
Device Firmware Update (DFU) Guide

M-20930-004
January 2025

© SCILLC, 2025
Previous Edition © 2023

onsemi

onsemi

Device Firmware Update (DFU) Guide

Table of Contents
Page

Device Firmware Update (DFU) Guide 1

Table of Contents 2

1. Introduction 5

1.2 Document Conventions 5

1.3 Further Reading 6

1.4 Further Reading 6

2. Overview 8

2.1 Prerequisites 8

3. Bootloader 9

3.1 Overview 9

3.2 Bootloader Firmware 9

3.2.1 Vector Table Positions 9

3.2.2 Layout in Flash 9

3.2.3 Power-on-Reset 10

3.2.4 Activating the Updater 10

3.2.5 Downloading the .bin Image 10

3.2.6 Image Format 11

3.2.7 Load Image 11

3.3 The Bootloader Protocol For Writing Binary Files Using UART 11

3.3.1 RESP 12

3.3.2 HELLO 12

3.3.3 PROG 12

3.3.4 Restart 13

4. The FOTA Firmware 14

www.onsemi.com

2

onsemi

Device Firmware Update (DFU) Guide

4.1 FOTA Overview 14

4.2 FOTA Partitioning 14

4.3 Firmware Startup 16

4.4 Application Only Update 16

4.5 Application + FOTA Bluetooth Low Energy Stack Update 16

5. Performing Your First FOTA Update 18

5.1 Generating the FOTA Firmware Image 18

5.2 Setting Up the Bootloader and Loading a Firmware Image Using UART 20

5.3 Performing a FOTA Update Using BLE Explorer 21

6. FOTA Image 23

6.1 Overview 23

6.2 mkfotaimg.py 23

6.3 Sub-Image Format 24

7. The DFU 27

7.1 DFU Component 27

7.2 Update Sequence 27

7.3 FOTA Stack Source Code 27

7.4 DFU Bluetooth Low Energy Service 30

7.5 DFU Service Characteristics 30

7.6 DFU Protocol 31

8. Integrating FOTA Into Your Application 33

8.1 Modifying the Application 33

8.2 Performing a FOTA Update 37

9. The Secure Bluetooth Low Energy FOTA Application 39

9.1 Working with ble_peripheral_server_fota 39

9.1.1 Step 1: Generate the application’s firmware image 39

www.onsemi.com

3

onsemi

Device Firmware Update (DFU) Guide

9.1.2 Step 2: Sign the Application's Firmware Image 41

9.1.3 Step 3: Create a FOTA Image 42

9.1.4 Step 4: Test the Secure ble_peripheral_server_fota Application 43

10. RSL FOTA Mobile Application 44

10.1 RSL FOTA Application 44

10.2 RSL FOTA Android Limitations 46

10.3 RSL FOTA iOS Limitations 47

www.onsemi.com

4

1.Introduction
1.1 SUMMARY

IMPORTANT: onsemi plans to lead in replacing the terms “white list", "master" and "slave” as noted in this
product release. We have a plan to work with other companies to identify an industry wide solution that can
eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once new
terminologies are agreed upon, we will update all documentation live on the website and in all future released
documents.

This group of topics provides information about the tools, protocols and firmware required to perform wired and
Firmware Over the Air (FOTA) firmware updates using the RSL15 Evaluation and Development Board. This guide
provides an overview of the sample bootloader and its usage, includes details about the FOTA firmware images and
tools, walks you step-by-step through your first firmware update using a pre-configured sample application, and shows
you how to modify an existing application to support FOTA updates.

These FOTA topics are intended for firmware developers who are designing and implementing RSL applications
with FOTA capability. Updating firmware is also possible with a wired connection using UART or SPI, as described in
the Bootloader topic.

1.2 DOCUMENT CONVENTIONS

The following typographical conventions are used in this documentation:

monospace font
Assembly code, macros, functions, registers, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets and bold>
Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

Bold
GUI items (text that can be seen on a screen).

Note, Important, Caution, Warning

Information requiring special notice is presented in several attention-grabbing formats depending on the
consequences of ignoring the information:

NOTE: Significant supplemental information, hints, or tips.

IMPORTANT: Information that is more significant than a Note; intended to help you avoid frustration.

CAUTION: Information that can prevent you from damaging equipment or software.

onsemi

CHAPTER 1

www.onsemi.com

5

onsemi

Device Firmware Update (DFU) Guide

WARNING: Information that can prevent harm to humans.

Registers:

Registers are shown in monospace font using their full descriptors, depending on which core the register is
accessing. The full description takes the form <PREFIX><GROUP>_<REGISTER>.

All registers are accessible from the Arm Cortex-M33 processor.

A register prefix of D_ is used in the following circumstances:

• In cases where there are multiple instances of a block of registers, the summary of the registers at the beginning
of the Register section have slightly different names from the detailed register sections below that table. For
example, the DMA*_CFG0 registers are referred to as DMA_CFG0 when we are defining bit-fields and settings.

The firmware provides access to these registers in two ways:

• In the flat header files (e.g.: sk5_hw_flat_cid*.h), each register is individually accessible by directly using the
naming provided in this manual. This is helpful for assembly and low-level C programming.

• In the normal header files (e.g.: sk5_hw_cid*.h), each register group forms a structure, with the registers being
defined as members within that structure. The structures defined by these header files provide access to registers
under the naming conventions PREFIX_GROUP->REGISTER (for the structure) and GROUP->REGISTER (for the
register).

• For more information, see the Hardware Definitions chapter of the RSL15 Firmware Reference.

Default settings for registers and bit fields are marked with an asterisk (*).

Any undefined bits must be written to 0, if they are written at all.

Numbers

In general, numbers are presented in decimal notation. In cases where hexadecimal or binary notation is more
convenient, these numbers are identified by the prefixes "0x" and "0b" respectively. For example, the decimal number
123456 can also be represented as 0x1E240 or 0b11110001001000000.

Sample Rates

All sample rates specified are the final decimated sample rates, unless stated otherwise.

1.3 FURTHER READING

1.4 FURTHER READING

The following documents are installed with the RSL15 system, in the default location C:/Users/<your_user_
name>/AppData/Local/Arm/Packs/ONSemiconductor/RSL15/<version_number>/documentation. These manuals are
available only in PDF format:

• Arm TrustZone CryptoCell-312 Software Developers Manual
• multiple CEVA manuals in the /ceva folder
For even more information, consult these publicly-available documents:

www.onsemi.com

6

onsemi

Device Firmware Update (DFU) Guide

• Armv8M Architecture Reference Manual (PDF download available from
https://developer.arm.com/documentation/ddi0553/latest).

• Arm Cortex-M33 Processor Technical Reference Manual, revision r1p0, from
https://developer.arm.com/documentation/100230/0100

• Bluetooth Core Specification version 5.2, available from
https://www.bluetooth.com/specifications/adopted-specifications

• TrustZone documentation available from the Arm website at
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m

• Other ArmCortex-M33 publications, available from the Arm website at
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33

For information about the Evaluation and Development Board Manual and its schematics, go to the RSL15 web
page and navigate to the EVB page.

www.onsemi.com

7

https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/100230/0100
https://www.bluetooth.com/specifications/adopted-specifications
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://www.onsemi.com/rsl15
https://www.onsemi.com/rsl15

2.Overview
These topics provide an overview of the toolset ecosystem allowing firmware over-the-air updates, and lists the

necessary prerequisites for performing them.

2.1 PREREQUISITES

• RSL15 SDK CMSIS-Pack version 1.0 or later (available at https://www.onsemi.com/)
• RSL10 USB Dongle
• RSL15 Evaluation and Development Board (EVB)
• BLE Explorer (available at https://www.onsemi.com/)
• Python v3.7 or later:

◦ Install package ecdsa version 0.13 or later.
◦ Install package pyserial version 3.2 or later.
◦ Make sure Python is added to the system path.
◦ You can install the above packages using PyPI (for example, python -m pip install ecdsa).

• The mobile application (see Chapter 10 "RSL FOTA Mobile Application" on page 44).

onsemi

CHAPTER 2

www.onsemi.com

8

https://www.onsemi.com/
https://www.onsemi.com/

3.Bootloader
The bootloader source code is provided as a sample application in the RSL15 Software Development Kit (SDK),

and you can use it to create your own custom bootloader.

IMPORTANT: The information in this topic refers to the general non-secure bootloader sample application.
If you are using the RSL15 security features described in the Security User's Guide, use the secure_bootloader
sample application instead. For information about using the secure bootloader, refer to the Secure
Bootloader Guide.

