Onsemi

MOSFET – Power, N-Channel, SUPERFET[®] III, Easy Drive 650 V, 260 mΩ, 12 A

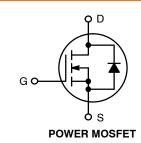
NVD260N65S3

Features

- Ultra Low Gate Charge & Low Effective Output Capacitance
- Lower FOM (R_{DS(on) max.} x Q_{g typ.} & R_{DS(on) max.} x E_{OSS})
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

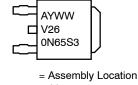
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	650	V
Gate-to-Source Voltage - DC	V _{GSS}	±30	V
Gate-to-Source Voltage - AC (f > 1 Hz)	V _{GSS}	±30	V
Drain Current – Continuous (T _C = 25° C)	Ι _D	12	А
Drain Current – Continuous ($T_C = 100^{\circ}C$)	I _D	7.6	А
Drain Current – Pulsed (Note 3)	I _{DM}	30	А
Power Dissipation $(T_C = 25^{\circ}C)$	PD	90	W
Power Dissipation – Derate Above 25°C	PD	0.72	W/°C
Operating Junction and Storage Temperature Range	T _J , T _{STG}	–55 to +150	°C
Single Pulsed Avalanche Energy (Note 4)	E _{AS}	57	mJ
Repetitive Avalanche Energy (Note 3)	E _{AR}	0.9	mJ
MOSFET dv/dt	dv/dt	100	V/ns
Peak Diode Recovery dv/dt (Note 5)	dv/dt	20	V/ns
Max. Lead Temperature for Soldering Purposes (1/8" from case for 5 s)	ΤL	300	°C


THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case, Max. (Notes 1, 2)	$R_{\theta JC}$	1.39	°C/W
Thermal Resistance, Junction-to-Ambient, Max. (Notes 1, 2, 6)	R_{\thetaJA}	40	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown. 1. They are not constants and are only valid for the particular conditions noted.
- 2. Assembled to an infinite heatsink with perfect heat transfer from the case (assumes 0 K/W thermal interface).
- 3. Repetitive rating: pulse-width limited by maximum junction temperature.
- 4. I_{AS} = 2.3 A, R_G = 25 Ω , starting T_J = 25°C.
- 5. $I_{SD} \le 6 \text{ A}$, di/dt $\le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$. 6. Device on 1 in² pad 2 oz copper pad on 1.5 x 1.5 in. board of FR-4 material.


V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	260 mΩ @ 10 V	12 A

CASE 369C

MARKING DIAGRAM

А

Y

= Year

WW = Work Week V260N65S3 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NVD260N65S3T4G	DPAK3	2500 / Tape &
	(Pb-Free)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	650			V
Drain-to-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 150°C	700			V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/ \Delta T_J$	I_D = 1 mA, Referenced to 25°C		660		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 650 V			1	μΑ
	-	V_{DS} = 520 V, T_{C} = 125°C		0.77		-
Gate-to-Body Leakage Current	I _{GSS}	V_{GS} = ±30 V, V_{DS} = 0 V			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 0.29 \text{ mA}$	2.5		4.5	V
Threshold Temperature Coefficient	$\Delta V_{GS(th)}/\Delta T_J$	$V_{GS} = V_{DS}, I_D = 0.29 \text{ mA}$		-8.9		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_{D} = 6 A		217	260	mΩ
Forward Transconductance	9 _{FS}	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		7.3		S
DYNAMIC CHARACTERISTICS			•		1	
Input Capacitance	C _{iss}			1042		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 400 V, f = 1 MHz		22.5		1
Reverse Transfer Capacitance	C _{rss}			3.8		-
Effective Output Capacitance	C _{oss(eff.)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		225		pF
Energy Related Output Capacitance	C _{oss(er.)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		37.5		pF
Total Gate Charge at 10 V	Q _{G(TOT)}			23.5		nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 10 V, V_{DS} = 400 V, I_{D} = 6 A		3.8		-
Gate-to-Source Gate Charge	Q _{GS}	(Note 7)		6.3		
Gate-to-Drain "Miller" Charge	Q _{GD}			9.8		-
Equivalent Series Resistance	ESR	f = 1 MHz		8.1		Ω
SWITCHING CHARACTERISTICS						<u>_</u>
Turn-On Delay Time	t _{d(on)}			17.2		ns
Turn-On Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 400 V,		13.9		ns
Turn-Off Delay Time	t _{d(off)}	$I_D = 6 \text{ A}, \text{ R}_g = 4.7 \Omega$ (Note 7)		48.3		ns
Turn-Off Fall Time	t _f			8.3		ns
SOURCE-DRAIN DIODE CHARACTER						
Maximum Continuous Source-to- Drain Diode Forward Current	۱ _S	V _{GS} = 0 V			12	A
Maximum Pulsed Source-to-Drain Diode Forward Current	I _{SM}	V _{GS} = 0 V			30	Α
Source-to-Drain Diode Forward Voltage	V _{SD}	V_{GS} = 0 V, I_{SD} = 6 A			1.2	V
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 V, dI_F/dt = 100 A/\mu s,$ $I_{SD} = 6 A$		232		ns
Charge Time	t _a			220		1
Discharge Time	t _b			13		-
Reverse Recovery Charge	Q _{rr}			2837		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

