To learn more about ON Semiconductor, please visit our website at www.onsemi.com. Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
N-Channel Power MOSFET
60V, 50A, 22 mΩ

These N-Channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA49018.

Features
- 50A, 60V
- \(r_{DS(ON)} = 0.022 \Omega \)
- Temperature Compensating PSPICE® Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature

Symbol

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BRAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP50N06</td>
<td>TO-220AB</td>
<td>RFP50N06</td>
</tr>
</tbody>
</table>

Packaging

JEDEC TO-220AB

©2002 Fairchild Semiconductor Corporation
Absolute Maximum Ratings $T_C = 25^\circ$C, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage (Note 1)</td>
<td>V_{DSS}</td>
<td>$I_D = 250\mu A, V_{GS} = 0 V$ (Figure 11)</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)</td>
<td>V_{DGR}</td>
<td>$I_D = 200\mu A$</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage</td>
<td>V_{GS}</td>
<td>$\pm 20 V$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current (Figure 2)</td>
<td>I_D</td>
<td>$T_{C} = 25^\circ$C</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current (Figure 5)</td>
<td>I_{DM}</td>
<td></td>
<td>(Figure 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Avalanche Rating (Figure 6)</td>
<td>E_{AS}</td>
<td></td>
<td>(Figure 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>$T_{C} = 25^\circ$C</td>
<td>131</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td>P_D</td>
<td>$T_{C} = 150^\circ$C</td>
<td>0.877</td>
<td>-</td>
<td>-</td>
<td>W/°C</td>
</tr>
<tr>
<td>Operating and Storage Temperature</td>
<td>T_{J}, T_{STG}</td>
<td>-55 to 175 °C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Temperature for Soldering</td>
<td>T_L</td>
<td>300 °C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>°C</td>
</tr>
<tr>
<td>Package Body for 10s, see Techbrief 334</td>
<td>T_{pkg}</td>
<td>260 °C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>°C</td>
</tr>
</tbody>
</table>

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. $T_J = 25^\circ$C to 150°C.

Electrical Specifications $T_C = 25^\circ$C, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Breakdown Voltage</td>
<td>$B_{V_{DSS}}$</td>
<td>$I_D = 250\mu A, V_{GS} = 0 V$ (Figure 11)</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Threshold Voltage</td>
<td>$V_{GS(TH)}$</td>
<td>$V_{GS} = V_{DS}, I_D = 250\mu A$ (Figure 10)</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 60 V, V_{GS} = 0 V$ $T_{C} = 25^\circ$C</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{C} = 150^\circ$C</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GSS}</td>
<td>$V_{GS} = \pm 20 V$</td>
<td>-</td>
<td>-</td>
<td>± 100</td>
<td>μA</td>
</tr>
<tr>
<td>Drain to Source On Resistance</td>
<td>$r_{DS(ON)}$</td>
<td>$I_D = 50 A, V_{GS} = 10 V$ (Figures 9)</td>
<td>-</td>
<td>-</td>
<td>0.022</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>t_{ON}</td>
<td>$V_{DD} = 30 V, I_D = 50 A$</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{d(ON)}$</td>
<td></td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td></td>
<td>-</td>
<td>55</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{d(OFF)}$</td>
<td></td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_{f}</td>
<td></td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>t_{OFF}</td>
<td></td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>$Q_{g(TOT)}$</td>
<td>$V_{GS} = 0 to 20 V$</td>
<td>-</td>
<td>125</td>
<td>150</td>
<td>nC</td>
</tr>
<tr>
<td>Gate Charge at 10V</td>
<td>$Q_{g(10)}$</td>
<td>$V_{GS} = 0 to 10 V$</td>
<td>-</td>
<td>67</td>
<td>80</td>
<td>nC</td>
</tr>
<tr>
<td>Threshold Gate Charge</td>
<td>$Q_{g(TH)}$</td>
<td>$V_{GS} = 0 to 2 V$</td>
<td>-</td>
<td>3.7</td>
<td>4.5</td>
<td>nC</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>$V_{DS} = 25 V, V_{GS} = 0 V$ $f = 1 MHz$</td>
<td>-</td>
<td>2020</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{OSS}</td>
<td></td>
<td>-</td>
<td>600</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{RSS}</td>
<td></td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Case</td>
<td>R_{JIC}</td>
<td>(Figure 3)</td>
<td>-</td>
<td>1.14</td>
<td>-</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Ambient</td>
<td>R_{JJA}</td>
<td>TO-220</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Source to Drain Diode Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source to Drain Diode Voltage</td>
<td>V_{SD}</td>
<td>$I_{SD} = 50 A$</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>$I_{SD} = 50 A, dI_{SD}/dt = 100 A/μs$</td>
<td>-</td>
<td>-</td>
<td>125</td>
<td>ns</td>
</tr>
</tbody>
</table>
Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. PEAK CURRENT CAPABILITY
Typical Performance Curves Unless Otherwise Specified **(Continued)**