3.1 OVERVIEW

The bootloader is a program that can update firmware images, initialize a device and possibly perform some sanity
checks. The most important feature provided by the bootloader sample is the Firmware Over the Air (FOTA)
functionality. Firmware can be loaded from a host microcontroller over UART or over the air from another wireless
device using FOTA.

This document describes the bootloader firmware application and development tools. It shows you:

l How the bootloader firmware works
l How to create bootloader compatible applications and firmware images for RSL15
l How the bootloader protocol between the bootloader firmware and the UART updater PC tool works with the
RSL15 EVB

3.2 BOOTLOADER FIRMWARE

The bootloader firmware application must be initially loaded onto an RSL15 device. It can be loaded via
SWD/JTAG.

The bootloader divides the main flash memory into two areas: the app download area and the app execution area.
This subdivision provides a starting point for users who want to use the bootloader for firmware update purposes. The
bootloader application is the first entry point after reset. It is located at the base address of the main flash (0x00100000)
and uses the first 32 KB of memory. To be compatible with the bootloader, the linker memory map of a user
application needs to be updated to add a new BOOTLOADER area and shift the application origin by 32 KB (address
0x00108000).

3.2.1 Vector Table Positions

In addition, the boot image vector table contains two special items on positions 8 and 9, respectively: the
application version descriptor and the image size. This means that modifications on the linker script (sections.ld) and
the startup code (startup.S) are required to make a typical sample application (for example, blinky) compatible with the
bootloader. See the figure "Vector Table Positions" (Figure 12)

NOTE: The modified linker script (sections.ld) and startup code (startup.S) files are available in the
utility folder of the bootloader sample application.

3.2.2 Layout in Flash

The bootloader application assumes a specific layout in the main flash memory, as shown in the table "Bootloader
Application Layout in Flash" (Table 1):

onsemi

CHAPTER 3

www.onsemi.com

9

../../../../../Content/secure_bootloader/sboot_LandingPage.htm
../../../../../Content/secure_bootloader/sboot_LandingPage.htm

onsemi

Device Firmware Update (DFU) Guide

Area Size Flash Start Address

bootloader 32 KB 0x00100000

app execution 236 KB 0x00108000

app download 236 KB 0x00143000

Table 1. Bootloader Application Layout in Flash

3.2.3 Power-on-Reset

Upon a power-on-reset, the bootloader checks if there is a valid boot image in the app download area (second half
of flash). If there is one, it copies/overwrites this image into the app execution area, invalidates the data in the download
area and boots this new image. If no valid boot image is found in the download area, the bootloader verifies and boots
from the app execution area. If no valid image is found in either area, the bootloader keeps the device trapped and
prints an error message.

3.2.4 Activating the Updater

The bootloader updater is activated on one of these two occasions:

l The bootloader detects an invalid user application in the flash memory.
l The UPDATE_GPIO pin is held low while resetting the device (configurable in drv.targ.h)

3.2.5 Downloading the .bin Image

Using a PC and the RSL15 EVB, the download of the .bin image file can be performed by the provided updater.py
PC tool, as illustrated in the figure "Updater Tool Downloads .bin Image File" (Figure 1), below:

www.onsemi.com

10

onsemi

Device Firmware Update (DFU) Guide

Figure 1. Updater Tool Downloads .bin Image File

3.2.6 Image Format

The application firmware image to be updated via the bootloader must be created out of the .elf file by calling
objcopy for the GCC toolchain and the _FROMELF.EXE_ tool for the Keil Arm toolchain, as explained in the
Tutorial 2 section of the bootloader sample readme.

3.2.7 Load Image

The bin image file can be loaded onto the RSL15 EVB using SEGGER® J-Link Commander or the UART
updater.py PC tool, as explained in the Tutorial 3 and Tutorial 4 sections of the bootloader sample readme.

3.3 THE BOOTLOADER PROTOCOL FOR WRITING BINARY FILES USING UART

The bootloader protocol on the PC side is implemented in the updater.py tool. After activating the updater mode,
the PC side has to query the bootloader version, the currently installed application version, and the flash memory sector
size, with the HELLO command. Then the image is transferred and programmed using the PROG command. Once the

www.onsemi.com

11

onsemi

Device Firmware Update (DFU) Guide

programming is complete, the device is set to application mode.

A command can consist of several messages, but every message from the PC side must be confirmed by the RSL15
bootloader firmware before the PC side can send the next message. Except for the standard RESP message, every
message is appended with a CCITT-CRC.

3.3.1 RESP

The standard response is a two-byte message. In the first byte the type is encoded: 0x55 stands for NEXT and 0xAA
stands for END. The second byte for type = NEXT is always 0; for type = END, the second byte contains an error code:

l 0 = NO_ERROR
l 1 = BAD_MSG
l 2 = UNKNOWN_CMD
l 3 = INVALID_CMD
l 4 = GENERAL_FLASH_FAILURE
l 5 = WRITE_FLASH_NOT_ENABLED
l 6 = BAD_FLASH_ADDRESS
l 7 = ERASE_FLASH_FAILED
l 8 = BAD_FLASH_LENGTH
l 9 = INACCESSIBLE_FLASH
l 10 = FLASH_COPIER_BUSY
l 11 = PROG_FLASH_FAILED
l 12 = VERIFY_FLASH_FAILED
l 13 = VERIFY_IMAGE_FAILED

A message from the PC side with a bad CRC is always confirmed with RESP(END, BAD_MSG) by the device
running the bootloader firmware. A command message with an unknown command code is confirmed with RESP
(END,UNKNOWN_CMD). A message with invalid parameters is confirmed with RESP(END, INVALID_CMD). The
standard response is the only message without an appended CCITT-CRC.

3.3.2 HELLO

The HELLO command message has no parameters, but because every command must be of the same length, the
HELLO command message is padded with null bytes. The HELLO response message has three parameters:

1. The bootloader version <boot_ver> of type Sys_Boot_app_version_t.
2. The version of the currently installed application <app_ver>, also of type Sys_Boot_app_version (if no

application is installed, <app_ver> is filled with null bytes; if app_version in the interrupt vector table is 0,
then the application ID of <app_ver> is set to ??????).

3. The sector size of the RSL15 flash memory in bytes.

3.3.3 PROG

The PROG command message has three parameters:

1. Image start address
2. Image length in bytes
3. Image hash as Ethernet CRC32

If the start address and length are valid, the command is confirmed with RESP(NEXT); otherwise, RESP(END,
INVALID_CMD) is sent. After a positive confirmation, the PC side sends data messages containing the image data in
sector-sized blocks of bytes, until it has sent the last data message containing the last part of the image. Every data

www.onsemi.com

12

onsemi

Device Firmware Update (DFU) Guide

message is confirmed with RESP(NEXT) until the last data message, which is confirmed with RESP(END, NO_ERROR).
If an error occurs during image transmission or programming, the next confirmation is a RESP(END, <error code>).
In this case, the PC side must start the whole sequence over again.

3.3.4 Restart

Similar to the HELLO command, the RESTART command message has no parameters, and the command message is
padded with null bytes. If there is a valid bootloader, this command is confirmed with RESP(END, NO_ERROR) and the
device is rebooted. Otherwise, it is confirmed with RESP(END, NO_VALID_BOOTLOADER) and no operation is
performed. This command is usually executed after a successful firmware update, i.e., a sequence of PROG command
messages.

The figure "Sequence Diagram" (Figure 2) illustrates a typical message exchange between the bootloader firmware
(running on RSL15) and the PC tool:

Figure 2. Sequence Diagram

www.onsemi.com

13

4.The FOTA Firmware
This topic describes the memory partitioning, setup, startup of the firmware, and updates to the application.

4.1 FOTA OVERVIEW

The RSL software ecosystem includes a set of tools that allows firmware over-the-air (FOTA) updates over a
Bluetooth® Low Energy wireless link. On the PC side, a Python utility (mkfotaimg.py) generates FOTA-compatible
firmware images, and BLE Explorer transfers the images to the remote device. BLE Explorer scans, connects and
transmits the firmware image. The remote RSL device firmware side consists of a bootloader program, sample code,
and a FOTA Bluetooth Low Energy stack that contains the device firmware update (DFU) Bluetooth Low Energy
component. The figure "FOTA Update Setup" (Figure 3), below, illustrates a typical FOTA update setup from the PC
point of view:

Figure 3. FOTA Update Setup

4.2 FOTA PARTITIONING

A device capable of receiving FOTA updates contains firmware composed of three parts, as illustrated in the figure
"Memory Structure" (Figure 4):

1. Bootloader
2. FOTA Bluetooth Low Energy stack including DFU component (fota.bin sub-image)
3. User application (app.bin sub-image)

onsemi

CHAPTER 4

www.onsemi.com

14

onsemi

Device Firmware Update (DFU) Guide

Figure 4. Memory Structure

NOTE: For specific information about using FOTA in secure applications, see the readme file in the
secure_fota_blinky sample application as well as its referenced documentation.

