

MOSFET – Power, N-Channel

60 V, 50 A, 22 m Ω

RFP50N06

These N-Channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developed type TA49018.

Features

- 50 A, 60 V
- $r_{DS(ON)} = 0.022 \Omega$
- Temperature Compensating PSPICE™ Model
- Peak Current vs. Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature
- This Device is Pb-Free and is RoHS Compliant

Specifications

ABSOLUTE MAXIMUM RATINGS

(T_C = 25°C, unless otherwise specifieded)

Symbol	Para	Rating	Unit	
V _{DSS}	Drain to Source Volt	60	V	
V_{DGR}	Drain to Gate Voltag (Note 1)	60	V	
V_{GS}	Gate to Source Volta	to Source Voltage		
I _D	Drain Current	Continuous (Figure 2)	50	Α
I _{DM}		Pulsed	(Figure 5)	
E _{AS}	Pulsed Avalanche F	(Figure 6)		
P_{D}	Power Dissipation	131	W	
	Linear Derating F	0.877	W/°C	
T _J , T _{STG}	Operating and Stora	-55 to 175	°C	
TL	Maximum Temperat Leads at 0.063 inch for 10 s	300	°C	
T _{pkg}	Maximum Temperature for Soldering Package Body for 10 s, see Techbrief 334			°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$

TO-220-3LD CASE 340AT

SYMBOL

MARKING DIAGRAM

\$Y = onsemi Logo = Assembly Plant Code &Z

= Date Code (Year & Week) &K

&3

RFP50N06 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
RFP50N06	TO-220-3LD (Pb-Free)	800 units / Tube

1

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$, unless otherwise noted)

Parameter	Symbol	Test	Conditions	Min	Тур	Max	Units
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250 μA, V _{GS} = 0 V (Figure 11)		60	-	_	V
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$ (Figure 10)		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 60 \text{ V}, \ V_{GS} = 0 \text{ V}$ $V_{CS} = 150^{\circ}\text{C}$	T _C = 25°C	-	-	1	μΑ
			-	-	50	μΑ	
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20 V	V _{GS} = ±20 V		-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 50 A, V _{GS} = 10 V (Figure 9)		-	-	0.022	Ω
Turn-On Time	t _{ON}	V_{DD} = 30 V, I_{D} = 50 A R_{L} = 0.6 Ω , V_{GS} = 10 V R_{GS} = 3.6 Ω (Figure 13)		-	-	95	ns
Turn-On Delay Time	t _{d(ON)}			-	12	_	ns
Rise Time	t _r			-	55	_	ns
Turn-Off Delay Time	t _{d(OFF)}			-	37	_	ns
Fall Time	t _f			-	13	_	ns
Turn-Off Time	t _{OFF}			-	-	75	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0 to 20 V	V _{DD} = 48 V, I _D = 50 A,	-	125	150	nC
Gate Charge at 10V	Q _{g(10)}	$V_{GS} = 0$ to 10 V	$R_L = 0.96 \Omega$ $I_{g(REF)} = 1.45 \text{ mA}$	-	67	80	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0$ to 2 V	(Figure 13)	-	3.7	4.5	nC
Input Capacitance	C _{ISS}	V _{DS} = 25 V, V _{GS} =	= 0 V	-	2020	_	pF
Output Capacitance	C _{OSS}	f = 1 MHz (Figure 12)		-	600	_	pF
Reverse Transfer Capacitance	C _{RSS}			-	200	_	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$	(Figure 3)		-	-	1.14	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-220		-	-	62	°C/W
SOURCE TO DRAIN DIODE CHARACTERISTICS							
Source to Drain Diode Voltage	V_{SD}	I _{SD} = 50 A		-	-	1.5	V
		1					1

Source to Drain Diode Voltage	V_{SD}	I _{SD} = 50 A	ı	_	1.5	V
Output Capacitance	t _{rr}	I_{SD} = 50 A, dI_{SD}/dt = 100 A/ μ s	-	_	125	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified)

60 50 ID, DRAIN CURRENT (A) 40 30 20 10 0 25 50 75 100 125 150 175 T_C, CASE TEMPERATURE (°C)

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Forward Bias Safe Operating Area

Figure 5. Peak Current Capability

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified) (continued)

Figure 6. Unclamped Inductive Switching Capability

Figure 7. Saturation Characteristics

Figure 8. Transfer Characteristics

Figure 9. Normalized Drain to Source On Resistance vs. Junction Temperature

Figure 10. Normalized Gate Threshold Voltage vs. Junction Temperature

Figure 11. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified) (continued)

Figure 12. Capacitance vs. Drain to Source Voltage

Figure 13. Normalized Switching Waveforms for Constant Gate Current

TEST CIRCUITS AND WAVEFORMS

Figure 14. Unclamped Energy Test Circuit

Figure 15. Unclamped Energy Waveforms

Figure 16. Switching Time Test Circuit

Figure 17. Switching Waveforms

Figure 18. Gate Charge Test Circuit

Figure 19. Gate Charge Waveforms

PSPICE ELECTRICAL MODEL

.SUBCKT RFP50N06213

REV 2/22/93

*NOM TEMP = 25°C

CA 12 8 3.68e-9 CB 15 14 3.625e-9 CIN 6 8 1.98e-9

DBODY 7 5 DBDMOD DBREAK 5 11DBKMOD DPLCAP 10 5 DPLCAPMOD

EBREAK 11 7 17 18 64.59 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1

IT 8 17 1

LDRAIN 2 5 1e-9 LGATE 1 9 5.65e-9 LSOURCE 3 7 4.13e-9

MOS1 16 6 8 8 MOSMOD M=0.99 MOS2 16 21 8 8 MOSMOD M=0.01

RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 1e-4 RGATE 9 20 0.690 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 12e-3 RVTO 18 19 RVTOMOD 1

S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD

VBAT 8 19 DC 1 VTO 21 6 0.678

DRAIN 5 **-**0 2 10 LDRAIN **DPLCAP RDRAIN** DBREAK Y **ESG** VTO DBODY MOS₂ **EVTO** GATE 21 20 18 11 MOS1 8 LGATE RGATE **EBREAK** 18 RIN ≥ CIN RSOURCE **LSOURCE** 8 7 **-**o 3 SOURCE S1A o ပ S2A **RBREAK** 15 13 14 17 18 13 8 S1B P Q SZB **RVTO** 13 CA CB (\dagger) IT 19 <u>6</u> 8 **5 VBAT** EGS (**EDS**

.MODEL DBDMOD D (IS=9.85e-13 RS=4.91e-3 TRS1=2.07e-3 TRS2=2.51e-7 CJO=2.05e-9 TT=4.33e-8)

.MODEL DBKMOD D (RS=1.98e-1 TRS1=2.35E-4 TRS2=-3.83e-6)

.MODEL DPLCAPMOD D (CJO=1.42e-9 IS=1e-30 N=10)

.MODEL MOSMOD NMOS (VTO=3.65 KP=35 IS=1e-30 N=10 TOX=1 L=1u W=1u)

.MODEL RBKMOD RES (TC1=1.23e-3 TC2=-2.34e-7)

.MODEL RDSMOD RES (TC1=5.01e-3 TC2=1.49e-5)

.MODEL RVTOMOD RES (TC1=-5.03e-3 TC2=-5.16e-6)

.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.75 VOFF=-2.5)

.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.5 VOFF=-6.75)

.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.7 VOFF=2.3)

.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=2.3 VOFF=-2.7)

.ENDS

NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; authors, William J. Hepp and C. Frank Wheatley.

PSPICE is a trademark of MicroSim Corporation.

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales