PCFFS40120AF
Silicon Carbide Schottky Diode
1200 V, 40 A

Features
• Max Junction Temperature 175 °C
• Avalanche Rated 420 mJ
• High Surge Current Capacity
• Positive Temperature Coefficient
• Ease of Paralleling
• No Reverse Recovery / No Forward Recovery

Applications
• General Purpose
• SMPS, Solar Inverter, UPS
• Power Switching Circuits

Description
Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature dependent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size and cost.

Die Information
• Wafer Diameter 6 inch
• Die Size 4,200 x 4,200 µm (include Scribe Lane)
• Die Thickness Typ. 200 µm
• Die Metallization
 · Top Ti / TiN / AlCu 4 µm
 · Back Ti/ NiV /Ag
• Recommended Wire Bond (Note 1)
 · Anode 20mil ×3

Electrical Characteristics on Wafer
(Note 2) \(T_C = 25^\circ \text{C} \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_R)</td>
<td>Reverse Blocking Voltage</td>
<td>(I_R = 200 \mu \text{A}, T_C = 25 , ^\circ \text{C})</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_F)</td>
<td>Forward Voltage</td>
<td>(I_F = 40 , \text{A}, T_C = 25 , ^\circ \text{C})</td>
<td>1.20</td>
<td>-</td>
<td>1.75</td>
<td>V</td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse Current</td>
<td>(V_R = 1200 , \text{V}, T_C = 25 , ^\circ \text{C})</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>µA</td>
</tr>
</tbody>
</table>

Notes:
1. Based on TO-247 package of ON Semiconductor
2. Tested 100% on wafer

For Additional Product Information and Electrical Characteristics on Package
Refer to FFSH40120A product datasheet.

www.onsemi.com
Die Layout (Dimension: \(\mu m \), except Scribe Lane)

Cross Section

Passivation Information
- Passivation Material: Polymide (PSPI)
- Passivation Type: Local Passivation
- Passivation Thickness: 90KA

The Configuration of chips (Based on 6 inch wafer)

- PSPI Passivation Line
- Scribe Lane
FFSH40120A
Silicon Carbide Schottky Diode
1200 V, 40 A

Features

- Max Junction Temperature 175 °C
- Avalanche Rated 420 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Parallelizing
- No Reverse Recovery / No Forward Recovery

Applications

- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size & cost.

Absolute Maximum Ratings $T_C = 25$ °C unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FFSH40120A</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Peak Repetitive Reverse Voltage</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulse Avalanche Energy</td>
<td>(Note 1)</td>
<td>420 mJ</td>
</tr>
<tr>
<td>I_F</td>
<td>Continuous Rectified Forward Current @ $T_C < 155$ °C</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Continuous Rectified Forward Current @ $T_C < 135$ °C</td>
<td>61</td>
<td>A</td>
</tr>
<tr>
<td>$I_{F,Max}$</td>
<td>Non-Repetitive Peak Forward Surge Current</td>
<td>$T_C = 25$ °C, 10 μs</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 150$ °C, 10 μs</td>
<td>1550</td>
</tr>
<tr>
<td>$I_{F,SM}$</td>
<td>Non-Repetitive Forward Surge Current</td>
<td>Half-Sine Pulse, $t_p = 8.3$ ms</td>
<td>270</td>
</tr>
<tr>
<td>$I_{F,RM}$</td>
<td>Repetitive Forward Surge Current</td>
<td>Half-Sine Pulse, $t_p = 8.3$ ms</td>
<td>120</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>Power Dissipation</td>
<td>$T_C = 25$ °C</td>
<td>682 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 150$ °C</td>
<td>114 W</td>
</tr>
<tr>
<td>$T_{J, TSTG}$</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +175 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TO247 Mounting Torque, M3 Screw</td>
<td>60</td>
<td>Ncm</td>
</tr>
</tbody>
</table>

Thermal Characteristic

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case, Max</td>
<td>0.22</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFSH40120A</td>
<td>FFSH40120A</td>
<td>TO-247-2L</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>30 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics \(T_C = 25 \, ^\circ\text{C} \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_F)</td>
<td>Forward Voltage</td>
<td>(I_F = 40 , \text{A}, , T_C = 25 , ^\circ\text{C})</td>
<td>-</td>
<td>1.45</td>
<td>1.75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 40 , \text{A}, , T_C = 125 , ^\circ\text{C})</td>
<td>-</td>
<td>1.7</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 40 , \text{A}, , T_C = 175 , ^\circ\text{C})</td>
<td>-</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse Current</td>
<td>(V_R = 1200 , \text{V}, , T_C = 25 , ^\circ\text{C})</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 1200 , \text{V}, , T_C = 125 , ^\circ\text{C})</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 1200 , \text{V}, , T_C = 175 , ^\circ\text{C})</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(Q_C)</td>
<td>Total Capacitive Charge</td>
<td>(V = 800 , \text{V})</td>
<td>-</td>
<td>220</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>(C)</td>
<td>Total Capacitance</td>
<td>(V_R = 1 , \text{V}, , f = 100 , \text{kHz})</td>
<td>-</td>
<td>2250</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 400 , \text{V}, , f = 100 , \text{kHz})</td>
<td>-</td>
<td>204</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 800 , \text{V}, , f = 100 , \text{kHz})</td>
<td>-</td>
<td>169</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
1: \(E_{AS} \) of 420 mJ is based on starting \(T_J = 25 \, ^\circ\text{C} , \, L = 0.5 \, \text{mH}, \, I_{AS} = 41 \, \text{A}, \, V = 50 \, \text{V} \).

Typical Characteristics \(T_J = 25 \, ^\circ\text{C} \) unless otherwise noted.

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Figure 3. Current Derating

Figure 4. Power Derating
Typical Characteristics $T_J = 25 \, ^\circ\text{C}$ unless otherwise noted.

Figure 5. Capacitive Charge vs. Reverse Voltage

![Capacitive Charge vs. Reverse Voltage](image)

Figure 6. Capacitive vs. Reverse Voltage

![Capacitive vs. Reverse Voltage](image)

Figure 7. Capacitance Stored Energy

![Capacitance Stored Energy](image)

Figure 8. Junction-to-Case Transient Thermal Response Curve

![Junction-to-Case Transient Thermal Response Curve](image)
Test Circuit and Waveforms

Figure 9. Unclamped Inductive Switching Test Circuit & Waveform

\[L = 0.5 \text{mH} \]

\[R < 0.1\Omega \]

\[V_{DD} = 50V \]

\[EAVL = \frac{1}{2}L \frac{I^2}{t} \left[V_{R(EAVL)} - V_{R(0)} \right] \]

\[Q1 = \text{IGBT (BVces > DUT V_R(EAVL))} \]

\[\text{CURRENT SENSE} \]

\[V_{DD} \]

\[V_{DD} \]

\[t_0 \quad t_1 \quad t_2 \quad t \]

\[I_L \quad I_L \]

www.onsemi.com
Mechanical Dimensions

Figure 10. TO-247, Molded, 2LD, Jede Option AB

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.

ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.

ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized use, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

www.onsemi.com

8