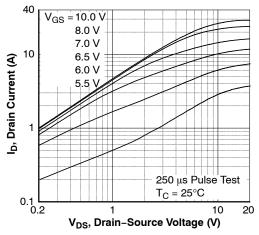


Figure 1. On-Region Characteristics 25°C

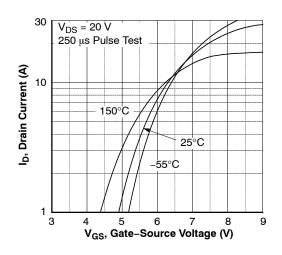


Figure 3. Transfer Characteristics

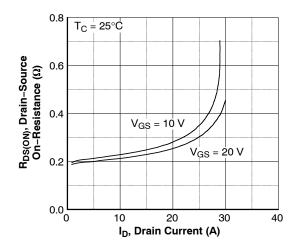


Figure 5. On-Resistance Variation vs. Drain Current and Gate Voltage

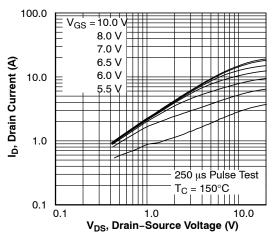
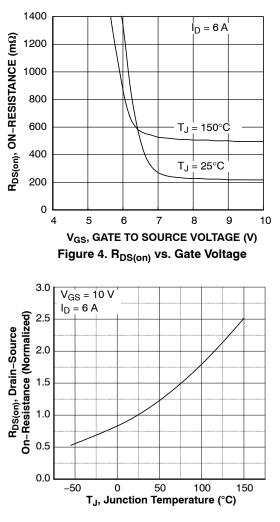



Figure 2. On–Region Characteristics 150°C

TYPICAL CHARACTERISTICS

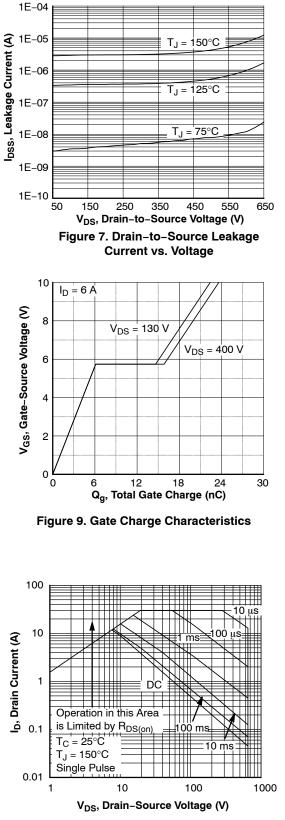
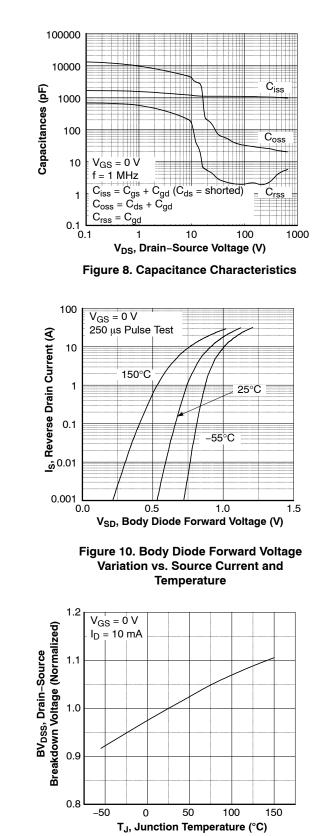
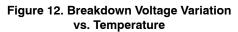
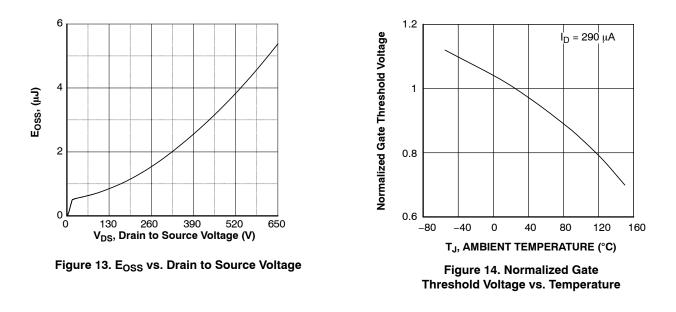





