sent to the device, and then goes to the relying party, which then relays it (without examining or
modifying it) to the attestation service for verification.

7.2 ATTESTATION INTERFACE

The PSA Attestation API is a standard interface provided by the PSA Root of Trust.

For attestation within the context of PSA, the key can be generated or injected into the system. For the RSL15
secure bootloader sample application, there is a function to inject a key. If the application is not given an injected key, it
creates and internal key.

The main relevant functions for the RSL15 attestation interface are as follows:

* Inject attestation key
¢ Get attestation token
¢ Get attestation token size

A summary and the prototypes of the attestation interface functions are provided below. See the relevant parts of
the full API and the bl attestation.h header file for further details on function parameters.

7.2.1 Key Injection

¢ The key injection interface allows for the injection of keys generated externally to the device.

¢ It also allows for keys to be generated on the device and then stored for later use.

¢ AES keys are derived from the HUK (Hardware Unique Key) using some form of initial value.

e Ifakey is provided, the private component key is stored and the public component is returned. If no key is
provided, a new key is generated, the private component is stored and the public component is returned. If a
symmetric (AES) key is requested, the key is stored and returned.

BL AttestStatus t BL AttestInjectKey(
const uint8 t *key, size t keySize, BL AttestKeyType t type,
uint8 t *publicKey, size t publicKeyMaxSize, size t *publicKeySize);

www.onsemi.com

32

onsemi

Secure Bootloader Guide

7.2.2 Get Token

To use the token, the attestation client issues some form of challenge and the device needs to respond. Part of the
challenge is a random value that needs to be in the token to confirm its validity. This function is used to request the
token from the device.

BL AttestStatus t BL AttestGetToken (
const uint8 t *challenge, BL AttestationChallengeSize t challengeSize,
uint8 t *token, uint32 t *tokenSize);

7.2.3 Get Token Size

BL AttestStatus t BL AttestGetTokenSize (
BL AttestationChallengeSize t challengeSize, uint32 t *tokenSize);

7.2.4 Key Injection Process

The figure "Attestation Key Injection Diagram" (Figure 6) illustrates the process of key injection.

www.onsemi.com

33

onsemi

Secure Bootloader Guide

Attestation Attestation Device
Client (RSL15)
Tie update pin to ground ,__i
Reset device o

Device enters bootloader

- mode on reset
Initiate HELLO and establish secure protocol

Y

HELLO response
including application name, version & block size

»

Request authentication providing RoT certificate size

el
¥ o

Assuming request is valid, respond with NEXT

i
X

Load the RoT cerlificate

|
]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
! .
h Ll
i
i
i
i Verify the CRC on the cerificate and
! authenficate the certificate against the
L Respond with END, including success/fai status appropriate RoT
)
i
i Request attestation key injection o
Eadl
i Providing key bits, key size and key type
i
]
i__, Assuming request is valid and key needs to be loaded A private key may be injected by the
& . - -
] Respond with NEXT Attestation Client. In this case, the key is
] 3 stored in secure storage and the public
' Load attestation key - key iz calculated
i Eal
i
' i
i
i If no private key is injected, a suitable private key is
] generated inside the device, stored in secure storage, Generate key pair
i and the public key is calculated
\. i
i
i
i_. Respond with NEXT and provide public key size & CRC
]
i
i
. Transmit the public key back to the attestation client
i"-.
i
i__, Respond with END, including success/fail status
=
i
i

Verify the CRC on the public key transmission and if
necessary, register the key with an authentication body,
or verify it against a previously stored key

Remove ground from update pin

Y

Reset device

Y

Figure 6. Attestation Key Injection Diagram

www.onsemi.com

34

onsemi

Secure Bootloader Guide

7.3 ATTESTATION TOKEN
7.3.1 Format of Token

The attestation token takes the format of what is becoming an industry standard: an entity attestation token (EAT).

For the purposes of this sample code, a variant of the Arm Platform Security Architecture attestation token has
been chosen to provide the basic structure. More information is available at: https://www.psacertified.org/blog/what-is-
an-entity-attestation-token/.

An EAT is a small blob of data that includes information items and is cryptographically signed. The signing
secures the token itself, so that the mechanism that is transmitting the token does not have to provide any security. This
allows IoT devices to securely introduce themselves to networks and to IoT platforms. The EAT is wrapped into a
compact binary object representation (CBOR)-type message.

Each information item in this token in known as a claim, as shown in the table "Items Included in Token" (Table
2). A claim is a data item, which is represented as a key-value pair.

Table 2. Items Included in Token

Size e
Item Description
(bytes)

Authentication 32/48/64 Input object of random bytes provided by the caller, intended to provide freshness to reports

Challenge

Instance ID 32 Hash of public key that represents the unique identifier of the instance and is encoded as a byte
string

Implementation ID 32 Represents the original implementation signer of the attestation key and identifies the contract
between the report and verification. A verification service uses this claim to locate the details of the
verification process. Consists of a value encoded as byte string.

Security Lifecycle 4 Positive ID corresponding to secure (0x3000) which represents the current lifecycle state of the
instance

ClientID 4 Partition ID which, for the secure bootloader, is a positive value indicating it is a secure caller of the
initial attestation API. The value is encoded as a signed integer.

Hardware Version 16 EAN-13, which can be used to reference the security level of the PSA-ROT via a certification
website, and is encoded as a text string

Boot Seed 32 Byte string for the random value created at system boot time that allows differentiation of reports
from different system sessions

Software Components:

ROM 32 SHA256 of ROM image

Bootloader 32 SHA256 of Bootloader

Application 32 SHA256 of Application

The size of the attestation token is governed by the fields outlined in the table "Items Included in Token" (Table 2),
and by how these values are encoded into a CBOR data stream. In addition, the EAT is wrapped into a signed format
which includes a hash of the CBOR data, as well as a signature based on the size and type of the attestation key.

www.onsemi.com

35

https://www.psacertified.org/blog/what-is-an-entity-attestation-token/
https://www.psacertified.org/blog/what-is-an-entity-attestation-token/

onsemi

Secure Bootloader Guide

The table "Example Token Sizes" (Table 3) provides some example token sizes for different challenge and key
sizes. All values are in bytes.

Table 3. Example Token Sizes

Key Size (1024 2048 3072

Challenge . . .

Size EAT |Hash [Sign [CBOR |Total |EAT |Hash |Sign |CBOR |Total |EAT |Hash |Sign |CBOR | Total
32 248 32 128 59 | 467 248 32 256 60 596 248 32 384 60 724
48 264 32 128 59 483 264 32 256 60 612 264 32 384 60 740
64 280 32 128 59 499 280 32 256 60 628 280 32 384 60 756

An example calculation can be found in the sample application source code in b/ eat.c.

NOTE: Some items in the EAT are provided as placeholder default values in the secure bootloader
sample application. They are intended to be replaced as needed in a final product implementation.

7.3.2 EAT Additional Details

EAT has the capabilities to provide the source of trust, using a cryptographically signed piece of data containing
claims that are generated in the device Root of Trust (RoT). The main use is for the relying party to verify the claims
made by the device, such as the following:

¢ The unique identity of the device

Installed firmware on the device and its integrity status

* Security assurance and certification status (such as a PSA Certified level)
e Manufacturer of the device hardware

Using this information, the relying party can make informed decisions, such as whether the device is legitimate and
should be trusted, or what services to enable based on the information it receives. This is shown in the figure "Relying
Party Decision Diagram" (Figure 7).

EAT
|::> Entity Attestation I::>
Token (EAT) Relying
Entity Party

¢ |

Relying Party Decision

Attestation Service

|

Attestation Result

Figure 7. Relying Party Decision Diagram

7.3.3 Attestation Token Request

The figure "Attestation Token Request" (Figure 8) shows the process of requesting an attestation token.

www.onsemi.com

36

onsemi

Secure Bootloader Guide

Attestation Attestation
Client Device (RSL15)
Tie update pin to ground ‘i
Reset device o i

Device enters bootioader

made on reset
Initiate HELLO and establish secure protocol

=
HELLO response
including application name, version & block size

Request authentication providing RoT cerificate size

i
r o

Assuming request is valid, respond with NEXT

-
i

Load the RoT certificate

>
Verify the CRC on the cerlificate and
authenticate the cerlificate against the
> Respond with END, including success/fail status appropriate RoT
)
Request attestation token prowiding challenge o
'

Calculate and format the attestation token

R d with NEXT and provide attestation token si
espona v and provide atiestation foken size Sign it with the private attestation key

Transmit the attestation token back to the client

Respond with EMD, including success/fai status

B N N S

il
Bl

Verify that the challenge embedded in the
| | attestation token matches the required challenge

]

el

Verify that the hash of the attestation token matches
LI the hash embedded in the CBOR object

Authenficate the attestation token signature against
L | the provided public key

Remowve ground from update pin

Y

Reset device

v

Figure 8. Attestation Token Request

www.onsemi.com

37

onsemi

CHAPTER 8

Secure Bootloader Sample Reference

Secure Bootloader Sample Reference.

8.1 SUMMARY

Typedefs

e BL FCS t: Define a FCS type.
e BL FSFileld t: Define a file identifier as a sixteen bit word.
e BL BootAppld t: Define the application ID as a six character string.

Variables

* DRBGContext : Define a CTR_DRBG context structure, used by the RNDContext.
e BL ImageWorkspace : Defines a common operation buffer for handling images.

Data Structures

¢ BL AppConfiguration t: Define a structure which can map onto the configuration area.

¢ BL ImageOperation t : Buffer used for loading data in chunks, allow 2 blocks.

¢ BL ImageSplitRange t : define an address range which can wrap-around a reserved block

¢ BL StatusResponse t: to maintain backwards compatibility, we use a two byte status for most messages.
¢ BL BootAppVersion t: Define the application version as id and version details.

¢ BL HelloResponse t: Define the contents of a Hello response.

Enumerations

e BL AttestStatus t : Define the basic attestation status types.

¢ BL AttestKeyType t: Define the types of attestation keys supported by the system.
¢ BL AttestationChallengeSize t : Define the supported attestation challenge sizes.

e BL AttestTags t: Define CBOR tag values for each of the attestation fields.

e BL UpdateType t: Define the possible update types.

e BL ConfigStatus t : Define the configuration status values.

e BL CryptoStatus t : Define the status values returned by the cryptography modules.
¢ BL CryptoRSAKeyType t: Define the supported key types, encoding the key size in bits.
* BL EATStatus t: Define the possible status codes.

e BL EATTags t: Define CBOR tag values for each of the EAT fields.

e BL FCSStatus t: Define the possible FCS status values.

e BL FCSAlgorithm t: Define the possible valid FCS calculators.

¢ BL EncryptionStatus t : Define the file encryption status values.

e BL ImageType t: Define the known image types.

e BL ImageStatus t : Define the image status values.

www.onsemi.com

38

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_operation__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___status_response__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___hello_response__t

onsemi

Secure Bootloader Guide

¢ BL LoaderCommand t: Enum specifying each of the valid commands the loader recognizes.

¢ BL LoaderStatus t: Define a set of supported loader status codes.

¢ BL LoaderCertType t: Enum specifying the types of certificate that can be loaded.

¢ BL LoaderStatusType t: Define a type for the status messages.

¢ BL CBORStatus t: Define the CBOR status values.

¢ blSecureBootStatus t : Define the status codes.

¢ BL FStoreStatus t : Define the status values possible from the secure filer module.

e BL FSFlags t: Define the flags associated with stored files.

¢ BL FSReservedFilename t: Define a set of reserved file names that should not be accessible directly from the
loader.

e BL UARTStatus t: Define a set of supported error codes.

Macros

e VT OFFSET STACK POINTER : Vector table offset for the stack pointer.

e VT OFFSET RESET VECTOR : Vector table offset for the reset vector.

e VT OFFSET VERSION INFO : Vector table offset for the version information pointer.

e VT OFFSET IMAGE SIZE : Vector table offset for the used image size pointer.

e VT OFFSET CERT SIZE : Vector table offset for the certificate size.

¢ BL CONFIGURATION BASE : Base address of the boot configuration in flash.

¢ BL CONFIGURATION WORDS : Define the size of the configuration area in words.

e BL CRYPTO BOOT SEED LENGTH : Define the length in bytes of the boot seed value, random number.
e BL CRYPTO SHA256 DIGEST LENGTH : Define the digest length in bytes for SHA256.

e BL ENCRYPT KEY SIZE BITS : Define the AES key size in bits when performing AES encryption.
e BL ENCRYPT KEY SIZE BYTES : Define the AES key size in bytes when performing AES encryption.
¢ BL ENCRYPT BLOCK SIZE BITS : Define the block size in bits when performing AES encryption.
e BL ENCRYPT BLOCK SIZE BYTES : Define the block size in bytes when performing AES encryption.
¢ FLASH BOND INFO SIZE

e BL CODE SECTOR SIZE : The image block size when loading data.

e BL DATA SECTOR SIZE : The image block size when loading data.

e BL FLASH RESERVED SIZE : The size of the area reserved for use by the ROM and stack.

¢ BL SECURE STORAGE BASE : Define the base address of the secure storage area.

¢ BL SECURE STORAGE SIZE : Define a size for the secure storage area.

¢ BL SECURE STORAGE TOP : Define the top of the secure storage area.

e BL BOOTLOADER BASE : The base address of the bootloader flash.

¢ BL BOOTLOADER SIZE : Define the size of the bootloader in kB.

e BL FLASH CODE BASE : The base of the code flash.

e BL FLASH DATA BASE : The base of the data flash, offset by the reserved areas.

e BL FLASH CODE TOP : Define the top of code flash in 512K device.

e BL FLASH DATA TOP : Define the top of data flash in 512K device.

e BL FLASH CODE SIZE : Code size is derived from the base and top addresses.

e BL FLASH DATA SIZE : Data size is derived from the base and top addresses.

e BL APPLICATION BASE : Define the base address of the application.

e BL AVAILABLE SIZE : Define the total available flash for application and download.

e BL APPLICATION SIZE : Define the maximum size of an application.

e BL DOWNLOAD BASE : Define the base address of the download area.