Each part depends on the previous one, except the bootloader, which is standalone. The FOTA Bluetooth Low
Energy stack depends on the bootloader. The user application depends on the FOTA Bluetooth Low Energy stack, and
therefore, also depends on the bootloader. In terms of size, the bootloader reserves memory. The FOTA Bluetooth Low
Energy stack contains the device firmware update (DFU) component and the padding between the sub-images. The
memory available in flash for the application is the amount of memory that is left once memory is reserved for the
FOTA Bluetooth Low Energy Stack and bootloader. The boundary between the Bluetooth Low Energy stack and
application areas can be dynamic, so it is possible to increase the Bluetooth Low Energy stack size at the expense of the
application size, and vice versa.

When building a FOTA-compatible RSL sample application, you may notice that the libfota.a library is linked.
This library functions as a stub object, and implements the Bluetooth Low Energy library functions as pointers to the
real implementation, located in the fota.bin area. This makes the link between the application and the FOTA Bluetooth
Low Energy stack particularly strong, because the application code calls functions from the Bluetooth Low Energy
stack directly. Therefore, an application can only run together with the specific FOTA Bluetooth Low Energy stack
revision that is used when building that application. For this reason, it is not possible to update the Bluetooth Low
Energy stack without updating the application. On the other hand, it is possible to perform a FOTA update of the user
application only.

Two types of FOTA updates are possible:

www.onsemi.com

15

onsemi

Device Firmware Update (DFU) Guide

• Application only update
• Application + FOTA Bluetooth Low Energy stack update

The DFU component, an application embedded in the FOTA Bluetooth Low Energy stack area, implements a DFU
Bluetooth Low Energy custom service for FOTA updates. It contains characteristics that allow a client device to gather
information from the installed firmware (such as version numbers and IDs) and download the firmware image. As the
DFU is embedded into the FOTA Bluetooth Low Energy stack area, FOTA updates are possible even when no valid
user application is available in the device. More details about this component are provided in Chapter 7 "The DFU" on
page 27.

4.3 FIRMWARE STARTUP

Upon boot-up, the bootloader checks whether there is a valid user application or FOTA Bluetooth Low Energy
stack programmed. The sequence of operations is as follows:

1. If there is a valid user application, start it.
2. If no valid application is found, start the FOTA Bluetooth Low Energy stack DFU component (so the device can

receive FOTA updates).
3. If no valid FOTA Bluetooth Low Energy stack is found, start the bootloader updater (in this case, the device can

only receive firmware updates over UART).

The FOTA Bluetooth Low Energy stack DFU component can be activated from the user application at any time,
through a call to Sys_Fota_StartDfu(). More details about this are provided in later sections.

4.4 APPLICATION ONLY UPDATE

To update the application, the currently installed user application needs to start the DFU component from the
Bluetooth Low Energy stack. The DFU component then starts the FOTA process and receives the new application
image. The application image embeds the Build ID, calculated by the GNU linker over all symbols of fota.bin (see
Table 5 for more about the FOTA stack Build ID). If this information does not match the installed Bluetooth Low
Energy stack revision, the FOTA update is aborted. At this point the currently installed application is not destroyed.

If the FOTA Bluetooth Low Energy stack revision is compatible, the currently installed application is erased and
the new image is programmed as the data comes in. When the whole image is programmed successfully, the DFU
component marks the new application as valid and performs a restart. If the application update is aborted for any reason
(power loss, for example), this causes the application area to contain an invalid image. The update process can be
restarted from the beginning in this case, as the device still contains a valid FOTA Bluetooth Low Energy stack with the
DFU component.

4.5 APPLICATION + FOTA BLUETOOTH LOW ENERGY STACK UPDATE

This type of update is performed in multiple steps:

1. Start the DFU component.
2. When the FOTA process receives a Bluetooth Low Energy stack image instead of an application image, no

revision check is performed, and the downloaded image is saved in the download area. The FOTA process
executes code from the Bluetooth Low Energy stack area, so it is not possible to directly replace the Bluetooth
Low Energy stack.

3. After completely programming the new Bluetooth Low Energy stack image into the download area, the DFU
component performs a reset and thereby activates the bootloader.

4. The bootloader detects a valid Bluetooth Low Energy stack image in the download area and copies it to the
Bluetooth Low Energy stack area. This is now possible because the previous Bluetooth Low Energy stack is no

www.onsemi.com

16

onsemi

Device Firmware Update (DFU) Guide

longer needed. After successfully copying the new Bluetooth Low Energy stack, the bootloader invalidates the
Bluetooth Low Energy stack in the download area and proceeds with the firmware startup.

5. As with a usual bootloader startup, the DFU component of the new Bluetooth Low Energy stack detects no
valid application, and therefore starts the FOTA DFU again to receive the new application image.

6. From this point on, the process is the same as it is with an application only upgrade.

Because the download area is used to temporarily hold the Bluetooth Low Energy stack image, the size of the
Bluetooth Low Energy stack cannot exceed the size of the download area. This limits the Bluetooth Low Energy stack
size to a maximum of 234 KB for non-secure bootloader and 218 KB for secure bootloader.

If the bootloader copy operation of the Bluetooth Low Energy stack image from the download area to the
Bluetooth Low Energy stack area is aborted, at next startup the bootloader detects the still-valid Bluetooth Low Energy
stack image in the download area and repeats the copy. This makes it possible to recover from power loss during the
update process.

www.onsemi.com

17

5.Performing Your First FOTA Update
Before we dive into all details regarding the FOTA tools, firmware images, and protocol specifications, this topic

walks you step-by-step through the process of performing your first FOTA update. The goal is to provide you a basic
hands-on understanding of the RSL FOTA update process, and to ensure that your hardware and software are correctly
setup. This topic shows how to:

1. Generate a FOTA firmware image using the preconfigured ble_peripheral_server_fota sample application. This
application is similar to the ble_peripheral_server application with added features to support FOTA updates.

2. Set up the RSLbootloader and load a firmware image using UART.
3. Perform a FOTA update using BLE Explorer. Alternatively, a FOTA update can be performed using the mobile

application. See Chapter 10 "RSL FOTA Mobile Application" on page 44.

NOTE: For information on performing a secure FOTA update with a secure application, refer to the
instructions and examples in the secure_blinky_fota sample application’s readme file.

This tutorial assumes that you have installed the prerequisites and have the required version of the RSL CMSIS-
Pack installed (see the RSL Getting Started Guide for instructions on how to import a CMSIS-Pack).

5.1 GENERATING THE FOTA FIRMWARE IMAGE

1. Open the Examples tab in the Pack Manager perspective to see example projects, included in the RSL CMSIS-
Pack.

2. Find the ble_peripheral_server_fota example project and click the Copy button to import it into your
workspace. (See the figure "Importing the FOTA Sample Project" (Figure 5).)

Figure 5. Importing the FOTA Sample Project

3. The C/C++ perspective opens and displays your newly copied project. In the Project Explorer panel, you can
expand your project folder and explore the files inside your project, as seen in the figure "Files in FOTA Sample

onsemi

CHAPTER 5

www.onsemi.com

18

onsemi

Device Firmware Update (DFU) Guide

Project" (Figure 6). On the right side, the ble_peripheral_server_fota.rteconfig file displays the selected
software components, including the new component named FOTA. If you expand RTE > Device > <device>,
you can find the FOTA library (libfota.a), the FOTA Bluetooth Low Energy Stack binary file (fota.bin), and
mkfotaimg.exe. These files are automatically added to your sample project once the FOTA component is
selected.

Figure 6. Files in FOTA Sample Project

4. Build the ble_peripheral_server_fota project. After a successful build, the ble_peripheral_server_fota.fota
image is generated under the Release folder, as seen in the figure ".fota Image in Release Folder" (Figure 7):

www.onsemi.com

19

onsemi

Device Firmware Update (DFU) Guide

Figure 7. .fota Image in Release Folder

The generated .fota file contains both the FOTA Bluetooth Low Energy stack sub-image (fota.bin) and the
application sub-image. This file can be used by BLE Explorer to perform a FOTA update, or by the bootloader
UART PC updater tool to perform a UART firmware update.

IMPORTANT: The bootloader UART PC updater tool is found as file updater.py in the bootloader/utility
folder. For more information, see Section 5.2 “Setting Up the Bootloader and Loading a Firmware Image
Using UART” on page 20.

