To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
QEE113
Plastic Infrared Light Emitting Diode

Features
• $\lambda = 940$ nm
• Package Type = Sidelooker
• Chip Material = GaAs
• Matched Photosensor: QSE113
• Medium Wide Emission Angle, 50°
• Package Material: Clear Epoxy
• High Output Power
• Gray dot marking on the top side

Description
The QEE113 is a 940 nm GaAs LED encapsulated in a medium wide angle, plastic sidelooker package.

Package Dimensions

Notes:
1. Dimensions for all drawings are in inches (mm).
2. Tolerance of ±0.010 (0.25) on all non-nominal dimensions unless otherwise specified.
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPR</td>
<td>Operating Temperature</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>TSOL-I</td>
<td>Soldering Temperature (Iron)(^{(4, 5, 6)})</td>
<td>240 for 5 sec</td>
<td>°C</td>
</tr>
<tr>
<td>TSOL-F</td>
<td>Soldering Temperature (Flow)(^{(4, 5)})</td>
<td>260 for 10 sec</td>
<td>°C</td>
</tr>
<tr>
<td>IF</td>
<td>Continuous Forward Current</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>VR</td>
<td>Reverse Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation(^{(3)})</td>
<td>100</td>
<td>mW</td>
</tr>
</tbody>
</table>

Notes:
3. Derate power dissipation linearly 1.33 mW/°C above 25°C.
4. RMA flux is recommended.
5. Methanol or isopropyl alcohols are recommended as cleaning agents.
6. Soldering iron 1/16” (1.6mm) minimum from housing.

Electrical / Optical Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{PE}</td>
<td>Peak Emission Wavelength</td>
<td>$I_F = 20$ mA</td>
<td>945</td>
<td>nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC$_A$</td>
<td>Temperature Coefficient</td>
<td></td>
<td>0.3</td>
<td>nm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2\theta_{1/2}$</td>
<td>Emission Angle</td>
<td>$I_F = 100$ mA</td>
<td>50</td>
<td>°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>$I_F = 100$ mA, $t_p = 20$ ms</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC$_{VF}$</td>
<td>Temperature Coefficient</td>
<td></td>
<td>-2</td>
<td>mV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Current</td>
<td>$V_R = 5$ V</td>
<td>10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_E</td>
<td>Radiant Intensity</td>
<td>$I_F = 100$ mA, $t_p = 20$ ms</td>
<td>3</td>
<td>7.5</td>
<td>12</td>
<td>mW/sr</td>
</tr>
<tr>
<td>TC$_{IE}$</td>
<td>Temperature Coefficient</td>
<td></td>
<td>-0.7</td>
<td>%/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$I_F = 100$ mA</td>
<td>800</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$I_F = 100$ mA</td>
<td>800</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_j</td>
<td>Junction Capacitance</td>
<td>$V_R = 0$ V</td>
<td>14</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 1. Normalized Intensity vs. Wavelength

Figure 2. Peak Wavelength vs. Ambient Temperature

Figure 3. Normalized Radiant Intensity vs. Forward Current

Figure 4. Normalized Radiant intensity vs. Ambient Temperature

Figure 5. Forward Voltage vs. Forward Current

Figure 6. Forward Voltage vs. Ambient Temperature
Typical Performance Characteristics (Continued)

Figure 7. Radiation Diagram

Figure 8. Coupling Characteristics of QEE113 and QSE113

Normalized to:
- $d = 0$ inch
- I_r Pulsed
- $t_{pw} = 100\mu s$
- Duty Cycle $= 0.1\%$
- $V_{CC} = 5V$
- $R_L = 100\Omega$
- $T_A = 25^\circ C$
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda™
AX-CAP™
BSiS™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
F-PFS™ e-Series™
F-PFS™
F-PFS™
Global Power Resource™
GreenBridge™
Green FPS™
Gmax™
GTO™
ISOLPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOPPER™
MicroFET™
MicroPAK™
MicroPAK2™
MillerDrive™
MotionMax™
MotionGrid™
MT™
MTX™
MV™
mWSaver®
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Savings our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERETOFORTH TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. NO LICIBILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td></td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td></td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td></td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td></td>
</tr>
</tbody>
</table>

Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.

Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.

Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.

The datasheet is for reference information only.

Rev. I74