¢ BL DOWNLOAD SIZE : Define the maximum size of the download area.

e BL OPT FEATURE ENABLED : Indicator that a given feature should be enabled.

www.onsemi.com

39

onsemi

Secure Bootloader Guide

¢ BL OPT FEATURE DISABLED : Indicator that a given features should be disabled.

¢ BL OPT FEATURE BOOTLOADER : Marker indicating that the bootloader feature is enabled.

¢ BL OPT FEATURE BOOTLOADER : Marker indicating that the bootloader feature is enabled.

¢ BL OPT FEATURE SECURE BOOTLOADER : Marker indicating that the bootloader supports authenticated
update of images.

e BL OPT FEATURE SECURE BOOTLOADER : Marker indicating that the bootloader supports authenticated
update of images.

e BL OPT FEATURE SECURE STORAGE : Marker indicating if the secure storage feature is provided.

e BL OPT FEATURE SECURE STORAGE : Marker indicating if the secure storage feature is provided.

e BL OPT FEATURE ATTESTATION : Marker indicating if the bootloader supports attestation protocols.

e BL OPT ATTEST KEY AES : Marker indicating that the attestation feature supports AES keys.

e BL OPT ATTEST KEY RSA : Marker indicating that the attestation feature supports RSA keys.

e BL OPT ATTEST KEY ECC : Marker indicating that the attestation feature supports ECC keys.

e BL OPT SECURE FILE SYSTEM RESET : Marker indicating that the attestation feature supports AES keys.

« DEBUG CATCH GPIO

e BL SEC IGNORE KEY : Define a marker value that indicates a key may be ignored.

e BL SEC DEFER KEY : Define a marker value that indicates a key should be deferred.

e BL FS MAX FILE SIZE : Define the maximum supported file size.

e UART CLK : Set UART peripheral clock.

¢ SENSOR CLK : Set sensor clock.

¢ USER CLK : Set user clock.

e VCC BUCK ENABLE : Enable or disable the buck converter.

e BL TICKER TIME MS : Define the time in ms for each interrupt.

e BL DEBUG : Define the standard verbose/debug tracing routine.

e BL TRACE : Define the standard tracing routine.

e BL WARNING : Define the standard warning message routine.

e BL ERROR : Define the standard error message routine.

e BL UART RX TIMEOUT MS : Define the receive timeout in milliseconds.

e BL WATCHDOG FEED ME MS : While waiting for UART input, ensure watch dog is fed.

e BL UART TX TIMEOUT MS : Define the send timeout in milliseconds.

e BL UART MAX RX LENGTH : Define the maximum length of a single receive operation.

e BL UART MAX TX LENGTH : Define the maximum length of a single send operation.

e BL BAUD RATE : Define a baud rate for loading.

e BL UART DELAY CYCLES : Define a delay time to allow the hardware buffers to clear.

e UPDATE GPIO : Define the GPIO pin to be used to indicate an update is required.

e MIN : Define a shorthand to get the minimum of two values.

¢ MAX : Define a shorthand to get the maximum of two values.

e BITS2BYTES : Calculate the number of bytes needed to hold x bits.

e BITS2HALFWORDS : Calculate the number of 16 bit words needed to hold x bits.

e BL VERSION ENCODE : Define a mechanism to encode a version number as a uint16_t.

e BL VERSION DECODE : Define a mechanism to decode a version number from a uint16_t.

e BL BOOT VERSION : Define the boot version including name and ensure it is stored in an easily accessible
location.

e BL WATCHDOG MAX HOLD OFF SECONDS : Define the maximum time that can elapse before the
watchdog must be refreshed.

Functions

www.onsemi.com

40

onsemi

Secure Bootloader Guide

BL _Attestlnitialize : Initialize the attestation feature.

BL AttestAcceptKey : Determine if it is okay to accept a key injection request.

BL AttestFindPublicKeyHash : Retrieve the SHA256 hash of the public key if it exists.

BL AttestInjectKey : Inject or create an attestation key.

BL AttestGetToken : return the Entity Attestation Token associated with the device.

BL AttestGetTokenSize : return the size of the Entity Attestation Token associated with the device.

BL CheckRemapAddressSpace : Determine download address based on given address which may be in
bootloader or application space.

BL CheckGetApplicationSize : Fetch the application size from a buffer defined by base address of the
application vector table.

BL CheckRelocatedApplicationSize : Fetch the application size from a buffer defined by base address of the
application vector table.

BL CheckIflmageUpdateAvailable : Check for a valid update using the non-secure file format.

BL CheckIfSecurelmageUpdateAvailable : Check for a valid update using the secure file format.

BL CheckFindSecondarylmageLocation : Based on a primary image address, calculate the potential location
and extent of any secondary image.

BL ConfiglsValid : Helper function to return the configuration area status.

BL ConfigCertificateAddress : Fetch the address of the requested structure.

BL Cryptolnitialize : Initialize the basic crypto system.

BL CryptoGetBootSeed : Fetch the boot seed.

BL_CryptoHash : Hash a block of memory using SHA256.

BL CryptoRSAKeySize : Calculate the size required to serialize a given RSA private key.

BL CryptoRSASerialiseKey : Serialize an RSA key to a byte buffer.

BL CryptoRSADeserialiseKey : Deserialize an RSA key from a byte buffer.

BL CryptoRSAGenerateKey : Generate a new RSA key of the given type.

BL CryptoRSASignHash : Sign a message hash using a private RSA key.

BL CryptoRSASignMessage : Sign a message using a private RSA key.

BL CryptoRSAVerifyMessage : Verify that a given hash and signature are consistent.

BL EATPopulate : Populates a buffer with the contents of the entity attestation token.

BL EATSize : Calculate the expected size of the EAT token once converted to CBOR.

BL FCSlnitialize : Initialize the FCS module, deriving the selected algorithm from the provided sample data.
BL_FCSQuery : Query the currently selected FCS algorithm.

BL FCSAuthenticationRequired : Provides a mechanism to determine if the loading process should apply
authentication to the protocol and images.

BL FCSSelect : Select a specific FCS algorithm.

BL FCSCheck : Check the validity of a buffer against a given FCS.

BL FCSCalculate : Calculate the FCS of a given buffer.

BL FCSAccumulateCRC : Helper method to accumulate a CRC given a buffer and a length.

BL _Encryptlnitialize : Initialization function for the encryption layer.

BL EncryptResetEncryption : Reset the encryption operation and introduce a new initial value.

BL EncryptResetDecryption : Reset the decryption operation and introduce a new initial value.

BL EncryptEncryptBuffer : Encrypt a buffer using the internally derived key.

BL EncryptDecryptBuffer : Decrypt a buffer using the internally derived key.

BL EncryptComplete : Complete the current encryption or decryption operation.

BL FlashlInitialize : Initialize the flash subsystem.

BL FlashSaveSector : Save a buffer to a specified flash address.

BL Imagelnitialize : Initialize the image module for a specific set of image attributes.

BL ImageAddress : Convert an address to take into account potential offsets.

www.onsemi.com

41

onsemi

Secure Bootloader Guide

BL ImageAddressRange : Helper routine which allows access of the image as a contiguous block of addresses,
wrapping around the reserved block.

BL ImageCopyMemoryRange : Copy a possibly split memory range to a contiguous buffer.
BL ImageSaveBlock : Save a block of data from a RAM buffer to the next block in Flash.
BL ImageVerify : Verify the most recently loaded image.

BL ImageAuthenticate : Authenticate a loaded image.

BL ImageAuthenticateCurrent : Authenticate the most recently loaded image.

BL ImagelsValid : Check if there is a valid image to start.

BL ImageSaveAddress : Return the download address corresponding to the requested address.
BL ImageStartApplication : Start the image stored in flash.

BL LoaderPerformFirmwareLoad : Perform a firmware update over the UART interface.
BL LoaderCertificateAddress : Fetch the address of the requested structure.

BL CBORInitialize : Initialize the CBOR renderer giving it a buffer to render to.

BL CBORReset : Reset the CBOR renderer pointers to the initial state.

BL CBORUsed : Provide an indication of the amount of the buffer that has been used.
BL CBORCurrent : Retrieve the current pointer onto the render buffer.

BL CBORAddInteger : Add an integer to the CBOR buffer.

BL CBORAddBuffer : Add a fixed size buffer to the CBOR buffer.

BL CBORAddMap : Add a map with a fixed number of entries to the CBOR buffer.

BL CBORAddMapPair : Add a key value pair to a map.

BL CBORSizelnteger : Retrieve the rendered size of an integer value.

BL CBORSizeBuffer : Retrieve the rendered size of a buffer.

BL CBORSizeMap : Retrieve the number of bytes in a rendered map header.

BL CBORSizeMapPair : Retrieve the rendered size of a key value pair.

BL Recoverylnitialize : Define the initialization routine for the Debug Catch feature.

BL SecureBootlnitialize : Initialize the Secure Boot subsystem.

BL SecureBootAuthenticate : Authenticate a RoT certificate chain based on a given RoT.
BL FStorelnitialize : Initialize the secure file system.

BL FStoreMakeFilesystem : Try to make a new file system.

BL FStoreFileSize : Retrieve the size in bytes of a requested file.

BL FStoreFileExists : Determine if the file exists in the store.

BL FStoreFileCanRead : Determine if the file exists in the store and can be read.

BL FStoreFileCanWrite : Determine if the file exists in the store and can be written.

BL FStoreFileCanDelete : Determine if the file exists in the store and can be deleted.

BL FStoreWrite : Write a buffer from RAM to the secure file store.

BL FStoreRead : Read a file from the secure file store to a RAM buffer.

BL FStoreDelete : Delete a file from the secure file.

BL FStoreFileList : Retrieve the secure store directory information.

BL Targetlnitialize : Target initialization function, loads the trim values and sets up the various clocks used in
the system.

BL TargetReset : Reset the device using NVIC.

BL Tickerlnitialize : Initialize the timer tick.

BL TickerTime : Get the current timer tick value.

SysTick Handler : System tick interrupt handler, required by the ticker.

BL Tracelnitialize : Initialize the trace sub-system.

BL UARTInitialize : Initialize the UART subsystem.

BL UARTReceiveAsync : Start receiving a fixed length data buffer using the UART.

BL UARTReceiveComplete : Complete the reception of an executing receive operation.
BL UARTReceive : Receiving a fixed length data buffer using the UART.

www.onsemi.com

42

onsemi

Secure Bootloader Guide

¢ BL UARTSendAsync : Start sending a fixed length data buffer using the UART.

¢ BL UARTSendComplete : Complete the transmission of an executing send operation.

¢ BL UARTSend : Send a fixed length data buffer using the UART.

¢ BL Updatelnitialize : Initialize the firmware update component.

¢ BL UpdateRequested : Check if a firmware update is being requested.

¢ BL UpdateProcessPendinglmages : This will check for any pending images which have previously been
downloaded and if any are found will copy them to the appropriate location for execution.

¢ BL ImageSelectAndStartApplication : This will attempt to start any images which are available.

¢ BL VersionsGetlnformation : Get the version information from a suitable application.

¢ BL VersionsGetHello : Fetch the hello response from the bootloader.

¢ BL Watchdoglnitialize : Initialise the watchdog module.

¢ BL WatchdogSetHoldTime : Set the watchdog hold off time to seconds.

¢ WATCHDOG IRQHandler : Define an interrupt handler for the watchdog interrupt.

8.2 DETAILED DESCRIPTION

This reference chapter presents a detailed description of all the components included in the secure bootloader reference
application. This reference application has four levels of secure operation, available as needed depending on the end
product's use cases:

Basic bootloader (non-secure)

Secure bootloader (maintains authenticated Root of Trust set up by the ROM)
Secure bootloader with secure storage

Secure bootloader with secure storage and device attestation

BN =

8.3 SECURE BOOTLOADER SAMPLE REFERENCE TYPEDEF DOCUMENTATION

8.3.1 BL_FCS_t

typedef uintl6 t BL FCS t

Location: bl _fcs.h:52

Define a FCS type.

8.3.2 BL_FSFileld_t

typedef uintl6 t BL FSFileld t

Location: bl_simple filer.h:99

Define a file identifier as a sixteen bit word.

www.onsemi.com

43

onsemi

Secure Bootloader Guide

8.3.3 BL_BootAppld_t

typedef char BL BootApplId t

Location: bl versions.h:75

Define the application ID as a six character string.

8.4 SECURE BOOTLOADER SAMPLE REFERENCE VARIABLE DOCUMENTATION

8.4.1 DRBGContext

mbedtls ctr drbg context DRBGContext

Location: bl_crypto.h:81

Define a CTR_DRBG context structure, used by the RNDContext.

8.4.2 BL_ImageWorkspace

BL ImageOperation t BL ImageWorkspace

Location: bl _image.h:85

Defines a common operation buffer for handling images.

8.5 SECURE BOOTLOADER SAMPLE REFERENCE ENUMERATION TYPE DOCUMENTATION

8.5.1 BL_AttestStatus_t

Location: bl_attestation.h:57

Define the basic attestation status types.

www.onsemi.com

44

onsemi

Secure Bootloader Guide

Members
e BL ATTEST NO ERROR
e BL ATTEST INIT FAILED
e BL ATTEST INVALID REQUEST
e BL ATTEST INVALID CLAIM
e BL ATTEST KEY GEN FAILURE
e BL ATTEST KEY FAILURE

e BL ATTEST BUFFER OVERFLOW

8.5.2 BL_AttestKeyType_t

Location: bl _attestation.h:69

Define the types of attestation keys supported by the system.

Members
e BL ATTEST AES 128
e BL ATTEST AES 192
e BL ATTEST AES 256
e BL ATTEST RSA 1024
e BL ATTEST RSA 2048
e BL ATTEST RSA 3072
e BL ATTEST ECC 256

e BL_ATTEST KEYTYPE MAX

8.5.3 BL_AttestationChallengeSize_t

www.onsemi.com

45

onsemi

Secure Bootloader Guide

Location: bl _attestation.h:82

Define the supported attestation challenge sizes.

Members
e BL ATTEST CHALLENGE 32 = 32
e BL ATTEST CHALLENGE 48 = 48
e BL ATTEST CHALLENGE 64 = 64

8.5.4 BL_AttestTags_t

Location: bl_attestation.h:90

Define CBOR tag values for each of the attestation fields.