5.2 SETTING UP THE BOOTLOADER AND LOADING A FIRMWARE IMAGE USING UART

If you are running a FOTA update for the first time, your RSL EVB does not have the bootloader flashed into it.
Set up the bootloader using these steps:

1. Import the bootloader sample application, available in the Examples tab.
2. Build the bootloader sample application and flash bootloader.hex.
3. Connect the GPIO defined as the UPDATE_GPIO in the bootloader sample application to the ground and reset

your board. After reset, your RSL EVB has activated its updater mode. In this mode, the bootloader is waiting
for commands over UART to download a new user application firmware image.

www.onsemi.com

20

onsemi

Device Firmware Update (DFU) Guide

4. Use the Windows Device Manager to find out the COM port number assigned to your RSL EVB, identified by
the J-Link CDC UART Port (COM3, as seen in the figure "RSL EVB Com Port Number" (Figure 8)):

Figure 8. RSL EVB Com Port Number

5. Using a command prompt, navigate to the bootloader/utility folder. You can see the updater.py tool together
with additional .dll dependencies.

6. Invoke the updater.py tool to load the ble_peripheral_server_fota.fota image over UART with the following
command:

> python updater.py COM3 ble_peripheral_server_fota.fota
Image : BPS ver=1.0.0 / FOTA ver=1.0.0
Bootloader : BOOTL* ver=1.0.0

You can expect similar output. For each flash sector transferred and written to the flash memory, an asterisk (*)
symbol is printed on the screen.

If you find errors executing this step, make sure you have the required versions of Python and the pyserial
package.

7. An LED on the EVB that is attached to one of the device’s GPIOs begins to blink.

Your device is now ready to perform a FOTA update, as it contains all the required components: the bootloader
program and the FOTA Bluetooth Low Energy stack.

5.3 PERFORMING A FOTA UPDATE USING BLE EXPLORER

BLE Explorer is a desktop application that runs on Windows®, developed to work with the RSL USB Dongle. To
use BLE Explorer for a FOTA update, follow these steps:

1. Connect FOTA_GPIO (GPIO1) to ground. After a few seconds, you can see the name RSL FOTA on the RSL
BLE Explorer, as shown in the figure "FOTA Running" (Figure 9). After checking the name RSL FOTA,
disconnect FOTA_GPIO from ground.

2. Click on the Update Firmware option on the BLE Explorer and select the ble_peripheral_server_fota.fota
image file. (See Chapter 1 "Performing FOTA Update with BLE Explorer" on page 1). There is a 30-second
wait for image file selection. After 30 seconds, control returns to the ble_peripheral_server_fota application.

www.onsemi.com

21

../../../../../Content/device_firmware_update_guide/dfu_BLEExplorer_LP.htm

onsemi

Device Firmware Update (DFU) Guide

Figure 9. FOTA Running

3. Once the FOTA firmware image file is selected, it starts updating the firmware, as shown in the figure
"Updating Firmware" (Figure 10).

Figure 10. Updating Firmware

4. Upon firmware update completion, Firmware update succeeded is displayed.

www.onsemi.com

22

6.FOTA Image
The FOTA Image (.fota file) consists of two sub-images, with padding to a multiple of 2048 bytes in between so

that the start of the second image lies on an RSL flash sector boundary.

6.1 OVERVIEW

The FOTA image’s first sub-image is the FOTA Bluetooth Low Energy Stack (fota.bin) and the second one is the
user application (app.bin). The Python utility mkfotaimg.py generates the FOTA image, as illustrated below in the
figure "Image Format" (Figure 11):

Figure 11. Image Format

The .fota file can then be used as input to the updater.py tool to perform a UART firmware update via the
bootloader. For more information about the bootloader, see the Bootloader User's Guide.

6.2 MKFOTAIMG.PY

The mkfotaimg.py tool takes two positional arguments as inputs: the FOTA Bluetooth Low Energy stack sub-image
and the user application sub-image. Its usage and optional arguments are shown below.

Usage:

> mkfotaimg.py [-h] [--version] [-d UUID] [-s SecureBoot] [-i UUID][-n NAME] [-o OUT-
IMG] FOTA-IMG APP-IMG

Arguments: see the table "Positional Arguments" (Table 2) and the table "Optional Arguments" (Table 3).

onsemi

CHAPTER 6

www.onsemi.com

23

onsemi

Device Firmware Update (DFU) Guide

Argument Meaning

FOTA-IMG FOTA stack sub-image containing the Bluetooth Low Energy
stack and the DFU component (.bin file)

APP-IMG application sub-image (.bin file)

Table 2. Positional Arguments

Argument Meaning

-h, --help show help message and exit

--version show program's version number and exit

-d UUID, --devid UUID device UUID to embed in the image (default: no ID)

-s SecureBoot, --secure SecureBoot the size of secure bootloader for the secure FOTA (default: non-
secure)

-i UUID, --srvid UUID advertised UUID to embed in the image (default: DFU service
UUID)

-n NAME, --name NAME advertised name to embed in the image (default: ON RSL
FOTA)

-o OUT-IMG name of output image file (default: <APP-IMG>.fota)

Table 3. Optional Arguments

This Python utility can be integrated into the post-build steps of Eclipse to generate the .fota format file every time
a user application project is built. This configuration is available in Project > Properties > C/C++ Build > Settings >
Build Steps > Post-Build Steps. Two steps are required to generate the .fota image. First, we need to generate the
app.bin, which is the application sub-image. This is done using the objcopy tool, as follows:

arm-none-eabi-objcopy -O binary <app_name>.elf <app_name>.bin

Then, we can call the mkfotaimg.py utility to generate the final FOTA image (app.fota file) from the stack sub-
image (fota.bin) and the application sub-image (app.bin) generated above the .fota image, as follows:

mkfotaimg.py <app_name>.fota fota.bin <app_name>.bin

In order to invoke both commands, the two can be combined with the “&&” operator. Chapter 8 "Integrating
FOTA Into Your Application" on page 33, walks you step-by-step through generically configuring this post-build step
for any application, including the path for the Python utility, FOTA stack binary file, and application binary file.

6.3 SUB-IMAGE FORMAT

A sub-image contains the 1-to-1 flash content for RSL devices. We use positions 8 and 9 of the vector table to
store pointers for the version info and the image descriptor, as shown in the figure "Vector Table Positions" (Figure 12):

www.onsemi.com

24

onsemi

Device Firmware Update (DFU) Guide

Figure 12. Vector Table Positions

Every vector is a 32-bit value. With the Reset handler vector, the image start address can be calculated as:

To find the version info and image descriptor, we calculate the corresponding image offsets by subtracting the
image start address from the vector value:

All multi-byte values in the description are in little-endian format.

The version info has the following format:

typedef struct
{

char id[6]; /* ID string */
uint16_t num; /* <major[15:12]>.<minor[11:8]>.<revision[7:0]> */

} version;

typedef struct
{

version img_ver /* image version */
uint8_t dev_id[16]; /* device UUID set by mkfotaimg (default all 0s) */

} version_info;

In the FOTA stack sub-image, the version info is directly followed by a configuration structure:

typedef struct
{

uint32_t length; /* length of this structure in bytes */

www.onsemi.com

25

onsemi

Device Firmware Update (DFU) Guide

uint8_t pub_key[64]; /* public signing key set by mkfotaimg */
/* (default all 0s)

uint8_t srv_id[16]; /* service UUID used when advertising */
/* set by mkfotaimg (defaults to the */

/* DFU service ID)

uint16_t dev_name_len; /* device name length set by mkfotaimg */
/* (defaults to 13)

uint8_t dev_name[29]; /* device name used when advertising */
/* set by mkfotaimg (defaults to */

/* “RSL FOTA ”) */

} config_info;

The image descriptor has the following format:

typedef struct
{

uint32_t image_size; /* image size in bytes excluding the signature */
uint32_t build_id[8]; /* FOTA stack build ID */

} image_descriptor;

The FOTA stack build IDs from the two sub-images must match; otherwise it means that the application image has
been linked against another version of the FOTA stack image as included in the FOTA image, in which case an IMAGE_
DNL_BAD_BUILDID error is generated. The public key derived from the signing key is stored in the configuration
structure of the FOTA stack sub-image (see above struct config_info field pub_key). The image size found in the
image descriptor excludes the signature, so you must add 64 to the size to get the total sub-image size.

www.onsemi.com

26

7.The DFU
The Device Firmware Update (DFU) component, which is embedded in the FOTA stack, acts as the server for the

DFU service. This component performs the actual update via the DFU custom service.

7.1 DFU COMPONENT

The DFU component is activated automatically at device startup if no valid application sub-image is found on the
device. The application can also start the DFU component by calling the function Sys_Fota_StartDfu().

