onsemi

MOSFET – Power, Single N-Channel

40 V, 2.5 mΩ**, 132 A**

NVMYS2D1N04CL

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- LFPAK4 Package, Industry Standard
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Symbol	Parar		Value	Unit	
V _{DSS}	Drain-to-Source Voltage			40	V
V _{GS}	Gate-to-Source Voltage	Э		±20	V
I _D	Continuous Drain $T_{C} = 25^{\circ}C$		132	Α	
	Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C	94	1
PD	Power Dissipation	State	T _C = 25°C	83	W
	R _{θJC} (Note 1)		$T_{C} = 100^{\circ}C$	42	1
Ι _D	Continuous Drain		$T_A = 25^{\circ}C$	29	А
	Current R _{θJA} (Notes 1, 2, 3)	Steady	$T_A = 100^{\circ}C$	20	1
PD	Power Dissipation	State	$T_A = 25^{\circ}C$	3.9	W
	$R_{\theta JA}$ (Notes 1 & 2) $T_A = 10$		T _A = 100°C	1.9	1
I _{DM}	Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	780	А
T _J , T _{stg}	Operating Junction and Storage Temperature			–55 to +175	°C
۱ _S	Source Current (Body Diode)			69	А
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 10 A)			265	mJ
ΤL	Lead Temperature for S (1/8" from case for 10 s		urposes	260	°C

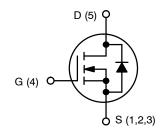
MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

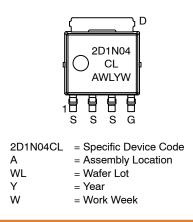
Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State	1.8	°C/W
$R_{\theta JA}$	R _{0.IA} Junction-to-Ambient - Steady State (Note 2)		

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	2.5 mΩ @ 10 V	100 4
40 V	$3.7~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	132 A



LFPAK4 CASE 760AB

N-CHANNEL MOSFET

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A		40			V
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient				20		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	$V_{GS} = 0 V.$ $T_{J} = 25 °C$			10	
		V _{GS} = 0 V, V _{DS} = 40 V	T _J = 125°C			250	μΑ
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS} = 20 V				100	nA

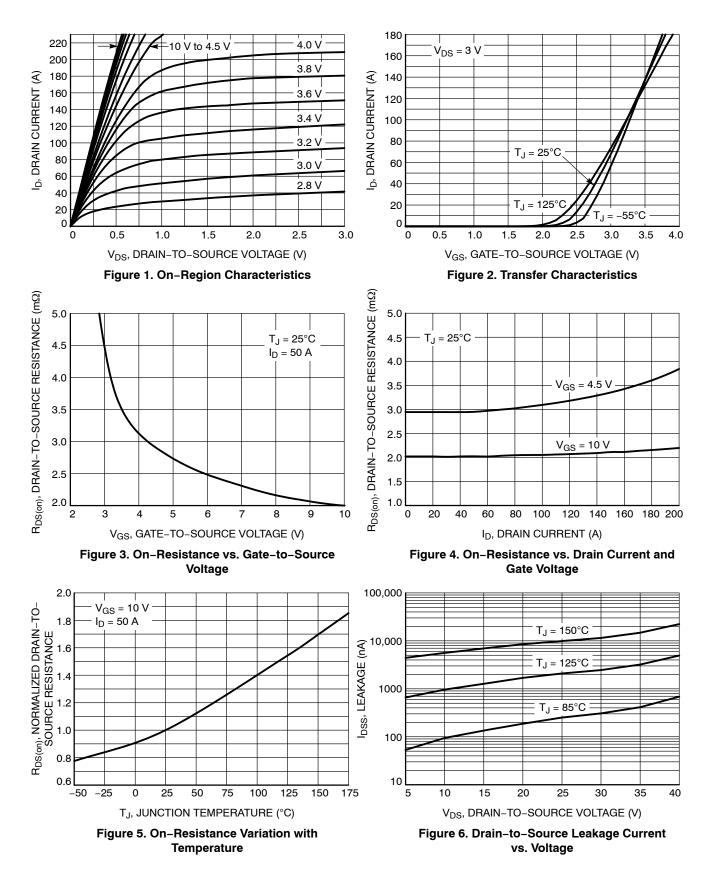
ON CHARACTERISTICS (Note 4)