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 7. SATURATION CHARACTERISTICS

FIGURE 8. TRANSFER CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes 9321 and 9322.
Typical Performance Curves

Unless Otherwise Specified (Continued)

FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

<table>
<thead>
<tr>
<th>Capacitance (pF)</th>
<th>Drain to Source Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

$$ C_{\text{ISS}} = C_{GS} + C_{GD} $$

$$ C_{\text{OSS}} = C_{DS} + C_{GD} $$

FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

- **FIGURE 15.** UNCLAMPED ENERGY WAVEFORMS

- **FIGURE 16.** SWITCHING TIME TEST CIRCUIT

- **FIGURE 17.** SWITCHING WAVEFORMS

VARY t_p TO OBTAIN REQUIRED PEAK I_{AS}

- $V_{DD} = BVDSS$
- V_{DS}
- $R_L = 1.2 \, \Omega$
- $I_{G(REF)} = 1.45 \, mA$
- $V_{GS} = 10 \, V$

- $0.75 \, BVDSS$
- $0.50 \, BVDSS$
- $0.25 \, BVDSS$

- $0.75 \, BVDSS$
- $0.50 \, BVDSS$
- $0.25 \, BVDSS$

- $0.25 \, BVDSS$
- $0.50 \, BVDSS$
- $0.75 \, BVDSS$

- t_ON
- $t_{\text{d(ON)}}$
- t_r
- $t_{\text{d(OFF)}}$
- t_{f}
- t_{OFF}

- PULSE WIDTH

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
Test Circuits and Waveforms (Continued)

FIGURE 18. GATE CHARGE TEST CIRCUIT

FIGURE 19. GATE CHARGE WAVEFORMS
PSPICE Electrical Model

.SUBCKT RFP50N06 2 13

REV 2/22/93

*NOM TEMP = 25°C

CA 12 8 3.68e-9
CB 15 14 3.625e-9
CIN 6 8 1.98e-9
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 64.59
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 8 8 1
EVTO 20 6 18 8 1
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.65e-9
LSOURCE 3 7 4.13e-9
MOS1 16 6 8 8 MOSMOD M=0.99
MOS2 16 21 8 8 MOSMOD M=0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 1e-4
RGATE 9 20 0.690
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 12e-3
RVTO 18 19 RVTOMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.678

.MODEL DBDMOD D (IS=9.85e-13 RS=4.91e-3 TRS1=2.07e-3 TRS2=2.51e-7 CJO=2.05e-9 TT=4.33e-8)
.MODEL DBKMOD D (RS=1.98e-1 TRS1=2.35E-4 TRS2=3.83e-6)
.MODEL DPLCAPMOD D (CJO=1.42e-9 IS=1e-30 N=10)
.MODEL MOSMOD NMOS (VTO=3.65 KP=35 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL RDSMOD RES (TC1=5.01e-3 TC2=1.49e-5)
.MODEL RVTOMOD RES (TC1=5.03e-3 TC2=5.16e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.75 VOFF=-2.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.5 VOFF=-6.75)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.7 VOFF=2.3)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=2.3 VOFF=-2.7)

.ENDS

NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; authors, William J. Hepp and C. Frank Wheatley.
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
BitSiC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
Fairchild
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST®
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmx™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOPPER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver®
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/WkW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
SYSTEM GENERAL™
TinyBoost®
TinyBuck®
TinyCalc®
TinyLogic™
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
Trifault Detect™
TRUECURRENT™
µSerDes™
UHC®
Ultra FRFET™
UnFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

©2002 Fairchild Semiconductor Corporation