IMPORTANT: Sometimes smartphones do not handle a service changed indication correctly. Therefore, in
the DFU initialization, the first two bits of the device’s Bluetooth address are set to 0 to force the smartphone
to perform a service discovery.

7.2 UPDATE SEQUENCE

The DFU client scans for a device advertising the configured service ID (normally the DFU service ID). When the
device is found, the DFU client connects to the device and reads its characteristics (Device ID, Versions, Build ID). The
client must only accept FOTA images with matching Device IDs, unless the Device ID characteristic is all 0s, which
means the device is compatible with all FOTA images.

If the Build ID of the application sub-image differs from the Build ID characteristic, the client needs to download
the FOTA stack sub-image first. After this downloads successfully, the client needs to disconnect from the device,
which restarts the device with the new FOTA stack. Now the client needs to reconnect to the same device.

If the Build ID of the application sub-image matches the Build ID characteristic, the client needs to download the
Application sub-image. After successfully downloading, the client needs to disconnect from the device, which restarts
the device with the new user application.

7.3 FOTA STACK SOURCE CODE

The RSL CMSIS-Pack includes a prebuilt version of the FOTA Stack available in the form of a software
component, as shown in Chapter 5 "Performing Your First FOTA Update" on page 18. The fota.bin and libfota.a files
are located under <cmsis_pack_root>\ONSemiconductor\<device>\<version>\lib\Release. The source code to
generate these files is also available in the CMSIS-Pack, under <cmsis_pack_
root>\ONSemiconductor\<device>\<version>\firmware\source\lib\fota.

If you would like to customize and rebuild these files, follow these steps:

1. Import the source code project. Navigate to File > Import > General > Existing Projects into Workspace, set
the Select root directory: option with the path to the source code <cmsis_pack_
root>\ONSemiconductor\<device>\<version>\firmware\source\lib\fota, mark the checkbox Copy projects
into workspace, and click Finish. The project appears in the left side of Project Explorer, as shown in the
figure "Copying the Project" (Figure 13).

onsemi

CHAPTER 7

www.onsemi.com

27

onsemi

Device Firmware Update (DFU) Guide

Figure 13. Copying the Project

2. Modify the source code. For example, change the FOTA stack version number in app.conf.h.

#define FOTA_VER_MAJOR 1

#define FOTA_VER_MINOR 1 //0

#define FOTA_VER_REVISION 0

3. Build the project. After building successfully, libfota.a and fota.bin are generated under the Debug or Release
folder, as shown in the figure "Building the Project" (Figure 14).

www.onsemi.com

28

onsemi

Device Firmware Update (DFU) Guide

Figure 14. Building the Project

4. To use your customized files, replace the libfota.a and the fota.bin in your in your CMSIS-Pack installation
(<cmsis_pack_root>\ONSemiconductor\<device>\<version>\lib\Release).

5. After replacing these files, it is necessary to refresh the RTE folder of existing projects in your workspace, so
that the IDE uses the newly generated files. The simplest way to do this is to delete the fota.bin and libfota.a
files under RTE > Device > <device>, and right-click the project name and choose Refresh to refresh your
sample project (for example, you can do this in ble_peripheral_server_fota).

6. Rebuild the existing project so that a new .fota image is generated based on your modified libfota.a and fota.bin
files.

7. Run BLE Explorer to perform a FOTA update. The tool detects the updated version number of the stack FOTA
stack version: FOTA <higher_version_number>, in comparison to the one installed on the device. (In this
example, we are using FOTA stack version: FOTA 1.1.0, for when version 1.0.0 is installed.) This means a
full update is required (FOTA Stack + application). This is performed in two steps: first, the FOTA stack is
updated; next, the device resets and the user application is updated.

If you would like to create the secure FOTA library for secure applications, follow these steps:

www.onsemi.com

29

onsemi

Device Firmware Update (DFU) Guide

1. Make sure you have the FOTA application in your workspace.
2. Right-click the FOTA project name and choose 3 Release_Secure under Build configurations > Set Active.
3. You can find the defined symbols under Preprocessor in Settings for the Secure FOTA:

o CFG_SECURE_FOTA
o BL_APPLICATION_BASE=0x10D800
o BL_DOWNLOAD_BASE=0x144000
o BL_SECURE_STORAGE_SIZE=0x2C00

BL_APPLICATION_BASE is the start address of FOTA, BL_DOWNLOAD_BASE is the start address of the
download area, and SECURE_STORAGE_SIZE is the size of the secure storage area.

4. You can find the option for the secure bootloader size in Project > Properties > C/C++ Build > Settings >
Build Steps > Post-build steps.

o Release_Secure Bootloader_size 0xD800

0xD800 means the secure bootloader size.

5. Build the project. After building successfully, libfota.a and fota.bin are generated under the Release_Secure
folder.

6. To use the secure FOTA files, replace the libfota.a and the fota.bin files in your CMSIS-Pack installation
<cmsis_pack_root>\ONSemiconductor\<device>\<version>\lib\Release_Secure).

7.4 DFU BLUETOOTH LOW ENERGY SERVICE

On the RSL device the DFU service is used as the server; the DFU service client runs on the PC (BLE Explorer).
The table "DFU Service UUID" (Table 4) shows the UUID of the DFU service.

Requirement UUID

Mandatory for DFU component, optional for device application b2152466-d600-11e8-9f8b-f2801f1b9fd1

Table 4. DFU Service UUID

If the device application does not implement this service, another method must be used to activate the DFU mode
in the device (e.g. connect FOTA_GPIO to ground).

7.5 DFU SERVICE CHARACTERISTICS

The table "DFU Service Characteristics and Their Properties" (Table 5) lists the DFU service characteristics and
provides information about them.

www.onsemi.com

30

onsemi

Device Firmware Update (DFU) Guide

Characteristic UUID Properties Length Description Requirements

Transport b2152466-d601-
11e8-9f8b-
f2801f1b9fd1

Notify, Write
without
response

variable
(max.
512)

Internally used characteristic to
transport data with the DFU
protocol.

Mandatory for DFU
component, prohibited
for device application.

Device ID b2152466-d602-
11e8-9f8b-
f2801f1b9fd1

Read 16 Device ID as found in the version
info of the FOTA stack sub-image.
Only FOTA images with the same
device ID are compatible, unless
this characteristic is all 0s, in which
case all FOTA images are
compatible.

Mandatory for DFU
component, optional for
device application.

BootLoader
Version

b2152466-d603-
11e8-9f8b-
f2801f1b9fd1

Read 8
(Format
struct
version)

Version of the installed
BootLoader.

Mandatory for DFU
component, optional for
device application.

FOTA Stack
Version

b2152466-d604-
11e8-9f8b-
f2801f1b9fd1

Read 8
(Format
struct
version)

Version of the installed FOTA stack
sub-image (of type struct version).

Mandatory for DFU
component, optional for
device application

Application
Version

b2152466-d605-
11e8-9f8b-
f2801f1b9fd1

Read 8
(Format
struct
version)

Version of the installed application
sub-image. If no valid application
sub-image is currently installed,
then all 0s is returned.

Mandatory for DFU
component, optional for
device application.

FOTA Stack
Build ID

b2152466-d606-
11e8-9f8b-
f2801f1b9fd1

Read 32 Build ID as found in the descriptor
of the FOTA stack sub-image. If the
Build ID of the FOTA image to
download is different from the one
in this characteristic, then both sub-
images must be updated;
otherwise, updating only the
application sub-image is sufficient.

Mandatory for DFU
component, optional for
device application

Enter DFU b2152466-d607-
11e8-9f8b-
f2801f1b9fd1

Write 1 A write with the value 1 switches
from the Application mode to the
DFUmode.

Prohibited for DFU
component, mandatory
for device application.

Table 5. DFU Service Characteristics and Their Properties

7.6 DFU PROTOCOL

The application layer uses a Command/Response scheme. Every Command/Response consists of a standard header
and an optional body. The header has the following format:

typedef struct
{

uint8_t code; /* unique Command/Response code */
uint8_t param[3]; /* Command/Response specific parameters*/
uint32_t body_len; /* length of the following body (0 = no body)*/

} header;

Currently only a single Command/Response is specified: IMAGE_DOWNLOAD (code = 1). The command is used
to transfer a sub-image to the RSL device. The three parameters are not used by the command and must be set to 0. The
body contains one of the two sub-images including the signature. The response signals back the success or failure of the

www.onsemi.com

31

onsemi

Device Firmware Update (DFU) Guide

operation; in the case of failure, the RSL device can send the response before the whole command body is transferred.
The response itself has no body. Param[0] is used for the status; the other parameters are not used, and must be set to
0.