V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 90 \ \mu A$		1.2		2.0	V
V _{GS(TH)} /T _J	Threshold Temperature Coefficient				-5.4		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V	I _D = 50 A		2.0	2.5	mΩ
		V _{GS} = 4.5 V	I _D = 50 A		2.9	3.7	11152
9 _{FS}	Forward Transconductance	V _{DS} = 15 V, I _D = 50 A			116		S

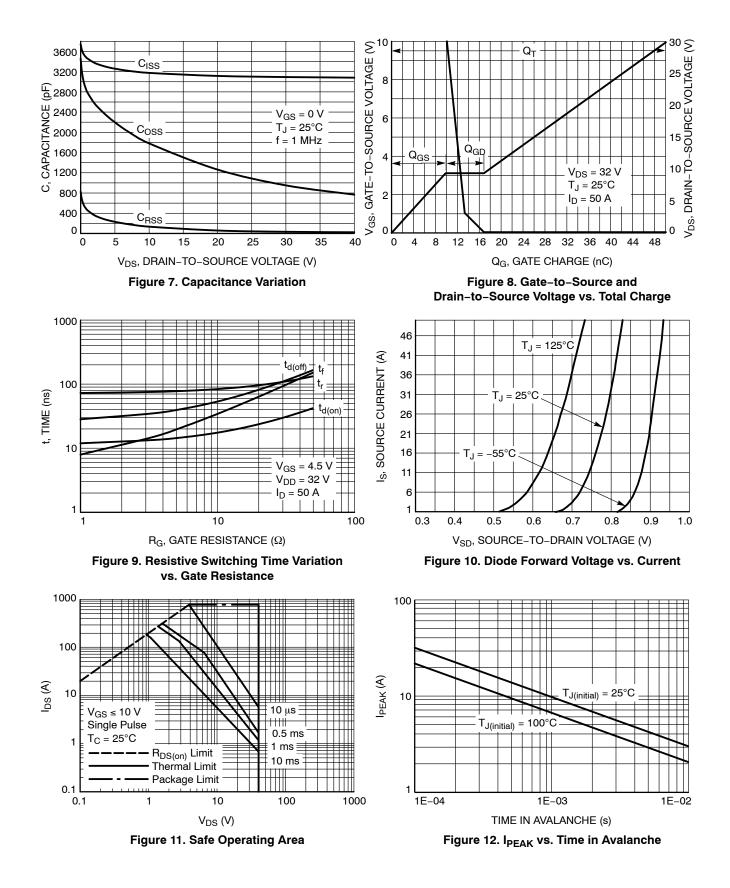
CHARGES, CAPACITANCES & GATE RESISTANCE

C _{ISS}	Input Capacitance		3100	
C _{OSS}	Output Capacitance	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 25 V	1100	pF
C _{RSS}	Reverse Transfer Capacitance		37	
Q _{G(TOT)}	Total Gate Charge	V_{GS} = 4.5 V, V_{DS} = 32 V; I_{D} = 50 A	23	
Q _{G(TOT)}	Total Gate Charge	V_{GS} = 10 V, V_{DS} = 32 V; I_{D} = 50 A	50	
Q _{G(TH)}	Threshold Gate Charge		5.0	nC
Q _{GS}	Gate-to-Source Charge		9.8	
Q _{GD}	Gate-to-Drain Charge	V _{GS} = 4.5 V, V _{DS} = 32 V; I _D = 50 A	6.7	
V _{GP}	Plateau Voltage		3.1	V

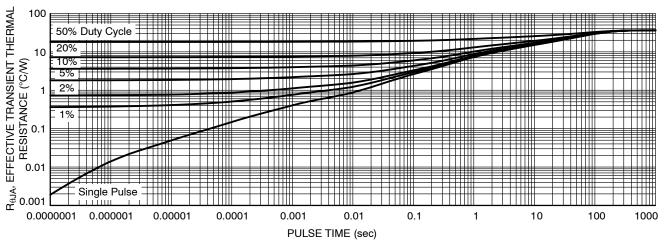
SWITCHING CHARACTERISTICS (Note 5)


t _{d(ON)}	Turn-On Delay Time		12	
tr	Rise Time	V _{GS} = 4.5 V, V _{DS} = 32 V,	8.3	
t _{d(OFF)}	Turn-Off Delay Time	$I_{\rm D} = 50 \text{ A}, \text{ R}_{\rm G} = 1.0 \Omega$	28	ns
t _f	Fall Time		9.4	