Members
e BL ATTEST CBOR TAG HASH = OxCBAA
e BL ATTEST CBOR_TAG_SIGN

e BL ATTEST CBOR TAG_EAT

8.5.5 BL_UpdateType_t

Location: bl _check.h:66

Define the possible update types.

Members

e BL_UPDATE_IMAGE

www.onsemi.com

46

onsemi

Secure Bootloader Guide

e BL UPDATE BOOTLOADER

e BL UPDATE SECURE IMAGE

e BL UPDATE SECURE_ BOOTLOADER
e BL UPDATE SECONDARY IMAGE

e BL UPDATE NONE

8.5.6 BL_ConfigStatus_t

Location: bl_configuration.h:57

Define the configuration status values.

Members
e BL CONFIG_OKAY

e BL CONFIG CORRUPT

8.5.7 BL_CryptoStatus_t

Location: bl _crypto.h:64

Define the status values returned by the cryptography modules.

Members
e BL CRYPTO NO ERROR
e BL CRYPTO RNG FAIL
e BL CRYPTO HASH FAIL
e BL CRYPTO RSA FAIL

e BL CRYPTO RSA WRITE FAIL

www.onsemi.com

47

onsemi

Secure Bootloader Guide

e BL_CRYPTO RSA READ FAIL
e BL_CRYPTO RSA HASH FAIL
e BL CRYPTO RSA SIGN FAIL

e BL CRYPTO RSA VERIFY FAIL
e BL CRYPTO ECC FAIL

e BL CRYPTO AES FAIL

8.5.8 BL_CryptoRSAKeyType_t

Location: bl _crypto_rsa.h:61

Define the supported key types, encoding the key size in bits.

Members
e RSA 1024 = 1024

e RSA 2048 = 2048

e RSA 3072 3072

8.5.9 BL_EATStatus_t

Location: bl_eat.h:54

Define the possible status codes.

Members
e BL EAT NO_ERROR
e BL EAT INVALID OPERATION

e BL EAT BUFFER OVERFLOW

www.onsemi.com

48

onsemi

Secure Bootloader Guide

e BL CHALLENGE FAILURE
e BI_INSTANCE FAILURE

e BL IMPLEMENTATION FAILURE
e BL CLIENT FAILURE

e BI _LIFECYCLE FATLURE

e BL EAN FAILURE

e BIL_ SEED FAILURE

e BL ROM FAILURE

e BL BOOTLOADER FAILURE

e BL APPLICATION FAILURE

8.5.10 BL_EATTags_t

Location: bl_eat.h:72

Define CBOR tag values for each of the EAT fields.

Members
e BL EAT CBOR TAG CHALLENGE = 0xCBEA
e BL EAT CBOR_TAG_INSTANCE
e BL EAT CBOR TAG IMPLEMENTATION
e BL EAT CBOR TAG CLIENT
e BL EAT CBOR TAG LIFECYCLE
e BL EAT CBOR TAG EAN
e BL EAT CBOR_TAG_SEED
e BL EAT CBOR TAG ROM
e BL EAT CBOR_TAG BOOTLOADER
e BL EAT CBOR_TAG APPLICATION

e BL_EAT CBOR_TAG_MAX

www.onsemi.com

49

onsemi

Secure Bootloader Guide

8.5.11 BL_FCSStatus_t

Location: bl _fcs.h:55

Define the possible FCS status values.

Members
e BL FCS NO_ERROR
e BL FCS VALID
e BL FCS INVALID
e BL FCS UNRECOGNIZED

e BL_FCS_NOT INITIALIZED

8.5.12 BL_FCSAlgorithm_t

Location: bl_fcs.h:65

Define the possible valid FCS calculators.

Members
e BL FCS CCITT FFFF = 0
e BL FCS MCRF4XX

e BL FCS NO ALGO

8.5.13 BL_EncryptionStatus_t

www.onsemi.com

50

onsemi

Secure Bootloader Guide

Location: bl file encryption.h:66

Define the file encryption status values.

Members

e BL ENCRYPT NO ERROR
e BL ENCRYPT KEY ERROR
e BI_ENCRYPTION FAILURE
e BL DECRYPTION FAILURE

e BL ENCRYPTION INVALID REQUEST

8.5.14 BL_ImageType_t

Location: bl image.h:51

Define the known image types.

Members

e BL_IMAGE BOOTLOADER
e BL_IMAGE APPLICATION

e BL IMAGE UNRECOGNIZED

8.5.15 BL_ImageStatus_t

Location: bl _image.h:58

Define the image status values.

www.onsemi.com

51

onsemi

Secure Bootloader Guide

Members
e BL IMAGE NO ERROR = 0
e BL IMAGE ADDRESS ERROR
e BL IMAGE LENGTH ERROR
e BL IMAGE FLASH ERROR
e BL IMAGE VERIFY ERROR

e BL IMAGE AUTHENTICATE ERROR

8.5.16 BL_LoaderCommand_t

Location: bl_loader.h:48

Enum specifying each of the valid commands the loader recognizes.

Members
e BL LOADER HELLO = 0
e BL LOADER PROGRAM
e BL LOADER READ
e BL LOADER RESTART
e BL LOADER AUTHENTICATE
e BL LOADER FILE LIST
e BL LOADER FILE LOAD
e BL LOADER FILE READ
e BL LOADER FILE REMOVE
e BL LOADER FILE RESET
e BL LOADER INJECT KEY
e BL LOADER GET TOKEN SIZE
e BL LOADER GET TOKEN

e BL LOADER ERROR

www.onsemi.com

52

onsemi

Secure Bootloader Guide

e BL LOADER COMMAND MAX

8.5.17 BL_LoaderStatus_t

Location: bl loader.h:81

Define a set of supported loader status codes.

Members
e BL LOADER NO ERROR = 0
e BL LOADER BAD MSG
e BL LOADER UNKNOWN CMD
e BL LOADER INVALID CMD
e BL LOADER GENERAL FLASH FAILURE
e BL LOADER WRITE FLASH NOT ENABLED
e BL LOADER BAD FLASH ADDRESS
e BL LOADER ERASE FLASH FAILED
e BL LOADER BAD FLASH LENGTH
e BL LOADER INACCESSIBLE FLASH
e BL LOADER FLASH COPIER BUSY
e BL LOADER PROG FLASH FAILED
e BL LOADER VERIFY FLASH FAILED
e BL LOADER VERIFY IMAGE FAILED
e BL LOADER NO VALID BOOTLOADER
e BL LOADER RX FAILURE
e BL LOADER RX TIMEOUT
e BL LOADER IMAGE FAILURE
e BL LOADER VERIFICATION FAILURE

e BL_LOADER CERT LOAD FAILURE

www.onsemi.com

53

onsemi

Secure Bootloader Guide

e BL LOADER AUTHENTICATION FAILURE
e BL LOADER AUTHENTICATE IMAGE FAILED
e BL LOADER FILE SYSTEM FAILURE

e BL LOADER ATTESTATION FAILURE

8.5.18 BL_LoaderCertType_t

Location: bl loader.h:110

Enum specifying the types of certificate that can be loaded.

Members
e BL KEY1l CERT
e BL KEY2 CERT
e BL CONTENT CERT

e BL_DEBUG_CERT

8.5.19 BL_LoaderStatusType_t

Location: bl loader.h:119

Define a type for the status messages.

Members
e BL LOADER STATUS TYPE NEXT = 0x55
e BL LOADER STATUS TYPE END = O0xAA

e BL LOADER STATUS TYPE CRC = 0xCC

www.onsemi.com

54

onsemi

Secure Bootloader Guide

8.5.20 BL_CBORStatus_t

Location: bl mini_cbor.h:55

Define the CBOR status values.

Members
e BL CBOR _NO ERROR
e BL CBOR BAD REQUEST
e BL CBOR BUFFER FULL

e BL CBOR OVERFLOW

8.5.21 blSecureBootStatus_t

Location: bl_secure_boot.h:54

Define the status codes.

Members
e BL SEC_NO ERROR
e BL SEC_INIT FAILED
e BL SEC_CONTEXT FAILED
e BL SEC KEYl AUTH FAILED
e BL SEC_KEY2 AUTH FAILED
e BL SEC_CONTENT AUTH FAILED
e BL SEC_INVALID OPERATION

e BL SEC INVALID PARAMETER

www.onsemi.com

55

onsemi

Secure Bootloader Guide

8.5.22 BL_FStoreStatus_t

Location: bl_simple_filer.h:60

Define the status values possible from the secure filer module.

Members
e BL FS NO ERROR
e BL FS INIT FAILURE
e BL FS FS FULL
e BL FS MISSING FILE
e BL FS DUPLICATE FILE
e BL FS INVALID OPERATION
e BL FS ENCRYPTION FAILURE
e BL FS FLASH READ FAILURE
e BL FS FLASH WRITE FAILURE

e BL FS FLASH ERASE FAILURE

8.5.23 BL_FSFlags_t

Location: bl_simple filer.h:75

Define the flags associated with stored files.

Members
e BL FS CAN READ = 1
e BL FS CAN WRITE = 2

e BL_FS _CAN DELETE = 4

www.onsemi.com

56

onsemi

Secure Bootloader Guide

8.5.24 BL_FSReservedFilename_t

Location: bl _simple filer.h:85

Define a set of reserved file names that should not be accessible directly from the loader.

Members

e BL FS NOFILE

e BL FS ATTEST AES 128
e BL FS ATTEST AES 192
e BL FS ATTEST AES 256
e BL FS ATTEST RSA 1024
e BL FS ATTEST RSA 2048
e BL FS ATTEST RSA 3072
e BL FS ATTEST ECC 256

e BL FS MAX RESERVED FILE

8.5.25 BL_UARTStatus_t

Location: bl_uart.h:79

Define a set of supported error codes.

Members
e BL UART NO ERROR = 0
e BL UART TX IDLE

e BL UART RX IDLE

www.onsemi.com

57

onsemi

Secure Bootloader Guide

e BL UART TX BUSY

e BI UART RX BUSY

e BL UART TX TIMEOUT

e BL UART RX TIMEOUT

e BI, UART INVALID PARAMETER
e BL UART STATE ERROR

e BIL UART BAD FCS

e BL UART RX ERROR

e BL UART TX ERROR

8.6 SECURE BOOTLOADER SAMPLE REFERENCE MACRO DEFINITION DOCUMENTATION

8.6.1 VT_OFFSET_STACK_POINTER

#define VT OFFSET STACK POINTER 0

Vector table offset for the stack pointer.

Location: bl_check.h:47

8.6.2 VT_OFFSET_RESET_VECTOR

#define VT OFFSET RESET VECTOR 1

Vector table offset for the reset vector.

Location: bl _check.h:50

8.6.3 VT_OFFSET_VERSION_INFO

#define VT OFFSET VERSION INFO 8

Vector table offset for the version information pointer.

www.onsemi.com

58

onsemi

Secure Bootloader Guide

Location: bl_check.h:53

8.6.4 VT_OFFSET_IMAGE_SIZE

#define VT OFFSET IMAGE SIZE 9

Vector table offset for the used image size pointer.

Location: bl_check.h:56

8.6.5 VT_OFFSET_CERT_SIZE

#define VT OFFSET CERT SIZE 10

Vector table offset for the certificate size.

Location: bl _check.h:59

8.6.6 BL_CONFIGURATION_BASE

#define BL CONFIGURATION BASE ((BL AppConfiguration t *) FLASHO DATA BASE)

Base address of the boot configuration in flash.

Location: bl_configuration.h:47

8.6.7 BL_CONFIGURATION_WORDS

#define BL CONFIGURATION WORDS (sizeof (BL AppConfiguration t) >> 2)

Define the size of the configuration area in words.

Location: bl_configuration.h:50

8.6.8 BL_CRYPTO _BOOT_SEED_LENGTH

#define BL CRYPTO BOOT SEED LENGTH 32

www.onsemi.com

59

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

Define the length in bytes of the boot seed value, random number.

Location: bl _crypto.h:53

8.6.9 BL_CRYPTO_SHA256_DIGEST_LENGTH

#define BL CRYPTO SHA256 DIGEST LENGTH 32

Define the digest length in bytes for SHA256.

Location: bl_crypto.h:56

8.6.10 BL_ENCRYPT_KEY_SIZE_BITS

#define BL ENCRYPT KEY SIZE BITS 128

Define the AES key size in bits when performing AES encryption.

Location: bl file encryption.h:50

8.6.11 BL_ENCRYPT_KEY_SIZE_BYTES

#define BL_ENCRYPT KEY SIZE BYTES (BL ENCRYPT KEY SIZE BITS >> 3)

Define the AES key size in bytes when performing AES encryption.

Location: bl file encryption.h:53

8.6.12 BL_ENCRYPT_BLOCK_SIZE_BITS

#define BL ENCRYPT BLOCK SIZE BITS 128

Define the block size in bits when performing AES encryption.

Location: bl _file encryption.h:56

www.onsemi.com

60

onsemi

Secure Bootloader Guide

8.6.13 BL_ENCRYPT_BLOCK_SIZE_BYTES

#define BL ENCRYPT BLOCK SIZE BYTES (BL ENCRYPT BLOCK SIZE BITS >> 3)

Define the block size in bytes when performing AES encryption.

Location: bl file encryption.h:59

8.6.14 FLASH_BOND_INFO_SIZE

#define FLASH BOND INFO SIZE 0x800

Location: bl_memory.h:53

8.6.15 BL_CODE_SECTOR_SIZE

#define BL CODE SECTOR SIZE 2048

The image block size when loading data.

(Size of a code sector.)

Location: bl_memory.h:56

8.6.16 BL_DATA_SECTOR_SIZE

#define BL DATA SECTOR SIZE 256

The image block size when loading data.

(Size of a code sector.)

Location: bl_memory.h:59

8.6.17 BL_FLASH_RESERVED_SIZE

#define BL FLASH RESERVED SIZE (FLASH DEU RESERVED SIZE + FLASH BOND INFO SIZE)

www.onsemi.com

61

onsemi

Secure Bootloader Guide

The size of the area reserved for use by the ROM and stack.

