To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
QSE158, QSE159
Plastic Silicon OPTOLOGIC® Photosensor

Features
- Bipolar silicon IC
- Package type: Sidelooker
- Medium wide reception angle, 50°
- Package material and color: black epoxy
- Matched emitter: QEE113/QEE123
- Daylight filter
- High sensitivity
- Direct TTL/LSTTL interface

Description
The QSE15X family are OPTOLOGIC® ICs which feature a Schmitt trigger at output which provides hysteresis for noise immunity and pulse shaping. The basic building block of this IC consists of a photodiode, a linear amplifier, voltage regulator, Schmitt trigger and four output options. The TTL/LSTTL compatible output can drive up to ten TTL loads over supply currents from 4.5 to 16.0 Volts. The devices are marked with a color stripe for easy identification.

Package Dimensions

Note:
1. Dimensions for all drawings are in millimeters.
Block Diagrams

QSE158
Open-Collector Output Buffer

QSE159
Open-Collector Output Inverter

Absolute Maximum Ratings \((T_A = 25°C \text{ unless otherwise specified})\)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>T_{SOL-I}</td>
<td>Soldering Temperature (Iron)(^{2,3,4})</td>
<td>240 for 5 sec</td>
<td>°C</td>
</tr>
<tr>
<td>T_{SOL-F}</td>
<td>Soldering Temperature (Flow)(^{2,3})</td>
<td>260 for 10 sec</td>
<td>°C</td>
</tr>
<tr>
<td>I_O</td>
<td>Output Current</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Supply Voltage</td>
<td>4.0 to 16</td>
<td>V</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Voltage</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation(^{(1)})</td>
<td>100</td>
<td>mW</td>
</tr>
</tbody>
</table>

Notes:
1. Derate power dissipation linearly 2.50mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron tip 1/16" (1.6mm) minimum from housing.
Electrical Characteristics (\(T_A = -40°C\) to +85°C, \(V_{CC} = 4.5\)V to 16V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ee(+))</td>
<td>Positive Going Threshold Irradiance(^{(5)})</td>
<td>(T_A = 25°C)</td>
<td>0.025</td>
<td>0.250</td>
<td>mW/cm(^2)</td>
<td></td>
</tr>
<tr>
<td>(Ee(+))/(Ee(-))</td>
<td>Hysteresis Ratio</td>
<td></td>
<td>1.10</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply Current(^{(5)})</td>
<td>(Ee = 0) or 0.3mW/cm(^2)</td>
<td></td>
<td>5.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak to Peak Ripple which will Cause False Triggering</td>
<td>(f = DC) to 50MHz</td>
<td></td>
<td>2.00</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

QSE158 (Buffer Open Collector)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{OH})</td>
<td>High Level Output Current(^{(5)})</td>
<td>(Ee = 0.3)mW/cm(^2), (V_{OH} = 30)V</td>
<td></td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage</td>
<td>(Ee = 0), (I_{OL} = 16)mA</td>
<td></td>
<td>0.40</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

QSE159 (Inverter Open Collector)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{OH})</td>
<td>High Level Output Current</td>
<td>(Ee = 0), (V_{OH} = 30)V</td>
<td></td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage(^{(5)})</td>
<td>(Ee = 0.3)mW/cm(^2), (I_{OL} = 16)mA</td>
<td></td>
<td>0.40</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

QSE158, QSE159

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_R, t_F)</td>
<td>Output Rise, Fall Times</td>
<td>(Ee = 0) or 0.3mW/cm(^2), (f = 10kHz), (DC = 50%), (R_L = 360)Ω(^{(5)})</td>
<td></td>
<td>100</td>
<td>nS</td>
<td></td>
</tr>
<tr>
<td>(t_{PHL}, t_{PLH})</td>
<td>Propagation Delay</td>
<td>(Ee = 0) or 0.3mW/cm(^2), (f = 10kHz), (DC = 50%), (R_L = 360)Ω(^{(5)})</td>
<td></td>
<td>6.0</td>
<td>µS</td>
<td></td>
</tr>
</tbody>
</table>

Note:

5. \(\lambda = 880\)nm (AlGaAs).
Typical Performance Curves (Sensor Coupled to QEE113 Emitter)

Fig. 1 Output Voltage vs. Input Current (Inverters)

- **V_{OH}** - Output Voltage (V)
- **V_{OL}** - Output Voltage (V)
- **I_{F} (OFF)**
- **I_{F} (ON)**
- \(V_{CC} = 5 \text{ V} \)
- \(R_L = 270 \Omega \)
- \(T_A = 25^\circ \text{C} \)
- \(d = 4 \text{ mm} \)

Fig. 2 Output Voltage vs. Input Current (Buffers)

- **V_{OH}** - Output Voltage (V)
- **V_{OL}** - Output Voltage (V)
- **I_{F} (OFF)**
- **I_{F} (ON)**
- \(V_{CC} = 5 \text{ V} \)
- \(R_L = 270 \Omega \)
- \(T_A = 25^\circ \text{C} \)
- \(d = 4 \text{ mm} \)

Fig. 3 Threshold Current vs. Distance

- \(I_{F} (ON) \)
- \(I_{F} (OFF) \)
- Normalized to:
 - \(V_{CC} = 5 \text{ V} \)
 - \(R_L = 270 \Omega \)
 - \(T_A = 25^\circ \text{C} \)
 - \(d = 4 \text{ mm} \)
 - Pulsed 100Hz
 - PW = 100\mu s

Fig. 4 Normalized Threshold Current vs. Supply Voltage

- \(I_{F} (ON) \)
- \(I_{F} (OFF) \)
- Normalized to:
 - Turn ON Threshold
 - \(V_{CC} = 5 \text{ V} \)
 - \(T_A = 25^\circ \text{C} \)
Typical Performance Curves (Sensor Coupled to QEE113 Emitter) (Continued)

Fig. 5 Normalized Threshold Current vs. Ambient Temperature

- Normalized to:
 - $V_{CC} = 5$ V
 - $T_A = 25°C$

- $I_F = I_F(0)$
- $I_F = I_F(ON)$

Fig. 6 Low Output Voltage vs. Output Current

- $V_{CC} = 5$ V
- $I_F = 10$ mA

Fig. 7 Response Time vs. Forward Current

- $V_{CC} = 5$ V
- $R_L = 270$ Ω
- $T_A = 25°C$
- I_F Pulsed
- $T = 10$ ms
- Duty Cycle = 50%

- T_{PHL}
- T_{PLH}
QSE158, QSE159
Plastic Silicon OPTOLOGIC® Photosensor

Fig. 8 Switching Speed Test Circuit

![Switching Speed Test Circuit Diagram]

- R1 = 360Ω
- R2 = 180Ω
- C1 = 15 pf
- C2 = 20 pf
- C1 and C2 include probe and stray wire capacitance

Fig. 9 Switching Times Definition for Buffers

![Switching Times Definition for Buffers Diagram]

Fig. 10 Switching Times Definition for Inverters

![Switching Times Definition for Inverters Diagram]
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Avidio™
AX-CAP™
BitSiC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSpark™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FastCore™
FETBench™
FPS®
F-PPS™
FRFET™
Global Power Resource℠
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
 IntelliMax™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MIT™
MTX™
MVM®
mWSaver®
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET®
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupremOS®
SyncFET™
Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. NO LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use Policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild’s Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy, Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 177