DRAIN-SOURCE DIODE CHARACTERISTICS


V _{SD}	Forward Diode Voltage	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.85	1.2	V
		$I_{\rm S} = 50 \rm A$	T _J = 125°C	0.73		v
t _{RR}	Reverse Recovery Time			46		
t _a	Charge Time	V_{GS} = 0 V, dI_S/dt = 100 A/µs, I_S = 50 A		23		ns
t _b	Discharge Time			23		
Q _{RR}	Reverse Recovery Charge			40		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

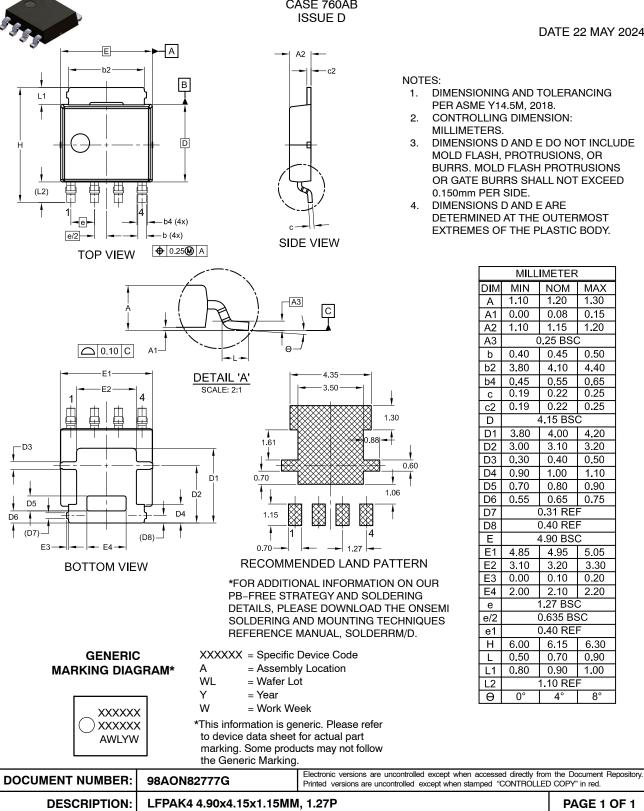
TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMYS2D1N04CLTWG	2D1N04CL	LFPAK4 (Pb–Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.


semi

LFPAK4 4.90x4.15x1.15MM, 1.27P CASE 760AB

DATE 22 MAY 2024

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS, MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

MILLIMETER					
DIM	MIN	NOM	MAX		
Α	1.10	1.20	1.30		
A1	0.00	0.08	0.15		
A2	1.10	1.15	1.20		
A3	().25 BSC	2		
b	0.40	0.45	0.50		
b2	3.80	4.10	4.40		
b4	0.45	0.55	0.65		
С	0.19	0.22	0.25		
c2	0.19	0.22	0.25		
D		4.15 BS	0		
D1	3.80	4.00	4.20		
D2	3.00	3.10	3.20		
D3	0.30	0.40	0.50		
D4	0.90	1.00	1.10		
D5	0.70	0.80	0.90		
D6	0.55	0.65	0.75		
D7		0.31 RE			
D8		0.40 RE			
Е		4.90 BS	2		
E1	4.85	4.95	5.05		
E2	3.10	3.20	3.30		
E3	0.00	0.10	0.20		
E4	2.00	2.10	2.20		
е		1.27 BS0			
e/2		0.635 BS			
e1		0.40 RE			
Н	6.00	6.15	6.30		
L	0.50	0.70	0.90		
L1	0.80	0.90	1.00		
L2		1.10 RE			
θ	0°	4°	8°		

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PAGE 1 OF 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>