Location: bl_memory.h:62

8.6.18 BL_SECURE_STORAGE_BASE

#define BL SECURE STORAGE BASE (FLASHO DATA BASE + BL FLASH RESERVED SIZE)

Define the base address of the secure storage area.

Location: bl_memory.h:66

8.6.19 BL_SECURE_STORAGE_SIZE

#define BL SECURE STORAGE SIZE (FLASHO DATA RSL15 284 TOP - BL SECURE STORAGE BASE + 1)

Define a size for the secure storage area.

Location: bl_memory.h:69

8.6.20 BL_SECURE_STORAGE_TOP

#define BL_SECURE_STORAGE TOP (BL SECURE STORAGE BASE + BL SECURE STORAGE SIZE - 1)

Define the top of the secure storage area.

Location: bl _memory.h:73

8.6.21 BL_BOOTLOADER_BASE

#define BL_BOOTLOADER BASE FLASHO CODE BASE

The base address of the bootloader flash.

Location: bl_memory.h:77

www.onsemi.com

62

onsemi

Secure Bootloader Guide

8.6.22 BL_BOOTLOADER_SIZE

#define BL BOOTLOADER SIZE BL BOOTLOADER KB

Define the size of the bootloader in kB.

The size of the area reserved for use by the bootloader.

Location: bl_memory.h:110

8.6.23 BL_FLASH_CODE_BASE

#define BL FLASH CODE BASE (BL BOOTLOADER BASE + BL BOOTLOADER SIZE)

The base of the code flash.

Location: bl_memory.h:113

8.6.24 BL_FLASH_DATA_BASE

#define BL_FLASH DATA BASE (BL SECURE STORAGE TOP + 1)

The base of the data flash, offset by the reserved areas.

Location: bl memory.h:116

8.6.25 BL_FLASH_CODE_TOP

#define BL FLASH CODE_TOP FLASHO CODE_TOP

Define the top of code flash in 512K device.

Location: bl _memory.h:129

8.6.26 BL_FLASH_DATA_TOP

#define BL_FLASH DATA TOP FLASHO DATA TOP

www.onsemi.com

63

onsemi

Secure Bootloader Guide

Define the top of data flash in 512K device.

Location: bl_memory.h:132

8.6.27 BL_FLASH_CODE_SIZE

#define BL FLASH CODE SIZE (BL FLASH CODE TOP - BL FLASH CODE BASE + 1)

Code size is derived from the base and top addresses.

Location: bl_memory.h:137

8.6.28 BL_FLASH_DATA_SIZE

#define BL FLASH DATA SIZE (BL FLASH DATA TOP - BL FLASH DATA BASE + 1)

Data size is derived from the base and top addresses.

Location: bl_memory.h:140

8.6.29 BL_APPLICATION_BASE

#define BL_APPLICATION BASE BL FLASH CODE BASE

Define the base address of the application.

Location: bl _memory.h:143

8.6.30 BL_AVAILABLE_SIZE

#define BL_ AVAILABLE SIZE (BL FLASH CODE SIZE + BL FLASH DATA SIZE)

Define the total available flash for application and download.

Location: bl_memory.h:146

www.onsemi.com

64

onsemi

Secure Bootloader Guide

8.6.31 BL_APPLICATION_SIZE

#define BL APPLICATION SIZE ((BL AVAILABLE SIZE >> 1) & OxFFFFF800)

Define the maximum size of an application.

(must be 2K aligned)

Location: bl_memory.h:149

8.6.32 BL_DOWNLOAD_BASE

#define BL DOWNLOAD BASE (BL APPLICATION BASE + BL APPLICATION SIZE)

Define the base address of the download area.

Location: bl_memory.h:152

8.6.33 BL_DOWNLOAD_SIZE

#define BL DOWNLOAD SIZE BL APPLICATION SIZE

Define the maximum size of the download area.

Location: bl _memory.h:155

8.6.34 BL_OPT_FEATURE_ENABLED

#define BL_OPT FEATURE ENABLED 1

Indicator that a given feature should be enabled.

Location: bl options.h:47

8.6.35 BL_OPT_FEATURE_DISABLED

#define BL_OPT FEATURE DISABLED 0

www.onsemi.com

65

onsemi

Secure Bootloader Guide

Indicator that a given features should be disabled.

Location: bl _options.h:50

8.6.36 BL_OPT_FEATURE_BOOTLOADER

#define BL OPT FEATURE BOOTLOADER BL OPT FEATURE ENABLED

Marker indicating that the bootloader feature is enabled.

Location: bl_options.h:56

8.6.37 BL_OPT_FEATURE_BOOTLOADER

#define BL OPT FEATURE BOOTLOADER BL OPT FEATURE ENABLED

Marker indicating that the bootloader feature is enabled.

Location: bl_options.h:98

8.6.38 BL_OPT_FEATURE_SECURE_BOOTLOADER

#define BL_OPT FEATURE SECURE BOOTLOADER BL OPT FEATURE DISABLED

Marker indicating that the bootloader supports authenticated update of images.

Location: bl options.h:62

8.6.39 BL_OPT_FEATURE_SECURE_BOOTLOADER

#define BL_OPT FEATURE SECURE BOOTLOADER BL OPT FEATURE ENABLED

Marker indicating that the bootloader supports authenticated update of images.

Location: bl _options.h:91

www.onsemi.com

66

onsemi

Secure Bootloader Guide

8.6.40 BL_OPT_FEATURE_SECURE_STORAGE

#define BL OPT FEATURE SECURE STORAGE BL OPT FEATURE DISABLED

Marker indicating if the secure storage feature is provided.

Location: bl_options.h:67

8.6.41 BL_OPT_FEATURE_SECURE_STORAGE

#define BL_OPT FEATURE SECURE STORAGE BL OPT FEATURE ENABLED

Marker indicating if the secure storage feature is provided.

Location: bl _options.h:84

8.6.42 BL_OPT_FEATURE_ATTESTATION

#define BL_OPT FEATURE ATTESTATION BL OPT FEATURE DISABLED

Marker indicating if the bootloader supports attestation protocols.

Location: bl options.h:72

8.6.43 BL_OPT_ATTEST_KEY_AES

#define BL OPT ATTEST KEY AES BL OPT FEATURE DISABLED

Marker indicating that the attestation feature supports AES keys.

Location: bl_options.h:110

8.6.44 BL_OPT_ATTEST_KEY_RSA

#define BL OPT ATTEST KEY RSA BL OPT FEATURE DISABLED

Marker indicating that the attestation feature supports RSA keys.

Location: bl_options.h:116

www.onsemi.com

67

onsemi

Secure Bootloader Guide

8.6.45 BL_OPT_ATTEST_KEY_ECC

#define BL_OPT ATTEST KEY ECC BL OPT FEATURE DISABLED

Marker indicating that the attestation feature supports ECC keys.

Location: bl _options.h:122

8.6.46 BL_OPT_SECURE_FILE_SYSTEM_RESET

#define BL OPT SECURE FILE SYSTEM RESET BL OPT FEATURE DISABLED

Marker indicating that the attestation feature supports AES keys.

Location: bl_options.h:167

8.6.47 DEBUG_CATCH_GPIO

#define DEBUG_CATCH GPIO 0

Location: bl recovery.h:44

8.6.48 BL_SEC_IGNORE_KEY

#define BL_SEC_IGNORE KEY 0

Define a marker value that indicates a key may be ignored.

Location: bl_secure boot.h:67

8.6.49 BL_SEC_DEFER_KEY

#define BL SEC DEFER KEY OxFFFFFFFF

Define a marker value that indicates a key should be deferred.

Location: bl_secure boot.h:70

www.onsemi.com

68

onsemi

Secure Bootloader Guide

8.6.50 BL_FS_MAX_FILE_SIZE

#define BL_FS MAX FILE SIZE BL CODE SECTOR SIZE

Define the maximum supported file size.

Location: bl _simple filer.h:53

8.6.51 UART_CLK

#define UART CLK 8000000

Set UART peripheral clock.

Location: bl_target.h:43

8.6.52 SENSOR_CLK

#define SENSOR CLK 32768

Set sensor clock.

Location: bl target.h:46

8.6.53 USER_CLK

#define USER CLK 1000000

Set user clock.

Location: bl target.h:49

8.6.54 VCC_BUCK_ENABLE

#define VCC_BUCK ENABLE (1)

Enable or disable the buck converter.

www.onsemi.com

69

onsemi

Secure Bootloader Guide

The system allows for two methods of reducing the battery power supply from a higher voltage (1.2V-3.6V) to usable
supply voltage (1.0V-1.31V). If the VBAT supply voltage is less than 1.4V, this should be disabled so that the device
uses the low drop out (LDO) regulator. Otherwise, the buck (DC-DC) converter may be enabled. Set this to: => 0 to dis-
able buck converter mode and enable linear mode => 1 to enable buck converter mode and disable linear mode

Location: bl_target.h:63

8.6.55 BL_TICKER_TIME_MS

#define BL TICKER TIME MS 10

Define the time in ms for each interrupt.

Location: bl_ticker.h:45

8.6.56 BL_DEBUG

#define BL DEBUG swmLogVerbose

Define the standard verbose/debug tracing routine.

Location: bl _trace.h:48

8.6.57 BL_TRACE

#define BL TRACE swmLogInfo

Define the standard tracing routine.

Location: bl_trace.h:51

8.6.58 BL_WARNING

#define BL WARNING swmLogWarn

Define the standard warning message routine.

Location: bl_trace.h:54

www.onsemi.com

70

onsemi

Secure Bootloader Guide

8.6.59 BL_ERROR

#define BL ERROR swmLogError

Define the standard error message routine.

Location: bl _trace.h:57

8.6.60 BL_UART_RX_TIMEOUT_MS

#define BL UART RX TIMEOUT MS (3000)

Define the receive timeout in milliseconds.

Location: bl_uart.h:54

8.6.61 BL_WATCHDOG_FEED_ME_MS

#define BL WATCHDOG FEED ME MS (2000)

While waiting for UART input, ensure watch dog is fed.

Location: bl _uart.h:57

8.6.62 BL_UART_TX_TIMEOUT_MS

#define BL UART TX TIMEOUT MS (3000)

Define the send timeout in milliseconds.

Location: bl _uart.h:60

8.6.63 BL_UART_MAX_RX_LENGTH

#define BL UART MAX RX LENGTH (2048)

Define the maximum length of a single receive operation.

www.onsemi.com

71

onsemi

Secure Bootloader Guide

Location: bl uart.h:63

8.6.64 BL_UART_MAX_TX_LENGTH

#define BL UART MAX TX LENGTH (2048)

Define the maximum length of a single send operation.

Location: bl_uart.h:66

8.6.65 BL_BAUD_RATE

#define BL BAUD RATE 115200

Define a baud rate for loading.

Location: bl uart.h:69

8.6.66 BL_UART_DELAY_CYCLES

#define BL_ UART DELAY CYCLES ((20 * SystemCoreClock) / BL BAUD RATE)

Define a delay time to allow the hardware buffers to clear.

Location: bl _uart.h:72

8.6.67 UPDATE_GPIO

#define UPDATE GPIO 14

Define the GPIO pin to be used to indicate an update is required.

Location: bl_update.h:47

8.6.68 MIN

#define MIN ((a) < (b) ? (a) : (b))

www.onsemi.com

72

onsemi

Secure Bootloader Guide

Define a shorthand to get the minimum of two values.

Location: bl util.h:46

8.6.69 MAX

#define MAX ((a) > (b) ? (a) : (b))

Define a shorthand to get the maximum of two values.

Location: bl_util.h:49

8.6.70 BITS2BYTES

#define BITS2BYTES ((x + 7) >> 3)

Calculate the number of bytes needed to hold x bits.

Location: bl util.h:52

8.6.71 BITS2HALFWORDS

#define BITS2HALFWORDS ((x + 15) >> 4)

Calculate the number of 16 bit words needed to hold x bits.

Location: bl util.h:55

8.6.72 BL_VERSION_ENCODE

#define BL_VERSION ENCODE (((m) << 12) | ((n) << 8)

Define a mechanism to encode a version number as a uintl6 t.

Location: bl _versions.h:54

www.onsemi.com

73

onsemi

Secure Bootloader Guide

8.6.73 BL_VERSION_DECODE

#define BL VERSION DECODE ((num >> 12) & O0xF), ((num >> 8) & O0xF), (num & OxFF)

Define a mechanism to decode a version number from a uint16_t.

Location: bl_versions.h:57

8.6.74 BL_BOOT_VERSION

#define BL_ BOOT VERSION _ attribute ((section(".rodata.boot.version"))) \
const BL BootAppVersion t blBootAppVersion = \
{ \
id, BL VERSION ENCODE (major, minor, revision) \

}i

Define the boot version including name and ensure it is stored in an easily accessible location.

Location: bl_versions.h:62

8.6.75 BL_WATCHDOG_MAX_HOLD_OFF_SECONDS

#define BL WATCHDOG MAX HOLD OFF SECONDS 600

Define the maximum time that can elapse before the watchdog must be refreshed.

Location: bl_watchdog.h:50

8.7 SECURE BOOTLOADER SAMPLE REFERENCE FUNCTION DOCUMENTATION

8.7.1 BL_Attestlnitialize

BL AttestStatus t BL AttestInitialize()

Initialize the attestation feature.

@returnBL_ATTEST NO_ERROR or BL_ATTEST INIT FAILED.

Location: bl _attestation.h:106

www.onsemi.com

74

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t

onsemi

Secure Bootloader Guide

8.7.2 BL_AttestAcceptKey

BL AttestStatus t BL AttestAcceptKey (BL AttestKeyType t keyType, size t privKeySize,
size t pubKeySize)

Determine if it is okay to accept a key injection request.

Location: bl_attestation.h:115

Parameters
Direction Name Description
keyType The type of key being injected.
privKeySize The size in bytes of the private key buffer.
pubKeySize The maximum size of the buffer to hold the public key.
Return

BL _ATTEST NO_ERROR if the request accepted, error state otherwise.