The table "Status Codes" (Table 6), below, shows the specific status codes:

Code Meaning

0 The sub-image has been downloaded successfully

1 Download rejected due to incompatible Device ID

2 Download rejected due to incompatible Build ID (only for application sub-images)

3 Download rejected due to image size too large or small

4 Download failed due to flash storage error

5 Download failed due to invalid signature

6 Download rejected due to invalid start address

Table 6. Status Codes

For the transport layer, an HDLC-like protocol with windowing is used to transport the upper layer SDUs. For the
data-link layer, the transport characteristic of the DFU service is used.

www.onsemi.com

32

8.Integrating FOTA Into Your Application
This topic shows how to modify an existing sample application to make it capable of receiving FOTA updates. We

start with the ble_peripheral_direction_finding application, and walk you step-by-step through all the required project
configurations and firmware changes. Then we show how to perform a FOTA update to confirm that the integration has
been executed successfully.

NOTE: This information refers to the general FOTA usage. For information on performing a secure
FOTA update, refer to the instructions and examples in the secure_blinky_fota sample
application’s readme file.

8.1 MODIFYING THE APPLICATION

Modify the application with the following steps:

1. Copy the ble_peripheral_direction_finding sample application into your workspace. The C/C++ perspective
opens and displays your newly copied project, as shown below in the figure "Bringing the Project Into the
Workspace" (Figure 15).

Figure 15. Bringing the Project Into the Workspace

2. Add the FOTA software component to your project by using the RTE Configuration Wizard (the ble_
peripheral_direction_finding.rteconfig file). When you select the FOTA component and click save, libfota.a,
fota.bin, mkfotaimg.exe and the tool mkfotaimg.py are copied into your project, under RTE > Device >
<device>. In addition, you need to deselect the BLE Stack component as shown in the figure "Adding the
FOTA Software Component" (Figure 16).

onsemi

CHAPTER 8

www.onsemi.com

33

onsemi

Device Firmware Update (DFU) Guide

Figure 16. Adding the FOTA Software Component

3. Modify the source code to set the FOTA version number and ID:
a. In app.h, define your version numbers and ID:

/*--

* Application Version
* -- */

#define APP_VER_ID "DF"

#define APP_VER_MAJOR 1

#define APP_VER_MINOR 0

#define APP_VER_REVISION 0

b. In app.c, include sys_fota.h and use the SYS_FOTA_VERSION macro to set the version:

#include "sys_fota.h"

/* --
* Application Version

www.onsemi.com

34

onsemi

Device Firmware Update (DFU) Guide

* --- */
SYS_FOTA_VERSION(APP_VER_ID, APP_VER_MAJOR, APP_VER_MINOR, APP_VER_REVISION);

4. Modify the sample application to add random and seed initialization functions in app.c. These functions are
initially defined in ble_protocol_support.c, which is excluded for the FOTA stack, as shown in the figure
"Adding the FOTA Software Component" (Figure 16).

void srand_func(uint32_t seed)
{

srand(seed);

}

int rand_func(void)
{

return rand();

}

5. Modify the sample application to activate the DFU when the FOTA_GPIO on the RSL EVB is connected to
ground.

a. In app.h, define an appropriate GPIO as FOTA_GPIO. For example:
#define FOTA_GPIO 1

b. In app_init.c, modify the DeviceInit() function to configure GPIO1 as a GPIO input:

void DeviceInit(void)
{
...

/* Configure FOTA_GPIO as GPIO input */
SYS_GPIO_CONFIG(FOTA_GPIO, (GPIO_MODE_GPIO_IN | GPIO_LPF_DISABLE | GPIO_WEAK_PULL_UP |
GPIO_6X_DRIVE));
...
}

c. In app.c, add the code below in the while(1) loop of the main() function, to start the DFU when the
FOTA GPIO is connected to ground:

while (1)
{

...

/* Start update when FOTA_GPIO is connected to ground */

if ((Sys_GPIO_Read(FOTA_GPIO)) == 0)
{

Sys_Fota_StartDfu(1);
}

...
}

www.onsemi.com

35

onsemi

Device Firmware Update (DFU) Guide

The DFU component is activated by calling the Sys_Fota_StartDfu(mode) function defined in sys_fota.h. The
mode value 0 is for an application without the Bluetooth Low Energy stack (for example, blinky), and 1 is for an
application that uses the Bluetooth Low Energy stack (such as ble_peripheral_server).

6. Replace your linker script sections.ld file with the one that contains the FOTA placement, and also replace your
startup.S file, as shown in the figure "Replacing the sections.ld and startup.S Files" (Figure 17). The new linker
script and startup.S file can be copied from ble_peripheral_server_fota, or directly from the CMSIS-Pack root
folder as follows:

o Non-Bluetooth Low Energy Application:
n sections.ld and startup.s: <CMSIS Pack root folder> > ONSemiconductor > <device> >

<version> > firmware > source > lib > fota > app > non_ble
o Bluetooth Low Energy Application:

n sections.ld and startup.s: <CMSIS Pack root folder>> ONSemiconductor > <device> >
<version> > firmware > source > lib > fota > app

Figure 17. Replacing the sections.ld and startup.S Files

www.onsemi.com

36

onsemi

Device Firmware Update (DFU) Guide

7. Modify the project post-build steps (see the figure "Post-Build Steps" (Figure 18)) to generate the FOTA image
in both Debug and Release build configurations, by going to Project > Properties > C/C++ Build > Settings >
Build Steps > Post-build steps. Two steps are required to generate the .fota image. First, we need to generate
the application sub-image .bin file using objcopy. Then, we use the mkfotaimg.exe tool to generate the FOTA
image (.fota file). Both commands can be concatenated with && and added to the post-build steps as in the
example that follows. To use this command, copy the code from the Post-Build steps of the existing sample
application ble_peripheral_server_fota, as the code in the text below is not directly copyable.

${cross_prefix}objcopy -O binary "${BuildArtifactFileName}"
"${BuildArtifactFileBaseName}.bin"
&& "${ProjDirPath}/RTE/Device/RSL15/mkfotaimg.exe" -o
"${BuildArtifactFileBaseName}.fota"
"${ProjDirPath}/RTE/Device/RSL15/fota.bin" "${BuildArtifactFileBaseName}.bin"

Figure 18. Post-Build Steps

8. Build the ble_peripheral_direction_finding application. If no error occurs, the FOTA image (ble_peripheral_
direction_finding.fota) can be found in the Debug or Release folder.

8.2 PERFORMING A FOTA UPDATE

1. Make sure you have bootloader running on your RSL EVB. If you have executed the steps in Chapter 5
"Performing Your First FOTA Update" on page 18, you already have bootloader flashed on your board and you
can skip this step. Otherwise, refer to Section 5.2 “Setting Up the Bootloader and Loading a Firmware Image
Using UART” on page 20 for instructions.

2. Activate the bootloader updater mode: Connect the UPDATE_GPIO from the bootloader application to ground
on the RSL EVB, and then push the reset button. The bootloader updater is now active, waiting for a firmware
image over UART.

NOTE: If there is a valid user application in flash (for example, the ble_peripheral_server_fota) and
no command is received over UART after 30 seconds, the bootloader updater times out and reboots
into the user application.

3. Load the ble_peripheral_direction_finding.fota image using the bootloader with the following command:

> python updater.py COM3 ble_peripheral_direction_finding.fota

www.onsemi.com

37

onsemi

Device Firmware Update (DFU) Guide

Image : DF ver=1.0.0 / FOTA ver=1.0.0
Application: FOTA ver=1.0.0
Bootloader : BOOTL* ver=1.0.0

After loading the image, the bootloader resets the device and boots up the user application.

Figure 19. Application Running

4. Connect the FOTA_GPIO (GPIO1) to ground so that the device starts the FOTA DFU mode. You can see the
name RSL FOTA on the RSL BLE Explorer. After checking that the name is RSL FOTA, disconnect FOTA_
GPIO from ground, as in the figure "FOTA DFU Mode Running" (Figure 20), below:

Figure 20. FOTA DFU Mode Running

Note: after 30 seconds, the FOTA DFU Mode times out and reboots into the user application.

5. Within 30 seconds of activating the FOTA DFU Mode, Click on the Update Firmware option on the BLE
Explorer and select the ble_peripheral_direction_finding.fota image file.

