QED223
Plastic Infrared Light Emitting Diode

Features
- $\lambda = 880\text{nm}$
- Chip material = AlGaAs
- Package type: T-1 3/4 (5mm lens diameter)
- Matched photosensor: QSD123/QSD124
- Medium wide emission angle, 30°
- High output power
- Package material and color: clear, purple tinted, plastic

Description
The QED223 is 880nm AlGaAs LEDs encapsulated in a clear purple tinted, plastic T-1 3/4 package.

Package Dimensions

Notes:
1. Dimensions of all drawings are in inches (mm).
2. Tolerance is ±0.010 (0.25) on all non-nominal dimensions unless otherwise specified.
Absolute Maximum Ratings \((T_A = 25^\circ C\) unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{OPR})</td>
<td>Operating Temperature</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{STG})</td>
<td>Storage Temperature</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SOL-I})</td>
<td>Soldering Temperature (Iron)(^2)(3)(4)</td>
<td>240 for 5 sec</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SOL-F})</td>
<td>Soldering Temperature (Flow)(^2)(3)</td>
<td>260 for 10 sec</td>
<td>°C</td>
</tr>
<tr>
<td>(I_F)</td>
<td>Continuous Forward Current</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>(V_R)</td>
<td>Reverse Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation(^{(1)})</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>(I_F(Peak))</td>
<td>Peak Forward Current(^{(5)})</td>
<td>1.5</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes:
1. Derate power dissipation linearly 2.67mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron 1/16" (1.6mm) minimum from housing.
5. Pulse conditions; \(t_p = 100\mu s, T = 10\)ms.

Electrical / Optical Characteristics \((T_A = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{PE})</td>
<td>Peak Emission Wavelength</td>
<td>(I_F = 20mA)</td>
<td>890</td>
<td></td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>(TC_{\lambda})</td>
<td>Temperature Coefficient</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>nm/°C</td>
</tr>
<tr>
<td>(2\Theta_{1/2})</td>
<td>Emission Angle</td>
<td>(I_F = 100mA)</td>
<td>30</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>(V_F)</td>
<td>Forward Voltage</td>
<td>(I_F = 100mA, tp = 20ms)</td>
<td>1.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(TC_{VF})</td>
<td>Temperature Coefficient</td>
<td></td>
<td>-6</td>
<td></td>
<td></td>
<td>mV/°C</td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse Current</td>
<td>(V_R = 5V)</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_E)</td>
<td>Radiant Intensity</td>
<td>(I_F = 100mA, tp = 20ms)</td>
<td>25</td>
<td></td>
<td></td>
<td>mW/sr</td>
</tr>
<tr>
<td>(TC_{IE})</td>
<td>Temperature Coefficient</td>
<td></td>
<td>-0.3</td>
<td></td>
<td></td>
<td>%/°C</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td>(I_F = 100mA)</td>
<td>900</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall Time</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(C_j)</td>
<td>Junction Capacitance</td>
<td>(V_R = 0V)</td>
<td>11</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>
Typical Performance Curves

Figure 1. Normalized Intensity vs. Wavelength

Normalized to:
- \(I_F = 100 \text{mA Pulsed} \)
- \(t_{PW} = 20 \text{ms} \)
- Duty Cycle = 4%
- \(T_A = 25 \degree C \)

Figure 2. Peak Wavelength vs. Ambient Temperature

Normalized to:
- \(I_F = 20 \text{mA DC} \)

Figure 3. Normalized Radiant Intensity vs. Forward Current

Normalized to:
- \(I_F = 100 \text{mA Pulsed} \)
- \(t_{PW} = 20 \text{ms} \)
- Duty Cycle = 4%
- \(T_A = 25 \degree C \)

Figure 4. Normalized Radiant Intensity vs. Ambient Temperature

Normalized to:
- \(I_F = 20 \text{mA Pulsed} \)
- \(t_{PW} = 20 \text{ms} \)
- Duty Cycle = 4%
- \(T_A = 25 \degree C \)

Figure 5. Forward Voltage vs. Forward Current

Figure 6. Forward Voltage vs. Ambient Temperature

Normalized to:
- \(I_F = 20 \text{mA Pulsed} \)
- \(t_{PW} = 20 \text{ms} \)
- Duty Cycle = 4%
Typical Performance Curves (Continued)

Figure 7. Radiation Diagram

Figure 8. Coupling Characteristics of QED22X and QSD22X

Normalized to:
- \(d = 0 \) inch
- Pulse Width = 100\(\mu \)s
- Duty Cycle = 0.1%
- \(V_{CC} = 5V \)
- \(R_L = 100\Omega \)
- \(T_A = 25^\circ C \)

\(I_F = 20mA \)
\(I_F = 100mA \)