8.7.3 BL_AttestFindPublicKeyHash

BL AttestStatus t BL AttestFindPublicKeyHash (uint8 t * hash)

Retrieve the SHA256 hash of the public key if it exists.

Location: bl _attestation.h:123

Parameters

Direction Name Description

hash A buffer to hold the hash, no checking is performed on the
size.

www.onsemi.com

75

onsemi

Secure Bootloader Guide

Return

BL ATTEST NO_ERROR if success, otherwise an error status.

8.7.4 BL_AttestinjectKey

BL AttestStatus t BL AttestInjectKey(uint8 t * key, size t keySize, BL AttestKeyType t
type, uint8 t * publicKey, size t publicKeyMaxSize, size t * publicKeySize)

Inject or create an attestation key.

If a key is provided then the private component key is stored and the public component is returned. If no key is
provided then a new key is generated and the private component is stored and the public returned. If a symmetric (AES)
key is requested then the key is stored and returned.

Location: bl _attestation.h:140

Parameters
Direction Name Description
key The key to be stored or NULL if the key should be
generated.

keySize The number of bytes in the provided key, or zero.
type the type of the key being provided or requested.
publicKey The buffer into which the public key should be written.
publicKeyMaxSize the maximum size of the provided buffer in bytes.
publicKeySize The actual size of the returned key in bytes.

Return

NO_ERROR if the key is successfully returned otherwise an error.

www.onsemi.com

76

8.7.5 BL_AttestGetToken

onsemi

Secure Bootloader Guide

BL AttestStatus t BL AttestGetToken(uint8 t * challenge, BL AttestationChallengeSize t
challengeSize, uint8 t * token, size t * tokenSize)

return the Entity Attestation Token associated with the device.

Location: bl _attestation.h:153

Parameters
Direction Name Description
challenge The challenge request from the caller.
challengeSize The requested challenge size.
token The buffer into which the token should be written.
tokenSize This provides the maximum size of the token buffer as well
as returns the actual size of the returned token.
Return

Status of the get token operation.

8.7.6 BL_AttestGetTokenSize

BL AttestStatus t BL AttestGetTokenSize (BL AttestationChallengeSize t challengeSize,

size t * tokenSize)

return the size of the Entity Attestation Token associated with the device.

Location: bl_attestation.h:164

Parameters
Direction Name Description
challengeSize The requested challenge size.
tokenSize This returns the actual size of any returned token.

www.onsemi.com

77

Return

Status of the get token size operation.

8.7.7 BL_CheckRemapAddressSpace

onsemi

Secure Bootloader Guide

uint32 t BL CheckRemapAddressSpace (uint32 t base, uint32 t address)

Determine download address based on given address which may be in bootloader or application space.

Location: bl_check.h:87

Parameters
Direction Name Description
base The base address of the application being checked.
address The given address in either bootloader or application
space.
Return

The adjusted address.

8.7.8 BL_CheckGetApplicationSize

uint32 t BL CheckGetApplicationSize (uint32 t address)

Fetch the application size from a buffer defined by base address of the application vector table.

Location: bl _check.h:95

Parameters

www.onsemi.com

78

onsemi

Secure Bootloader Guide

Direction Name Description

address The address of the base of the vector table.

Return

the size derived from the application or zero if invalid.

8.7.9 BL_CheckRelocatedApplicationSize

uint32 t BL CheckRelocatedApplicationSize (uint32 t address)

Fetch the application size from a buffer defined by base address of the application vector table.

Location: bl _check.h:103

Parameters
Direction Name Description
address The address of the base of the vector table.
Return

the size derived from the application or zero if invalid.

8.7.10 BL_ChecklflmageUpdateAvailable

BL UpdateType t BL CheckIfImageUpdateAvailable ()

Check for a valid update using the non-secure file format.

When dealing with a non-secure image, the following checks must be made:

Location: bl _check.h:116

www.onsemi.com

79

onsemi

Secure Bootloader Guide

¢ The address must be properly aligned and within a sensible range.

* The stack pointer resides in RAM, is 64 bit aligned, allows 10 words.

e The reset ISR follows the vector table address The address to check for a valid image. extent The maximum
extent of the area holding the image.
Return

Type of image update available in download area.

8.7.11 BL_ChecklfSecurelmageUpdateAvailable

bool BL CheckIfSecurelImageUpdateAvailable ()

Check for a valid update using the secure file format.

When dealing with a secure image, the following checks must be made:

Location: bl_check.h:132

* The address must be properly aligned and within a sensible range.

* The stack pointer resides in RAM, is 64 bit aligned, allows 10 words.

* The reset ISR follows the vector table.

e The full certificate chain must be authenticated. updateType The type of update being requested. address The
address to check for a valid image. extent The maximum extent of the area holding the image.
Return

True if the image has security signature, false otherwise.

8.7.12 BL_CheckFindSecondarylmageLocation

void BL CheckFindSecondaryImageLocation(uint32 t primaryBase, uint32 t primaryExtent,
uint32 t * secondaryBase, uint32 t * secondaryExtent)

Based on a primary image address, calculate the potential location and extent of any secondary image.

Location: bl_check.h:144

Parameters

www.onsemi.com

80

onsemi

Secure Bootloader Guide

Direction Name Description
primaryBase The base address of the primary image, used to locate the
secondary one.
primaryExtent The maximum extent of the primary application;
secondaryBase
secondaryExtent

8.7.13 BL_ConfiglsValid

BL ConfigStatus t BL ConfigIsValid(BL AppConfiguration t * configBase)

Helper function to return the configuration area status.

Location: bl configuration.h:85

Parameters
Direction Name Description
configBase Defines the base address of the configuration block.
Return

BL CONFIG_OKAY if the configuration area has a valid CRC, BL_CONFIG_CORRUPT otherwise.

8.7.14 BL_ConfigCertificateAddress

uint32 t BL ConfigCertificateAddress (BL AppConfiguration t * configBase, BL

LoaderCertType t cert)

Fetch the address of the requested structure.

Location: bl_configuration.h:93

Parameters

www.onsemi.com

81

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

Direction Name Description
configBase Defines the base address of the configuration block.
cert A requested certificate.
Return

The address of the requested certificate or zero if invalid request.

8.7.15 BL_Cryptolnitialize

BL CryptoStatus t BL CryptolInitialize()

Initialize the basic crypto system.

Location: bl _crypto.h:92

Return

BL _CRYPTO_NO ERROR if success otherwise an error state.

8.7.16 BL_CryptoGetBootSeed

uint8 t * BL CryptoGetBootSeed()

Fetch the boot seed.

This is calculated on first boot.

Location: bl_crypto.h:103

Return

www.onsemi.com

82

onsemi

Secure Bootloader Guide

A pointer to a buffer containing the boot seed random number.

8.7.17 BL_CryptoHash

BL CryptoStatus t BL CryptoHash(uint8 t * buffer, uint32 t base, uint32 t length)

Hash a block of memory using SHA256.

Location: bl crypto.h:112

Parameters
Direction Name Description
buffer A pointer to a buffer to which the should be written.
base The base address of the memory to be hashed.
length The length in bytes of the memory to be hashed.
Return

BL CRYPTO_NO_ERROR if success otherwise an error state.

8.7.18 BL_CryptoRSAKeySize

uintl6 t BL CryptoRSAKeySize (BL CryptoRSAKeyType t type, bool public)

Calculate the size required to serialize a given RSA private key.

Location: bl_crypto_rsa.h:78

Parameters
Direction Name Description
type The type of the key to calculate the size for.
public Flag indicating the key being considered is public or
private.

www.onsemi.com

83

Return

onsemi

Secure Bootloader Guide

The calculated size or zero if the type is invalid.

8.7.19 BL_CryptoRSASerialiseKey

BL CryptoStatus t BL CryptoRSASerialiseKey(BL CryptoRSAKeyType t type, mbedtls rsa

context * pKey, uint8 t * buffer,

Serialize an RSA key to a byte buffer.

Location: bl_crypto rsa.h:90

size t length, bool public)

Parameters
Direction Name Description
type The type of the key to be serialized.
pKey a pointer to a RSA context containing a key.
buffer The buffer into which the key should be written.
length The length of the buffer receiving the serialized key.
public True if the public components of the key should be saved.
Return

BL CRYPTO_NO_ERROR if success, an error state otherwise.

8.7.20 BL_CryptoRSADeserialiseKey

BL CryptoStatus t BL CryptoRSADeserialiseKey (BL CryptoRSAKeyType t type, mbedtls rsa

context * pKey, uint8 t * buffer,

Deserialize an RSA key from a byte buffer.

Location: bl_crypto rsa.h:103

size t length, bool public)

www.onsemi.com

84

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
type The type of the key to be deserialized.
pKey a pointer to a RSA context containing a key.
buffer The buffer from which the key should be read.
length The length of the buffer holding the serialized key.
public True if the public components of the key should be
extracted.
Return

BL CRYPTO NO ERROR if success, an error state otherwise.

8.7.21 BL_CryptoRSAGenerateKey

BL CryptoStatus t BL CryptoRSAGenerateKey (BL CryptoRSAKeyType t keyType, mbedtls rsa
context * pKey)

Generate a new RSA key of the given type.

Location: bl_crypto rsa.h:113

Parameters
Direction Name Description
keyType The type of the key to be generated.
pKey A pointer to an uninitialised rsa context to hold the key.
Return

BL _CRYPTO NO ERROR if success, an error state otherwise.

www.onsemi.com

85

onsemi

Secure Bootloader Guide

8.7.22 BL_CryptoRSASignHash

BL CryptoStatus t BL CryptoRSASignHash (BL CryptoRSAKeyType t keyType, mbedtls rsa context
* pKey, uint8 t * sign, size t signLength, uint8 t * hash, size t hashLength)

Sign a message hash using a private RSA key.

Location: bl_crypto_rsa.h:127

Parameters
Direction Name Description
keyType The type of the RSA key to be used when signing the
message.

pKey A pointer to a private key.
sign The resultant signature for the message.
signLength The length of the buffer to which the signature is written.
hash The resultant hash of the message.
hashLength The length of the buffer holding the hash.

Return

BL _CRYPTO NO ERROR if success, an error state otherwise.

8.7.23 BL_CryptoRSASignMessage

BL CryptoStatus t BL CryptoRSASignMessage (BL CryptoRSAKeyType t keyType, mbedtls rsa

context * pKey, uint8 t * msg, size t msgLength, uint8 t * sign, size t signLength, uint8
t * hash, size t hashLength)

Sign a message using a private RSA key.

Location: bl _crypto_rsa.h:149

Parameters

www.onsemi.com

86

onsemi

Secure Bootloader Guide

Direction Name Description

keyType The type of the RSA key to be used when signing the
message.
pKey A pointer to a private key.
msg A pointer to a buffer holding the message to be signed.
msglLength The length of the message to be signed.
sign The resultant signature for the message.
signLength The length of the buffer to which the signature is written.
hash The resultant hash of the message.
hashLength The length of the buffer holding the hash.
Return

BL CRYPTO_NO_ERROR if success, an error state otherwise.

NOTE: This method is suitable for signing small messages which are held in RAM, if larger messages
need to be handled it may be more suitable to perform the hashing separately using BL
CryptoHash and then sign the hash in isolation using BL CryptoRSASignHashRSA.

8.7.24 BL_CryptoRSAVerifyMessage

BL CryptoStatus t BL CryptoRSAVerifyMessage (mbedtls rsa context * pKey, uint8 t * sign,
uint8 t * hash, size t hashLength)

Verify that a given hash and signature are consistent.

Location: bl _crypto_rsa.h:162

Parameters

www.onsemi.com

87

onsemi

Secure Bootloader Guide

Direction Name Description
pKey A pointer to a private key.
sign The signature to be verified.
hash The hash of the original message which has been signed.
hashLength The length of the hash.
Return

BL CRYPTO_NO_ ERROR if success, an error state otherwise.

8.7.25 BL_EATPopulate

BL EATStatus t BL EATPopulate(uint8 t * challenge, size t size)

Populates a buffer with the contents of the entity attestation token.

Location: bl _eat.h:98

Parameters
Direction Name Description
challenge A pointer to the challenge buffer.
size The size of the challenge in bytes.
Return

BL EAT NO_ERROR if token written otherwise an error state.

8.7.26 BL_EATSize

size t BL EATSize(size t challengeSize)

Calculate the expected size of the EAT token once converted to CBOR.

www.onsemi.com

88

onsemi

Secure Bootloader Guide

Location: bl _eat.h:105

Parameters
Direction Name Description
challengeSize The size in bytes fo the challenge accompanying the EAT.
Return

the number of bytes required to hold the EAT.

8.7.27 BL_FCSinitialize

BL FCSStatus t BL FCSInitialize(uint8 t * buffer, size t length, BL FCS t fcs)

Initialize the FCS module, deriving the selected algorithm from the provided sample data.

Location: bl_fcs.h:86

Parameters
Direction Name Description
buffer A buffer of bytes to be FCS'd.
length The number of bytes.
fcs The expected FCS value.
Return

BL FCS NO_ERROR if the FCS algorithm can be identified. BL_ FCS UNRECOGNIZED if the FCS
algorithm cannot be identified.

www.onsemi.com

89

onsemi

Secure Bootloader Guide

8.7.28 BL_FCSQuery

BL FCSAlgorithm t BL FCSQuery ()

Query the currently selected FCS algorithm.

Location: bl _fcs.h:92

Return

The currently selected algorithm.

8.7.29 BL_FCSAuthenticationRequired

bool BL FCSAuthenticationRequired()

Provides a mechanism to determine if the loading process should apply authentication to the protocol and images.

Location: bl_fcs.h:99

Return

True if authentication is required

8.7.30 BL_FCSSelect

BL FCSStatus t BL FCSSelect (BL FCSAlgorithm t algo)

Select a specific FCS algorithm.

Location: bl _fcs.h:108

Parameters

www.onsemi.com

90

onsemi

Secure Bootloader Guide

Direction Name Description

algo Selected from BL _FCSAIlgorithm_t.

Return

BL FCS NO_ERROR If the algorithm is valid. BL_ FCS UNRECOGNIZED If the algorithm is not valid.