6. You can repeat these steps to update the firmware with the ble_peripheral_server_fota.fota image as well. The
steps described here can be applied to any Bluetooth Low Energy sample application.

www.onsemi.com

38

9.The Secure Bluetooth Low Energy FOTA Application
The secure_blinky_fota application shows how the firmware of a secure non-Bluetooth Low Energy application is

updated by FOTA and how to sign the firmware. Here you can learn how to create a secure Bluetooth Low Energy
FOTA application and how to update the application's firmware via FOTA.

9.1 WORKING WITH BLE_PERIPHERAL_SERVER_FOTA

Before starting to create a secure Bluetooth Low Energy FOTA application, you must have a provisioned RSL15
Evaluation and Development Board and the BLE Explorer utility.

This section is divided into four steps: of generating the application's firmware image, the signing process, making
FOTA image, and testing.

9.1.1 Step 1: Generate the application’s firmware image

To generate the firmware image, perform these steps:

1. Import the secure_bootloader and build with the bl_D_Secure configuration option. After building successfully,
secure_bootloader.hex is generated under the bl_D_Secure folder.

2. Import the FOTA project. Navigate to File > Import > General > Existing Projects into Workspace, set the
Select root directory: option with the path to the source code <cmsis_pack_
root>/ONSemiconductor/<device>/<version>/firmware/source/lib/fota, mark the checkbox Copy projects
into workspace, and click Finish. The project appears in the left side of the Project Explorer view. Build the
project with the Release_Secure configuration option. After building successfully, libfota.a, fota.bin and
fota.hex are generated under the Release_Secure folder and replace the libfota.a and the fota.bin files in your
CMSIS-Pack installation at <cmsis_pack_root>/ONSemiconductor/<device>/<version>/lib/Release_
Secure.

3. Import the ble_peripheral_server_fota, update the configurations, and build, using these steps:
a. Add –defsym and __cert_size=900 in the Linker flags in miscellaneous of Cross ARM C Linker.

NOTE: The __cert_size of 900 is calculated from the content certificate size, which is
868, + 32 bytes of padding. This is the minimum size required.
If you want to use key certificates, you must add an additional 840 to __cert_
size for each key certificate being used. For example, if you want to use one key
certificate, then __cert_size = 868 (content certificate) + 32 (byte padding) + 840
(key1 certificate size) = 1740.

b. Change the path of libfota.a to use the Secure FOTA library ${cmsis_pack_
root}/ONSemiconductor/<device>/<version>/lib/Release_Secure/libfota.a (see the
figure "Updating Secure Configuration" (Figure 21)).

onsemi

CHAPTER 9

www.onsemi.com

39

onsemi

Device Firmware Update (DFU) Guide

Figure 21. Updating Secure Configuration

c. Delete the fota.bin and libfota.a files under RTE > Device > RSL15, and copy the fota.bin and libfota.a
files from <cmsis_pack_root>/ONSemiconductor/<device>/<version>/lib/Release_Secure.

d. Delete Command in Post-build steps (see the figure "Deleting Command in Post-Build Steps" (Figure
22)).

Figure 22. Deleting Command in Post-Build Steps

www.onsemi.com

40

onsemi

Device Firmware Update (DFU) Guide

e. Build the ble_peripheral_server_fota. After building successfully, ble_peripheral_server_fota.hex is
generated under the Release folder.

9.1.2 Step 2: Sign the Application's Firmware Image

This step assumes your RSL15 workspace has a directory containing RSLSec which has sub-directories of
assets/keys/hbk0 and assets/keys/hbk1. You should have your own hbk0 and hbk1 keys. To sign the firmware image,
run a command prompt and go to the directory where RSLSec is located. Then do the following:

1. Generate RSA keys and certificate.
a. Create RSA keys to be used when creating the three-certificate RoT chain:

rslsec trust make hbk1 ./assets/keys/hbk1_key_1
rslsec trust make hbk1 ./assets/keys/hbk1_key_2

b. Create the key certificate:

mkdir .\assets\cert\hbk1
rslsec trust cert key --out ./assets/cert/hbk1/key_1.crt --hbk hbk1 --keypair
./assets/keys/hbk1/hbk1.prv.pem --pwd ./assets/keys/hbk1/hbk1.pwd --pubkey
./assets/keys/hbk1_key_1/hbk1_key_1.pub.pem

rslsec trust cert key --out ./assets/cert/hbk1/key_2.crt --hbk hbk1 --
keypair ./assets/keys/hbk1_key_1/hbk1_key_1.prv.pem --pwd ./assets/keys/hbk1_
key_1/hbk1_key_1.pwd --pubkey ./assets/keys/hbk1_key_2/hbk1_key_2.pub.pem

2. Create the content certificate for the secure_bootloader application.
a. Create the content certificate:

rslsec trust cert content --out ./assets/cert/hbk1/content.crt --keypair
./assets/keys/hbk1_key_2/hbk1_key_2.prv.pem --pwd ./assets/keys/hbk1_key_
2/hbk1_key_2.pwd --image ../secure_bootloader/bl_D_Secure/secure_
bootloader.hex --key1 --key2 --target RSL15

b. Pack the signed secure bootloader image with the certificates:

mkdir .\assets\apps\RSL15\hbk1

rslsec trust pack --out ./assets/apps/RSL15/hbk1/signed_secure_bootloader.hex
--key1 ./assets/cert/hbk1/key_1.crt --key2 ./assets/cert/hbk1/key_2.crt --
content ./assets/cert/hbk1/content.crt --image ../secure_bootloader/bl_D_
Secure/secure_bootloader.hex --target RSL15 --firstKeyAddress 0 --
secondKeyAddress 0 --contentAddress 0

The signed_secure_bootloader.hex file is created in the directory.

www.onsemi.com

41

onsemi

Device Firmware Update (DFU) Guide

3. Create the content certificate for the FOTA.
a. Create the content certificate:

rslsec trust cert content --out ./assets/cert/hbk1/content.crt --keypair
./assets/keys/hbk1_key_2/hbk1_key_2.prv.pem --pwd ./assets/keys/hbk1_key_
2/hbk1_key_2.pwd --image ../fota/Release_Secure/fota.hextarget RSL15

b. Pack the signed secure FOTA image with the certificates:

rslsec trust pack --out ./assets/apps/RSL15/hbk1/signed_fota.hex --bin
./assets/apps/RSL15/hbk1/signed_fota.bin --content
./assets/cert/hbk1/content.crt --image ../fota/Release_Secure/fota.hex --
target RSL15 --contentAddress 0 --config 0

The signed_fota.hex and signed_fota.bin files are created in the directory.

4. Create the content certificate for the ble_peripheral_server_fota application.
a. Create the content certificate:

rslsec trust cert content --out ./assets/cert/hbk1/content.crt --keypair
./assets/keys/hbk1_key_2/hbk1_key_2.prv.pem --pwd ./assets/keys/hbk1_key_
2/hbk1_key_2.pwd --image ../ble_peripheral_server_fota/Release/ble_
peripheral_server_fota.hex --target RSL15

b. Pack the signed ble_peripheral_server_fota image with the certificates:

rslsec trust pack --out ./assets/apps/RSL15/hbk1/signed_ble_peripheral_
server_fota.hex --bin ./assets/apps/RSL15/hbk1/signed_ble_peripheral_server_
fota.bin --content ./assets/cert/hbk1/content.crt --image ../ble_peripheral_
server_fota/Release/ble_peripheral_server_fota.hex --target RSL15 --
contentAddress 0 --config 0

The signed_ble_peripheral_server_fota.hex and signed_ble_peripheral_server_fota.bin files are created
in the directory.

9.1.3 Step 3: Create a FOTA Image

To create the FOTA image, run mkfotaimg.exe (located in ${<cmsis_pack_
root>}/ONSemiconductor/<device>/<version>/firmware/source/lib/fota/tools/mkfotaimg.exe),
with signed_fota.bin and signed_ble_peripheral_server_fota.bin, to create the FOTA image file:

mkfotaimg.exe -o ./assets/apps/RSL15/hbk1/signed_fota_signed_ble_peripheral_server_
fota.fota ./assets/apps/RSL15/hbk1/signed_fota.bin ./assets/apps/RSL15/hbk1/signed_ble_
peripheral_server_fota.bin -s 0xD800

The signed_fota_signed_ble_peripheral_server_fota.fota file is created in the directory.

www.onsemi.com

42

onsemi

Device Firmware Update (DFU) Guide

Figure 23. Secure Keys and Certificate and Signed Firmware Images

9.1.4 Step 4: Test the Secure ble_peripheral_server_fota Application

To test the application, perform these steps:

1. Open J-link Commander and connect to RSL15. Load the signed_secure_bootloader.hex file into the
provisioned device:

J-Link>loadfile <path_to_hexfile>\signed_secure_bootloader.hex

2. After copying signed_fota_signed_ble_peripheral_server_fota.fota and renaming the image to .bin, load the
signed_fota_signed_ble_peripheral_server_fota.bin file into the provisioned device:

J-Link>loadbin <path_to_binary>\signed_fota_signed_ble_peripheral_server_fota.bin
0x10D800

You can see the LED blinking on your EVB. Your device is now ready to perform a FOTA update.