8.7.31 BL_FCSCheck

BL FCSStatus t BL FCSCheck(uint8 t * buffer, size t length, BL FCS t fcs)

Check the validity of a buffer against a given FCS.

Location: bl fcs.h:119

Parameters
Direction Name Description
buffer A buffer of bytes to calculate a FCS over.
length The number of bytes.
fcs The expected FCS value.
Return

BL FCS VALID if the FCS matches the data. BL FCS INVALID if the FCS does not match the data.

8.7.32 BL_FCSCalculate

BL FCSStatus t BL FCSCalculate(uint8 t * buffer, size t length, BL FCS t * fcs)

Calculate the FCS of a given buffer.

Location: bl _fcs.h:130

www.onsemi.com

91

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
buffer A buffer of bytes to calculate a FCS over.
length The number of bytes.
fcs The calculated FCS value.
Return

BL FCS NO ERROR if the FCS can be calculated. BL FCS INVALID if an error is detected when calculating
the FCS.

8.7.33 BL_FCSAccumulateCRC

uint32 t BL FCSAccumulateCRC(uint8 t * buffer, size t length)

Helper method to accumulate a CRC given a buffer and a length.

Location: bl fcs.h:141

Parameters
Direction Name Description
buffer A buffer of bytes to calculate a CRC on.
length The number of bytes.

NOTE: This is expected to be used for RAM buffers where the use of the flash copier can't be used. The
CRC engine should be initialised prior to calling this function.

8.7.34 BL_Encryptinitialize

BL EncryptionStatus t BL EncryptInitialize(const uint8 t * label, size t length)

www.onsemi.com

92

onsemi

Secure Bootloader Guide

Initialization function for the encryption layer.

Location: bl file encryption.h:85

Parameters
Direction Name Description
label A label value to be used when creating the derived key.
length The length of the label in bytes.
Return

BL _ENCRYPT NO_ERROR if the initialization succeeds.

8.7.35 BL_EncryptResetEncryption

BL EncryptionStatus t BL EncryptResetEncryption(const uint8 t * iv)

Reset the encryption operation and introduce a new initial value.

Location: bl file encryption.h:96

Parameters

Direction Name Description

iv The new initial value, must be a pointer to a buffer of BL_
ENCRYPT_KEY_SIZE BYTES bytes.

8.7.36 BL_EncryptResetDecryption

BL EncryptionStatus t BL EncryptResetDecryption(const uint8 t * iv)

Reset the decryption operation and introduce a new initial value.

Location: bl file encryption.h:106

www.onsemi.com

93

Parameters

onsemi

Secure Bootloader Guide

Direction

Name

Description

iv

The new initial value, must be a pointer to a buffer of BL_
ENCRYPT_KEY_SIZE_BYTES bytes.

8.7.37 BL_EncryptEncryptBuffer

BL EncryptionStatus t BL EncryptEncryptBuffer (uint8 t * buffer, size t length)

Encrypt a buffer using the internally derived key.

Location: bl _file encryption.h:117

Parameters
Direction Name Description
buffer A pointer to a buffer to be encrypted.
length The length of the buffer being encrypted.
Return

BL ENCRYPT NO_ERROR if encryption succeeds, otherwise error.

NOTE: The length must be a a multiple of 16 bytes otherwise an error will be reported.

8.7.38 BL_EncryptDecryptBuffer

BL EncryptionStatus t BL EncryptDecryptBuffer (uint8 t * buffer, size t length)

Decrypt a buffer using the internally derived key.

Location: bl_file encryption.h:128

www.onsemi.com

94

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
buffer A pointer to a buffer to be decrypted.
length The length of the buffer being decrypted.
Return

BL ENCRYPT NO_ ERROR if decryption succeeds, otherwise error.

NOTE: The length must be a a multiple of 16 bytes otherwise an error will be reported.

8.7.39 BL_EncryptComplete

BL EncryptionStatus t BL EncryptComplete ()

Complete the current encryption or decryption operation.

Location: bl file encryption.h:134

Return

BL _ENCRYPT NO_ERROR if success, otherwise error.

8.7.40 BL_FlashlInitialize

void BL FlashInitialize()

Initialize the flash subsystem.

Location: bl_flash.h:55

www.onsemi.com

95

onsemi

Secure Bootloader Guide

8.7.41 BL_FlashSaveSector

FlashStatus t BL FlashSaveSector (uint8 t * address, size t length, uint8 t * buffer)

Save a buffer to a specified flash address.

Location: bl _flash.h:67

Parameters
Direction Name Description
address The address in flash to save the buffer.
length The number of bytes to save.
buffer A pointer to a buffer of data to be written.
Return

FLASH_ERR_NONE if the operation is successful otherwise an error code the flash library.

NOTE: The start address is expected to start on a sector boundary.

8.7.42 BL_Imagelnitialize

BL ImageType t BL ImageInitialize(uint8 t * address, size t length, uint32 t crc)

Initialize the image module for a specific set of image attributes.

Location: bl _image.h:98

Parameters

www.onsemi.com

96

onsemi

Secure Bootloader Guide

Direction Name Description
address The base address of the image being loaded.
length The length of the image in bytes.
cre the crc of the image being loaded.
Return

The type of image recognized.

8.7.43 BL_ImageAddress

uint32 t BL ImageAddress(uint32 t address)

Convert an address to take into account potential offsets.

Location: bl image.h:107

Parameters
Direction Name Description
address The address in an image.
Return

The converted address.

8.7.44 BL_IlmageAddressRange

void BL ImageAddressRange (uint8 t * address, size t length, BL ImageSplitRange t * range)

Helper routine which allows access of the image as a contiguous block of addresses, wrapping around the reserved
block.

www.onsemi.com

97

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t

Location: bl _image.h:118

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
address An address within an image that may need to be adjusted.
length the length of the address range.
range A split range object that indicates where the address range

needs to be split.

8.7.45 BL_ImageCopyMemoryRange

void BL ImageCopyMemoryRange (uint8 t * dst, BL ImageSplitRange t * range)

Copy a possibly split memory range to a contiguous buffer.

Location: bl image.h:127

Parameters
Direction Name Description
dst The destination buffer.
range The range defining the source locations.

8.7.46 BL_ImageSaveBlock

BL ImageStatus t BL ImageSaveBlock (BL ImageOperation t * operation)

Save a block of data from a RAM bulffer to the next block in Flash.

Location: bl image.h:135

Parameters

www.onsemi.com

98

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_operation__t

onsemi

Secure Bootloader Guide

Direction

Name

Description

operation

Defines the address and length of the block to be saved.

Return

Status code indicating if the save operation failed

8.7.47 BL_IlmageVerify

BL ImageStatus t BL ImageVerify ()

Verify the most recently loaded image.

Location: bl image.h:144

Return

BL IMAGE NO ERROR If the CRC matches the data. BL IMAGE VERIFY ERROR If the CRC does not

match the data.

8.7.48 BL_ImageAuthenticate

BL ImageStatus t BL ImageAuthenticate(BL ImageType t imageType, uint32 t * address,

t length, bool verifyImages)

Authenticate a loaded image.

Location: bl _image.h:157

Parameters

size

www.onsemi.com

99

onsemi

Secure Bootloader Guide

Direction Name Description
imageType The type of the image being authenticated.
address The base address of the image to be authenticated.
length The size of the area in bytes.
verifylmages Flag indicating that the s/w images must be validated.
Return

BL IMAGE NO_ERROR If the CRC matches the data. BL IMAGE AUTHENTICATE ERROR If the authen-
tication fails.

8.7.49 BL_ImageAuthenticateCurrent

BL TmageStatus t BL ImageAuthenticateCurrent ()

Authenticate the most recently loaded image.

Location: bl _image.h:167

Return

BL IMAGE NO ERROR If the CRC matches the data. BL IMAGE AUTHENTICATE ERROR If the authen-
tication fails.

8.7.50 BL_ImagelsValid

bool BL ImageIsValid(uint32 t address, size t length)

Check if there is a valid image to start.

Location: bl image.h:176

Parameters

www.onsemi.com

100

onsemi

Secure Bootloader Guide

Direction Name Description
address The address of the image in flash.
length The length of the image in bytes.

Return

True if there is a valid application to start. False otherwise.

8.7.51 BL_ImageSaveAddress

uint32 t BL ImageSaveAddress (BL ImageType t imageType, uint32 t address)

Return the download address corresponding to the requested address.

Location: bl _image.h:185

Parameters
Direction Name Description
imageType The type of the image being authenticated.
address The requested address
Return

The download address

8.7.52 BL_ImageStartApplication

void BL ImageStartApplication(uint32 t imageBaseAddress)

Start the image stored in flash.

Location: bl_image.h:192

www.onsemi.com

101

Parameters

onsemi

Secure Bootloader Guide

Direction

Name

Description

imageBaseAddress

The base address of the image to be started

8.7.53 BL_LoaderPerformFirmwareLoad

void BL_LoaderPerformFirmwareLoad()

Perform a firmware update over the UART interface.

Location: bl loader.h:147

8.7.54 BL_LoaderCertificateAddress

uint32 t BL LoaderCertificateAddress (BL LoaderCertType t cert)

Fetch the address of the requested structure.

Location: bl loader.h:154

Parameters
Direction Name Description
cert A requested certificate.
Return

The address of the requested certificate or zero if invalid request.

8.7.55 BL_CBORInitialize

BL CBORStatus t BL CBORInitialize(uint8 t * buffer, size t size)

www.onsemi.com

102

onsemi

Secure Bootloader Guide

Initialize the CBOR renderer giving it a buffer to render to.

Location: bl _mini_cbor.h:73

Parameters
Direction Name Description
buffer A pointer to a buffer to render to.
size The size of the buffer in bytes.
Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.56 BL_CBORReset

BL CBORStatus t BL CBORReset ()

Reset the CBOR renderer pointers to the initial state.

Location: bl_mini_cbor.h:80

Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.57 BL_CBORUsed

BL CBORStatus t BL CBORUsed(size t * size)

Provide an indication of the amount of the buffer that has been used.

Location: bl_mini_cbor.h:88

www.onsemi.com

103

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
size Pointer to size_t object to receive the number of used
bytes.
Return

BL _CBOR NO ERROR if everything is okay, otherwise error status.

8.7.58 BL_CBORCurrent
uint8 t * BL CBORCurrent ()

Retrieve the current pointer onto the render buffer.

Location: bl mini_cbor.h:95

Return

A pointer to the next write point of the buffer.

8.7.59 BL_CBORAddinteger

BL CBORStatus t BL CBORAddInteger (uint32 t wvalue)

Add an integer to the CBOR buffer.

Location: bl_mini_cbor.h:104

Parameters

Direction Name Description

value The value to render to the buffer..

www.onsemi.com

104

onsemi

Secure Bootloader Guide

Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.60 BL_CBORAddBuffer

BL CBORStatus t BL CBORAddBuffer (uint8 t * value, uint32 t size)

Add a fixed size buffer to the CBOR buffer.

Location: bl_mini_cbor.h:113

Parameters
Direction Name Description
value A pointer to an array of bytes to be added.
size The size of the buffer to add.
Return

BL CBOR _NO_ERROR if everything is okay, otherwise error status.

8.7.61 BL_CBORAddMap

BL CBORStatus t BL CBORAddMap (uint32 t numItems)

Add a map with a fixed number of entries to the CBOR buffer.

Location: bl _mini_cbor.h:121

Parameters

www.onsemi.com

105

onsemi

Secure Bootloader Guide

Direction Name Description

numltems The number of items that will be in the map.

Return

BL CBOR NO_ERROR if everything is okay, otherwise error status.

8.7.62 BL_CBORAddMapPair

BL CBORStatus t BL CBORAddMapPair (uint32 t tag, uint8 t * value, uint32 t size)

Add a key value pair to a map.

Location: bl mini_cbor.h:131

Parameters
Direction Name Description
tag The key value to add.
value a pointer to a buffer of data to write.
size The number of butes in the value being written.
Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.63 BL_CBORSizelnteger
size t BL CBORSizeInteger (uint32 t value)

Retrieve the rendered size of an integer value.

Location: bl_mini_cbor.h:140

www.onsemi.com

106

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
value The value to size.
Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.64 BL_CBORSizeBuffer

size t BL CBORSizeBuffer (uint32 t size)

Retrieve the rendered size of a buffer.

Location: bl_mini_cbor.h:148

Parameters
Direction Name Description
size The number of bytes in the buffer being renedered.
Return

BL _CBOR NO ERROR if everything is okay, otherwise error status.

8.7.65 BL_CBORSizeMap
size t BL CBORSizeMap (uint32 t numItems)

Retrieve the number of bytes in a rendered map header.

Location: bl mini_cbor.h:156

www.onsemi.com

107

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
numltems the number of items in the map.
Return

BL CBOR NO ERROR if everything is okay, otherwise error status.

8.7.66 BL_CBORSizeMapPair
size t BL CBORSizeMapPair (uint32 t tag, uint32 t size)

Retrieve the rendered size of a key value pair.

Location: bl_mini_cbor.h:165

Parameters
Direction Name Description
tag The key value.
size The size of the buffer associated with the value.
Return

BL _CBOR NO ERROR if everything is okay, otherwise error status.

8.7.67 BL_Recoverylnitialize

void BL RecoveryInitialize()

Define the initialization routine for the Debug Catch feature.

www.onsemi.com

108

onsemi

Secure Bootloader Guide

Location: bl _recovery.h:57

8.7.68 BL_SecureBootlnitialize

blSecureBootStatus t BL SecureBootInitialize()

Initialize the Secure Boot subsystem.

Location: bl_secure_boot.h:81

Return

BL _SEC NO_ERROR if the initialization is okay, BL SEC INIT FAILED if an error is detected.

8.7.69 BL_SecureBootAuthenticate

blSecureBootStatus t BL SecureBootAuthenticate(uint32 t opkeyl, uint32 t opkey2, uint32 t
opcontent, bool verifylImages, uint32 t relocation)

Authenticate a RoT certificate chain based on a given RoT.

Location: bl_secure_boot.h:95

Parameters
Direction Name Description
opkey1 The address of the first key certificate.
opkey2 The address of the second key certificate.
opcontent The address of a content certificate.
verifylmages Flag indicating if full verification is to be done.
relocation The address of the s/w images in memory if not accurate in
the content certificate.
Return

www.onsemi.com

109

onsemi

Secure Bootloader Guide

BL SEC NO_ERROR if the authentication passes, suitable error state from blSecureBootStatus t if an error
occurs.

8.7.70 BL_FStorelnitialize

BL FStoreStatus t BL FStorelInitialize()

Initialize the secure file system.

Location: bl simple filer.h:110

Return

The status of the operation, BL_ FS NO ERROR if the initialization succeeds.

8.7.71 BL_FStoreMakeFilesystem

BL FStoreStatus t BL FStoreMakeFilesystem()

Try to make a new file system.

Location: bl_simple filer.h:116

Return

BL FS NO ERROR if a new file system can be initialized.

8.7.72 BL_FStoreFileSize

uint32 t BL FStoreFileSize(BL FSFilelId t id)

Retrieve the size in bytes of a requested file.

Location: bl_simple filer.h:123

www.onsemi.com

110

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
id The file identifier.
Return

The size in bytes or 65535 if the file cannot be found.

8.7.73 BL_FStoreFileExists

bool BL FStoreFileExists (BL FSFileId t id)

Determine if the file exists in the store.

Location: bl_simple_filer.h:130

Parameters
Direction Name Description
id The file identifier.
Return

True if the file exists, false otherwise.

8.7.74 BL_FStoreFileCanRead

bool BL FStoreFileCanRead(BL FSFileId t id)

Determine if the file exists in the store and can be read.

Location: bl_simple filer.h:137

www.onsemi.com

111

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
id The file identifier.
Return

True if the file exists and can be read, false otherwise.

8.7.75 BL_FStoreFileCanWrite

bool BL FStoreFileCanWrite (BL FSFileId t id)

Determine if the file exists in the store and can be written.

Location: bl simple filer.h:144

Parameters
Direction Name Description
id The file identifier.
Return

True if the file exists and can be written, false otherwise.

8.7.76 BL_FStoreFileCanDelete

bool BL FStoreFileCanDelete (BL FSFileId t id)

Determine if the file exists in the store and can be deleted.

Location: bl_simple filer.h:151

www.onsemi.com

112

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
id The file identifier.
Return

True if the file exists and can be deleted, false otherwise.

8.7.77 BL_FStoreWrite

BL FStoreStatus t BL FStoreWrite(BL FSFileId t id, uint8 t * buffer, uintlé t size,
uintl6 t flags)

Write a buffer from RAM to the secure file store.

Location: bl simple filer.h:162

Parameters
Direction Name Description
id The file identifier.
buffer A pointer to a RAM buffer containing the file contents.
size The size of the buffer in bytes.
flags The set of flags associated with the file.
Return

BL _FS NO _ERROR if the file is successfully written, error state otherwise..

8.7.78 BL_FStoreRead

BL FStoreStatus t BL FStoreRead(BL FSFileId t id, uint8 t * buffer, uintlé t * maxsize)

www.onsemi.com

113

onsemi

Secure Bootloader Guide

Read a file from the secure file store to a RAM bulffer.

Location: bl_simple filer.h:174

Parameters
Direction Name Description
id The file identifier.
buffer A pointer to a RAM buffer to write the file contents.
maxsize The maximum size of the buffer in bytes. On exit, this value
is updated to reflect the actual number of bytes read.
Return

BL FS NO ERROR if the file is successfully read, error state otherwise..

8.7.79 BL_FStoreDelete

BL FStoreStatus t BL FStoreDelete(BL FSFileId t id)

Delete a file from the secure file.

Location: bl_simple filer.h:183

Parameters
Direction Name Description
id The file identifier.
Return

BL FS NO ERROR if the file is successfully deleted, error state otherwise..

www.onsemi.com

114

onsemi

Secure Bootloader Guide

8.7.80 BL_FStoreFileList

BL FStoreStatus t BL FStoreFileList (uint8 t * buffer, uintl6 t * maxsize, bool
showHidden)

Retrieve the secure store directory information.

Location: bl _simple_filer.h:194

Parameters
Direction Name Description
buffer A pointer to a RAM buffer to write the directory contents.
maxsize The maximum size of the buffer in bytes. On exit, this
showHidden Flag indicating if the reserved files should be included.
value is updated to reflect the actual number of bytes read.
Return

BL FS NO_ERROR if the directory is successfully read, error state otherwise..

8.7.81 BL_Targetlnitialize

void BL TargetInitialize()

Target initialization function, loads the trim values and sets up the various clocks used in the system.

Location: bl_target.h:77

8.7.82 BL_TargetReset

void BL TargetReset ()

Reset the device using NVIC.

Location: bl target.h:82

www.onsemi.com

115

onsemi

Secure Bootloader Guide

8.7.83 BL_Tickerlnitialize

void BL TickerInitialize()

Initialize the timer tick.

Location: bl_ticker.h:58

8.7.84 BL_TickerTime

uint32 t BL TickerTime ()

Get the current timer tick value.

Location: bl _ticker.h:64

Return

The time since the ticker was initialized in ms.

8.7.85 SysTick_Handler

void SysTick Handler ()

System tick interrupt handler, required by the ticker.

Location: bl _ticker.h:69

8.7.86 BL_Tracelnitialize

void BL_TraceInitialize()

Initialize the trace sub-system.

Location: bl _trace.h:70

www.onsemi.com

116

onsemi

Secure Bootloader Guide

8.7.87 BL_UARTInitialize

void BL UARTInitialize()

Initialize the UART subsystem.

Location: bl _uart.h:102

8.7.88 BL_UARTReceiveAsync

BL UARTStatus t BL UARTReceiveAsync (uint8 t * buffer, size t length)

Start receiving a fixed length data buffer using the UART.

Location: bl uvart.h:119

Parameters
Direction Name Description
buffer A pointer to a buffer in which to store the incoming data.
length The number of bytes to store in the buffer. (> 0)
Return

BL UART NO ERROR if the operation is started successfully. BL UART INVALID PARAMETER if the
length is zero. BL UART RX BUSY if another receive operation is currently active.

NOTE: No checking is performed to ensure that the buffer is big enough to hold the requested number of
bytes. The calling function must ensure this is valid.

NOTE: There must be no pending receive operation pending when this is invoked.

www.onsemi.com

117

onsemi

Secure Bootloader Guide

8.7.89 BL_UARTReceiveComplete

BL UARTStatus t BL UARTReceiveComplete (uint8 t * buffer, size t length, BL FCS t * fcs)

Complete the reception of an executing receive operation.

Location: bl uvart.h:137

Parameters
Direction Name Description
buffer A pointer to a buffer in which to store the incoming data.
length The number of bytes to store in the buffer. (> 0)
fcs Indicating if a FCS should be calculated on the input. NULL
indicates no FCS calculation needed.
Return

BL UART NO_ERROR if the operation completes successfully. BL UART RX IDLE if there is no pending
receive operation. BL UART RX TIMEOUT if the receive operation timed out. BL UART BAD FCS if the
receive operation had an invalid FCS.

NOTE: There must be an existing receive operation pending.

NOTE: This is a blocking operation.

8.7.90 BL_UARTReceive

BL UARTStatus t BL UARTReceive (uint8 t * buffer, size t length, BL FCS t * fcs)

Receiving a fixed length data buffer using the UART.

Location: bl uart.h:161

Parameters

www.onsemi.com

118

onsemi

Secure Bootloader Guide

Direction Name Description
buffer A pointer to a buffer in which to store the incoming data.
length The number of bytes to store in the buffer. (> 0)
fcs Indicating if a FCS should be calculated on the input. NULL
indicates no FCS calculation needed.

Return

BL UART NO_ERROR if the operation is started successfully. BL UART INVALID PARAMETER if the
length is zero. BL UART RX BUSY if another receive operation is currently active. BL UART RX
TIMEOUT if the receive operation timed out. BL_ UART BAD_FCS if the receive operation had an invalid
FCS.

NOTE: No checking is performed to ensure that the buffer is big enough to hold the requested number of
bytes. The calling function must ensure this is valid.

NOTE: There must be no pending receive operation pending when this is invoked.

NOTE: This is a blocking operation.

8.7.91 BL_UARTSendAsync

BL UARTStatus t BL UARTSendAsync(uint8 t * buffer, size t length, BL FCS t * fcs)

Start sending a fixed length data buffer using the UART.

Location: bl _uart.h:175

Parameters
Direction Name Description
buffer A pointer to a buffer holding the outgoing data.
length The number of bytes to send. (> 0)
fcs The FCS of the buffer to accompany the transmission.

www.onsemi.com

119

onsemi

Secure Bootloader Guide

Return

BL UART NO ERROR if the operation is started successfully. BL UART INVALID PARAMETER if the
length is zero. BL UART TX BUSY if another send operation is currently active.

NOTE: There must be no pending transmit operation pending when this is invoked.

8.7.92 BL_UARTSendComplete

BL UARTStatus t BL UARTSendComplete ()

Complete the transmission of an executing send operation.

Location: bl _uart.h:188

Return

BL UART NO_ERROR if the operation completes successfully. BL UART TX IDLE if there is no pending
receive operation. BL_ UART TX TIMEOUT if the send operation timed out.

NOTE: There must be an existing transmit operation pending.

NOTE: This is a blocking operation.

8.7.93 BL_UARTSend

BL UARTStatus t BL UARTSend(uint8 t * buffer, size t length, BL FCS t * fcs)

Send a fixed length data buffer using the UART.

Location: bl uart.h:205

www.onsemi.com

120

onsemi

Secure Bootloader Guide

Parameters
Direction Name Description
buffer A pointer to a buffer holding the outgoing data.
length The number of bytes to send. (> 0)
fcs The FCS of the buffer to accompany the transmission.
Return

BL UART NO ERROR if the operation is started successfully. BL UART INVALID PARAMETER if the
length is zero. BL UART TX BUSY if another send operation is currently active. BL UART TX TIMEOUT
if the send operation timed out.

NOTE: There must be no pending transmit operation pending when this is invoked.

NOTE: This is a blocking operation.

8.7.94 BL_Updatelnitialize

void BL UpdateInitialize ()

Initialize the firmware update component.

Location: bl_update.h:60

8.7.95 BL_UpdateRequested

bool BL UpdateRequested()
Check if a firmware update is being requested.

Location: bl _update.h:66

Return

www.onsemi.com

121

onsemi

Secure Bootloader Guide

True if the update pin has been pulled low. False otherwise.

8.7.96 BL_UpdateProcessPendinglmages

void BL UpdateProcessPendingImages ()

This will check for any pending images which have previously been downloaded and if any are found will copy them to
the appropriate location for execution.

Location: bl _update.h:73

8.7.97 BL_ImageSelectAndStartApplication

void BL ImageSelectAndStartApplication()

This will attempt to start any images which are available.

This will first try to validate and if necessary authenticate the primary image. If this is successful it will then perform
similar validation and authentication on the secondary image. If both the primary and secondary image validation is suc-
cessful then it will start the secondary image. If only the primary image is valid then it will be started instead. If both
the primary and secondary image fail the validation steps then no image will be started and the function will return to
the caller and the bootloader will enter the loading state.

Location: bl_update.h:90

8.7.98 BL_VersionsGetinformation

void BL VersionsGetInformation (BL BootAppVersion t * version, uint32 t address)

Get the version information from a suitable application.

Location: bl _versions.h:101

Parameters

www.onsemi.com

122

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t

onsemi

Secure Bootloader Guide

Direction Name Description
version The structure into which the information should be copied.
address The base address of the application under consideration.
8.7.99 BL_VersionsGetHello
voild BL VersionsGetHello (BL HelloResponse t * response)
Fetch the hello response from the bootloader.
Location: bl_versions.h:108
Parameters
Direction Name Description
response The structure into which the hello response should be
copied.

8.7.100 BL_Watchdoglnitialize

void BL WatchdogInitialize()

Initialise the watchdog module.

Location: bl_watchdog.h:64

8.7.101 BL_WatchdogSetHoldTime

void BL WatchdogSetHoldTime (uint32 t seconds)

Set the watchdog hold off time to seconds.

Location: bl watchdog.h:76

Parameters

www.onsemi.com

123

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___hello_response__t

onsemi

Secure Bootloader Guide

Direction Name Description

seconds The number of seconds to allow before the watchdog bites.

NOTE: This allows the watchdog interrupt to fire but refreshes the watchdog itself until the requested
number of seconds has elapsed. This is a crude mechanism to prevent long running calculations
such as RSA key generation from causing a system reset.

8.7.102 WATCHDOG_IRQHandler

void WATCHDOG IRQHandler ()

Define an interrupt handler for the watchdog interrupt.

Location: bl _watchdog.h:82

www.onsemi.com

124

onsemi

Secure Bootloader Guide

Windows is a registered trademark of Microsoft Corporation. Arm, Cortex, Keil, and uVision are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All
other brand names and product names appearing in this document are trademarks of their respective holders.

IAR Embedded Workbench is a registered trademark of IAR Systems AB.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi owns the
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale
in any manner.

Copyright 2023 Semiconductor Components Industries, LLC (“onsemi”). All rights reserved. Unless agreed to differently in a separate onsemi license agreement, onsemi is providing
this “Technology” (e.g. reference design kit, development product, prototype, sample, any other non-production product, software, design-IP, evaluation board, etc.) “AS IS” and does
not assume any liability arising from its use; nor does onsemi convey any license to its or any third party’s intellectual property rights. This Technology is provided only to assist users in
evaluation of the Technology and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. onsemi
reserves the right to make changes without further notice to any of the Technology.

The Technology is not a finished product and is as such not available for sale to consumers. Unless agreed otherwise in a separate agreement, the Technology is only intended for
research, development, demonstration and evaluation purposes and should only be used in laboratory or development areas by persons with technical training and familiarity with the
risks associated with handling electrical/mechanical components, systems and subsystems. The user assumes full responsibility/liability for proper and safe handling. Any other use,
resale or redistribution for any other purpose is strictly prohibited.

The Technology is not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification
in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the Technology for any such unintended or unauthorized application,
you shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was
negligent regarding the design or manufacture of the board.