3. Updating the application
a. Run the BLE Explorer utility.
b. BLE Explorer scans for ble_peripheral_server_fota.
c. Connect FOTA_GPIO to ground on your EVB to start FOTA DFU mode.
d. You can see the name RSL FOTA in the BLE Explorer window.
e. Connect to the name RSL FOTA.

4. Click on the Update Firmware option in the BLE Explorer window, and select the signed_fota_signed_secure_
ble_peripheral_server_fota.fota image file.

www.onsemi.com

43

10.RSL FOTA Mobile Application
RSL FOTA is a simple mobile application for iOS and Android, created to demonstrate Firmware-Over-The-Air

(FOTA) for onsemi RSL Bluetooth Low Energy devices. The RSL FOTA application acts as a central device to scan,
connect and transmit the firmware image to a remote device. The remote RSL device firmware must have FOTA-
enabled firmware to receive the FOTA firmware image.

10.1 RSL FOTA APPLICATION

Follow these steps to use the RSL FOTA Mobile Application:

1. Download and install the RSL FOTA application from the Google Play Store or the Apple App Store.
2. Launch the application and select the FOTA enabled firmware device from the list of devices, as shown below

in the figure "RSL FOTA Mobile Application Showing Bluetooth Low Energy Devices" (Figure 24).

onsemi

CHAPTER 10

www.onsemi.com

44

https://play.google.com/store/apps/details?id=com.onsemi.fota&hl=en_US
https://apps.apple.com/us/app/rsl-fota/id1477779771

onsemi

Device Firmware Update (DFU) Guide

Figure 24. RSL FOTA Mobile Application Showing Bluetooth Low Energy Devices

3. When the appropriate device is selected, select the firmware image by clicking the Select File button.
4. Once the FOTA firmware image file is selected, click the Update button (see the figure "RSL FOTA Mobile

Application: Updating Firmware" (Figure 25)).

www.onsemi.com

45

onsemi

Device Firmware Update (DFU) Guide

Figure 25. RSL FOTA Mobile Application: Updating Firmware

5. Upon firmware update completion, Update finished with code: 0 (Success) is displayed.

10.2 RSL FOTA ANDROID LIMITATIONS

Note the following important details when using the RSL FOTA Mobile Application:

www.onsemi.com

46

onsemi

Device Firmware Update (DFU) Guide

• Android must be version 6.0 or higher.
• Device location permission is needed to scan for Bluetooth Low Energy devices. If the permission is not granted
at app startup, the app is prevented from finding any Bluetooth Low Energy devices.

• Device storage permission is needed to select a FOTA file.
• The FOTA file can be selected from the Downloads folder. The file can be transferred to the device, either over
USB or by email.

10.3 RSL FOTA IOS LIMITATIONS

Note the following important details when using the RSL FOTA iOS® Mobile Application:

• The RSL FOTA Mobile Application for iOS requires the Bluetooth Low Energy feature to be enabled to scan
for Bluetooth Low Energy devices.

• The easiest way to add a new FOTA file to the RSL FOTA Mobile Application is to send an email to the device
with the file attached. After downloading the file from the email, press the File icon once more, and a popup is
displayed where the user can select which app to use to open the file. Select the RSL FOTA Mobile
Application. The file is then imported to the application, and is visible when the user presses the Select File
button on the Update Firmware screen.

www.onsemi.com

47

onsemi

Device Firmware Update (DFU) Guide

Windows is a registered trademark of Microsoft Corporation. Arm, Cortex, Keil, and uVision are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All
other brand names and product names appearing in this document are trademarks of their respective holders.

IAR EmbeddedWorkbench is a registered trademark of IAR Systems AB.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi owns the
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale
in any manner.

Copyright 2023 Semiconductor Components Industries, LLC (“onsemi”). All rights reserved. Unless agreed to differently in a separate onsemi license agreement, onsemi is providing
this “Technology” (e.g. reference design kit, development product, prototype, sample, any other non-production product, software, design-IP, evaluation board, etc.) “AS IS” and does
not assume any liability arising from its use; nor does onsemi convey any license to its or any third party’s intellectual property rights. This Technology is provided only to assist users in
evaluation of the Technology and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. onsemi
reserves the right to make changes without further notice to any of the Technology.

The Technology is not a finished product and is as such not available for sale to consumers. Unless agreed otherwise in a separate agreement, the Technology is only intended for
research, development, demonstration and evaluation purposes and should only be used in laboratory or development areas by persons with technical training and familiarity with the
risks associated with handling electrical/mechanical components, systems and subsystems. The user assumes full responsibility/liability for proper and safe handling. Any other use,
resale or redistribution for any other purpose is strictly prohibited.

The Technology is not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification
in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the Technology for any such unintended or unauthorized application,
you shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was
negligent regarding the design or manufacture of the board.

The Technology does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or
UL, and may not meet the technical requirements of these or other related directives.

THE TECHNOLOGY IS NOTWARRANTED AND PROVIDED ON AN “AS IS” BASIS ONLY. ANYWARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE HEREBY EXPRESSLY DISCLAIMED.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ONSEMI BE LIABLE TO CUSTOMEROR ANY THIRD PARTY. IN NO EVENT SHALL
ONSEMI BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATUREWHATSOEVER (INCLUDING, BUT NOT LIMITED TO, LOSS OR
DISGORGEMENT OF PROFITS, LOSS OF USE AND LOSS OF GOODWILL), REGARDLESS OFWHETHER ONSEMI HAS BEEN GIVEN NOTICE OF ANY SUCH ALLEGED
DAMAGES, AND REGARDLESS OFWHETHER SUCH ALLEGED DAMAGES ARE SOUGHT UNDER CONTRACT, TORT OROTHER THEORIES OF LAW.

Do not use this Technology unless you have carefully read and agree to these limited terms and conditions. By using this Technology, you expressly agree to the limited terms and
conditions. All source code is onsemi proprietary and confidential information.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for onsemi

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support:

800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical

Support:Phone: 421 33 790 2910

onsemi Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local

Sales Representative

M-20930-004

www.onsemi.com

48

	Device Firmware Update (DFU) Guide
	Table of Contents
	1. Introduction
	1.2 Document Conventions
	1.3 Further Reading
	1.4 Further Reading

	2. Overview
	2.1 Prerequisites

	3. Bootloader
	3.1 Overview
	3.2 Bootloader Firmware
	3.2.1 Vector Table Positions
	3.2.2 Layout in Flash
	3.2.3 Power-on-Reset
	3.2.4 Activating the Updater
	3.2.5 Downloading the .bin Image
	3.2.6 Image Format
	3.2.7 Load Image

	3.3 The Bootloader Protocol For Writing Binary Files Using UART
	3.3.1 RESP
	3.3.2 HELLO
	3.3.3 PROG
	3.3.4 Restart

	4. The FOTA Firmware
	4.1 FOTA Overview
	4.2 FOTA Partitioning
	4.3 Firmware Startup
	4.4 Application Only Update
	4.5 Application + FOTA Bluetooth Low Energy Stack Update

	5. Performing Your First FOTA Update
	5.1 Generating the FOTA Firmware Image
	5.2 Setting Up the Bootloader and Loading a Firmware Image Using UART
	5.3 Performing a FOTA Update Using BLE Explorer

	6. FOTA Image
	6.1 Overview
	6.2 mkfotaimg.py
	6.3 Sub-Image Format

	7. The DFU
	7.1 DFU Component
	7.2 Update Sequence
	7.3 FOTA Stack Source Code
	7.4 DFU Bluetooth Low Energy Service
	7.5 DFU Service Characteristics
	7.6 DFU Protocol

	8. Integrating FOTA Into Your Application
	8.1 Modifying the Application
	8.2 Performing a FOTA Update

	9. The Secure Bluetooth Low Energy FOTA Application
	9.1 Working with ble_peripheral_server_fota
	9.1.1 Step 1: Generate the application’s firmware image
	9.1.2 Step 2: Sign the Application's Firmware Image
	9.1.3 Step 3: Create a FOTA Image
	9.1.4 Step 4: Test the Secure ble_peripheral_server_fota Application

	10. RSL FOTA Mobile Application
	10.1 RSL FOTA Application
	10.2 RSL FOTA Android Limitations
	10.3 RSL FOTA iOS Limitations