The Technology does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or
UL, and may not meet the technical requirements of these or other related directives.

THE TECHNOLOGY IS NOT WARRANTED AND PROVIDED ON AN “AS IS” BASIS ONLY. ANY WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE HEREBY EXPRESSLY DISCLAIMED.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ONSEMI BE LIABLE TO CUSTOMER OR ANY THIRD PARTY. IN NO EVENT SHALL
ONSEMI BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, LOSS OR
DISGORGEMENT OF PROFITS, LOSS OF USE AND LOSS OF GOODWILL), REGARDLESS OF WHETHER ONSEMI HAS BEEN GIVEN NOTICE OF ANY SUCH ALLEGED
DAMAGES, AND REGARDLESS OF WHETHER SUCH ALLEGED DAMAGES ARE SOUGHT UNDER CONTRACT, TORT OR OTHER THEORIES OF LAW.

Do not use this Technology unless you have carefully read and agree to these limited terms and conditions. By using this Technology, you expressly agree to the limited terms and
conditions. All source code is onsemi proprietary and confidential information.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: N. American Technical Support: onsemi Website: www.onsemi.com

Literature Distribution Center for onsemi 800-282-9855 Toll Free USA/Canada

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Europe, Middle East and Africa Technical Order Literature: http://www.onsemi.com/orderlit
Phone: 303-675-2175 or 800-344-3860 Toll Free Support:Phone: 421 33 790 2910

USA/Canada For additional information, please contact your local
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Sales Representative

Email: orderlit@onsemi.com

M-20892-004

www.onsemi.com

125

	Secure Bootloader Guide
	Table of Contents
	1. Introduction
	1.1 Summary
	1.2 Document Conventions
	1.3 Further Reading

	2. Overview
	2.1 Common Features
	2.2 RSL15 Secure Bootloader Usage Options
	2.2.1 Functionality Access Options
	2.2.2 Configuration

	2.3 Memory Partitioning Overview

	3. PSA Compliance Background
	3.1 Overview of PSA Compliance

	4. Basic Bootloader
	4.1 General Usage

	5. Secure Bootloader
	5.1 Booting a Secure Application
	5.2 Updating a Secure Application
	5.3 Updating the Secure Bootloader Itself
	5.4 Support for Immutable Portions in the Secure Bootloader

	6. Secure Storage
	6.1 Secure Storage Area
	6.2 Content to be Stored in Secure Storage
	6.3 API
	6.4 Basic Operation

	7. Attestation
	7.1 Overview and Background
	7.2 Attestation Interface
	7.2.1 Key Injection
	7.2.2 Get Token
	7.2.3 Get Token Size
	7.2.4 Key Injection Process

	7.3 Attestation Token
	7.3.1 Format of Token
	7.3.2 EAT Additional Details
	7.3.3 Attestation Token Request

	8. Secure Bootloader Sample Reference
	8.1 Summary
	8.2 Detailed Description
	8.3 Secure Bootloader Sample Reference Typedef Documentation
	8.3.1 BL_FCS_t
	8.3.2 BL_FSFileId_t
	8.3.3 BL_BootAppId_t

	8.4 Secure Bootloader Sample Reference Variable Documentation
	8.4.1 DRBGContext
	8.4.2 BL_ImageWorkspace

	8.5 Secure Bootloader Sample Reference Enumeration Type Documentation
	8.5.1 BL_AttestStatus_t
	8.5.2 BL_AttestKeyType_t
	8.5.3 BL_AttestationChallengeSize_t
	8.5.4 BL_AttestTags_t
	8.5.5 BL_UpdateType_t
	8.5.6 BL_ConfigStatus_t
	8.5.7 BL_CryptoStatus_t
	8.5.8 BL_CryptoRSAKeyType_t
	8.5.9 BL_EATStatus_t
	8.5.10 BL_EATTags_t
	8.5.11 BL_FCSStatus_t
	8.5.12 BL_FCSAlgorithm_t
	8.5.13 BL_EncryptionStatus_t
	8.5.14 BL_ImageType_t
	8.5.15 BL_ImageStatus_t
	8.5.16 BL_LoaderCommand_t
	8.5.17 BL_LoaderStatus_t
	8.5.18 BL_LoaderCertType_t
	8.5.19 BL_LoaderStatusType_t
	8.5.20 BL_CBORStatus_t
	8.5.21 blSecureBootStatus_t
	8.5.22 BL_FStoreStatus_t
	8.5.23 BL_FSFlags_t
	8.5.24 BL_FSReservedFilename_t
	8.5.25 BL_UARTStatus_t

	8.6 Secure Bootloader Sample Reference Macro Definition Documentation
	8.6.1 VT_OFFSET_STACK_POINTER
	8.6.2 VT_OFFSET_RESET_VECTOR
	8.6.3 VT_OFFSET_VERSION_INFO
	8.6.4 VT_OFFSET_IMAGE_SIZE
	8.6.5 VT_OFFSET_CERT_SIZE
	8.6.6 BL_CONFIGURATION_BASE
	8.6.7 BL_CONFIGURATION_WORDS
	8.6.8 BL_CRYPTO_BOOT_SEED_LENGTH
	8.6.9 BL_CRYPTO_SHA256_DIGEST_LENGTH
	8.6.10 BL_ENCRYPT_KEY_SIZE_BITS
	8.6.11 BL_ENCRYPT_KEY_SIZE_BYTES
	8.6.12 BL_ENCRYPT_BLOCK_SIZE_BITS
	8.6.13 BL_ENCRYPT_BLOCK_SIZE_BYTES
	8.6.14 FLASH_BOND_INFO_SIZE
	8.6.15 BL_CODE_SECTOR_SIZE
	8.6.16 BL_DATA_SECTOR_SIZE
	8.6.17 BL_FLASH_RESERVED_SIZE
	8.6.18 BL_SECURE_STORAGE_BASE
	8.6.19 BL_SECURE_STORAGE_SIZE
	8.6.20 BL_SECURE_STORAGE_TOP
	8.6.21 BL_BOOTLOADER_BASE
	8.6.22 BL_BOOTLOADER_SIZE
	8.6.23 BL_FLASH_CODE_BASE
	8.6.24 BL_FLASH_DATA_BASE
	8.6.25 BL_FLASH_CODE_TOP
	8.6.26 BL_FLASH_DATA_TOP
	8.6.27 BL_FLASH_CODE_SIZE
	8.6.28 BL_FLASH_DATA_SIZE
	8.6.29 BL_APPLICATION_BASE
	8.6.30 BL_AVAILABLE_SIZE
	8.6.31 BL_APPLICATION_SIZE
	8.6.32 BL_DOWNLOAD_BASE
	8.6.33 BL_DOWNLOAD_SIZE
	8.6.34 BL_OPT_FEATURE_ENABLED
	8.6.35 BL_OPT_FEATURE_DISABLED
	8.6.36 BL_OPT_FEATURE_BOOTLOADER
	8.6.37 BL_OPT_FEATURE_BOOTLOADER
	8.6.38 BL_OPT_FEATURE_SECURE_BOOTLOADER
	8.6.39 BL_OPT_FEATURE_SECURE_BOOTLOADER
	8.6.40 BL_OPT_FEATURE_SECURE_STORAGE
	8.6.41 BL_OPT_FEATURE_SECURE_STORAGE
	8.6.42 BL_OPT_FEATURE_ATTESTATION
	8.6.43 BL_OPT_ATTEST_KEY_AES
	8.6.44 BL_OPT_ATTEST_KEY_RSA
	8.6.45 BL_OPT_ATTEST_KEY_ECC
	8.6.46 BL_OPT_SECURE_FILE_SYSTEM_RESET
	8.6.47 DEBUG_CATCH_GPIO
	8.6.48 BL_SEC_IGNORE_KEY
	8.6.49 BL_SEC_DEFER_KEY
	8.6.50 BL_FS_MAX_FILE_SIZE
	8.6.51 UART_CLK
	8.6.52 SENSOR_CLK
	8.6.53 USER_CLK
	8.6.54 VCC_BUCK_ENABLE
	8.6.55 BL_TICKER_TIME_MS
	8.6.56 BL_DEBUG
	8.6.57 BL_TRACE
	8.6.58 BL_WARNING
	8.6.59 BL_ERROR
	8.6.60 BL_UART_RX_TIMEOUT_MS
	8.6.61 BL_WATCHDOG_FEED_ME_MS
	8.6.62 BL_UART_TX_TIMEOUT_MS
	8.6.63 BL_UART_MAX_RX_LENGTH
	8.6.64 BL_UART_MAX_TX_LENGTH
	8.6.65 BL_BAUD_RATE
	8.6.66 BL_UART_DELAY_CYCLES
	8.6.67 UPDATE_GPIO
	8.6.68 MIN
	8.6.69 MAX
	8.6.70 BITS2BYTES
	8.6.71 BITS2HALFWORDS
	8.6.72 BL_VERSION_ENCODE
	8.6.73 BL_VERSION_DECODE
	8.6.74 BL_BOOT_VERSION
	8.6.75 BL_WATCHDOG_MAX_HOLD_OFF_SECONDS

	8.7 Secure Bootloader Sample Reference Function Documentation
	8.7.1 BL_AttestInitialize
	8.7.2 BL_AttestAcceptKey
	8.7.3 BL_AttestFindPublicKeyHash
	8.7.4 BL_AttestInjectKey
	8.7.5 BL_AttestGetToken
	8.7.6 BL_AttestGetTokenSize
	8.7.7 BL_CheckRemapAddressSpace
	8.7.8 BL_CheckGetApplicationSize
	8.7.9 BL_CheckRelocatedApplicationSize
	8.7.10 BL_CheckIfImageUpdateAvailable
	8.7.11 BL_CheckIfSecureImageUpdateAvailable
	8.7.12 BL_CheckFindSecondaryImageLocation
	8.7.13 BL_ConfigIsValid
	8.7.14 BL_ConfigCertificateAddress
	8.7.15 BL_CryptoInitialize
	8.7.16 BL_CryptoGetBootSeed
	8.7.17 BL_CryptoHash
	8.7.18 BL_CryptoRSAKeySize
	8.7.19 BL_CryptoRSASerialiseKey
	8.7.20 BL_CryptoRSADeserialiseKey
	8.7.21 BL_CryptoRSAGenerateKey
	8.7.22 BL_CryptoRSASignHash
	8.7.23 BL_CryptoRSASignMessage
	8.7.24 BL_CryptoRSAVerifyMessage
	8.7.25 BL_EATPopulate
	8.7.26 BL_EATSize
	8.7.27 BL_FCSInitialize
	8.7.28 BL_FCSQuery
	8.7.29 BL_FCSAuthenticationRequired
	8.7.30 BL_FCSSelect
	8.7.31 BL_FCSCheck
	8.7.32 BL_FCSCalculate
	8.7.33 BL_FCSAccumulateCRC
	8.7.34 BL_EncryptInitialize
	8.7.35 BL_EncryptResetEncryption
	8.7.36 BL_EncryptResetDecryption
	8.7.37 BL_EncryptEncryptBuffer
	8.7.38 BL_EncryptDecryptBuffer
	8.7.39 BL_EncryptComplete
	8.7.40 BL_FlashInitialize
	8.7.41 BL_FlashSaveSector
	8.7.42 BL_ImageInitialize
	8.7.43 BL_ImageAddress
	8.7.44 BL_ImageAddressRange
	8.7.45 BL_ImageCopyMemoryRange
	8.7.46 BL_ImageSaveBlock
	8.7.47 BL_ImageVerify
	8.7.48 BL_ImageAuthenticate
	8.7.49 BL_ImageAuthenticateCurrent
	8.7.50 BL_ImageIsValid
	8.7.51 BL_ImageSaveAddress
	8.7.52 BL_ImageStartApplication
	8.7.53 BL_LoaderPerformFirmwareLoad
	8.7.54 BL_LoaderCertificateAddress
	8.7.55 BL_CBORInitialize
	8.7.56 BL_CBORReset
	8.7.57 BL_CBORUsed
	8.7.58 BL_CBORCurrent
	8.7.59 BL_CBORAddInteger
	8.7.60 BL_CBORAddBuffer
	8.7.61 BL_CBORAddMap
	8.7.62 BL_CBORAddMapPair
	8.7.63 BL_CBORSizeInteger
	8.7.64 BL_CBORSizeBuffer
	8.7.65 BL_CBORSizeMap
	8.7.66 BL_CBORSizeMapPair
	8.7.67 BL_RecoveryInitialize
	8.7.68 BL_SecureBootInitialize
	8.7.69 BL_SecureBootAuthenticate
	8.7.70 BL_FStoreInitialize
	8.7.71 BL_FStoreMakeFilesystem
	8.7.72 BL_FStoreFileSize
	8.7.73 BL_FStoreFileExists
	8.7.74 BL_FStoreFileCanRead
	8.7.75 BL_FStoreFileCanWrite
	8.7.76 BL_FStoreFileCanDelete
	8.7.77 BL_FStoreWrite
	8.7.78 BL_FStoreRead
	8.7.79 BL_FStoreDelete
	8.7.80 BL_FStoreFileList
	8.7.81 BL_TargetInitialize
	8.7.82 BL_TargetReset
	8.7.83 BL_TickerInitialize
	8.7.84 BL_TickerTime
	8.7.85 SysTick_Handler
	8.7.86 BL_TraceInitialize
	8.7.87 BL_UARTInitialize
	8.7.88 BL_UARTReceiveAsync
	8.7.89 BL_UARTReceiveComplete
	8.7.90 BL_UARTReceive
	8.7.91 BL_UARTSendAsync
	8.7.92 BL_UARTSendComplete
	8.7.93 BL_UARTSend
	8.7.94 BL_UpdateInitialize
	8.7.95 BL_UpdateRequested
	8.7.96 BL_UpdateProcessPendingImages
	8.7.97 BL_ImageSelectAndStartApplication
	8.7.98 BL_VersionsGetInformation
	8.7.99 BL_VersionsGetHello
	8.7.100 BL_WatchdogInitialize
	8.7.101 BL_WatchdogSetHoldTime
	8.7.102 WATCHDOG_IRQHandler