Figure 11. Maximum Safe Operating Area

TYPICAL CHARACTERISTICS

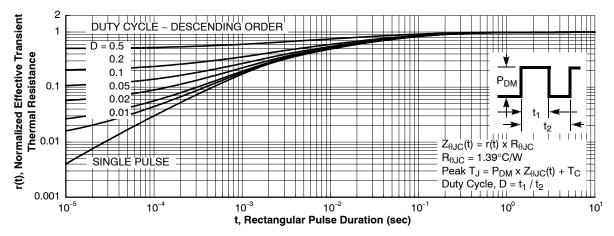
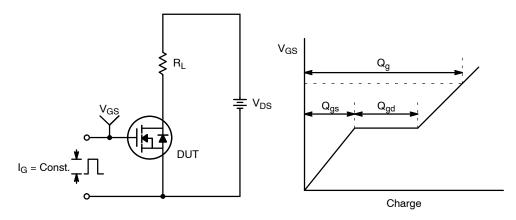



Figure 15. Transient Thermal Response Curve

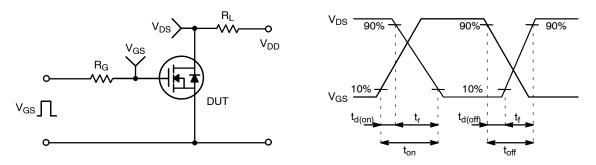
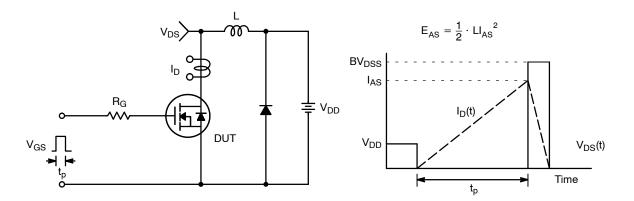



Figure 17. Resistive Switching Test Circuit & Waveforms

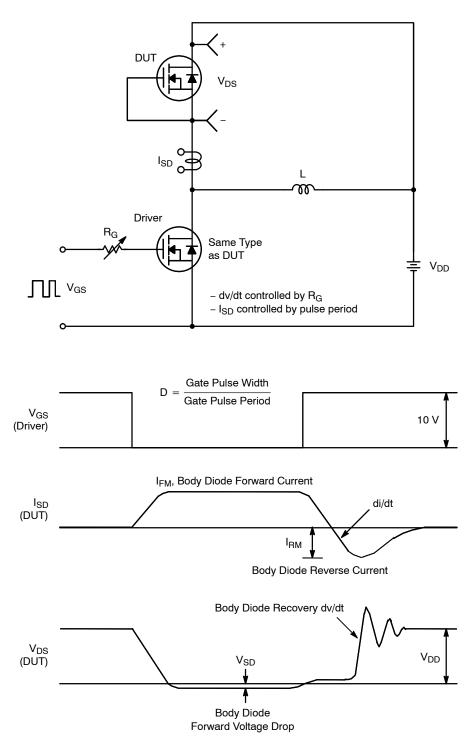
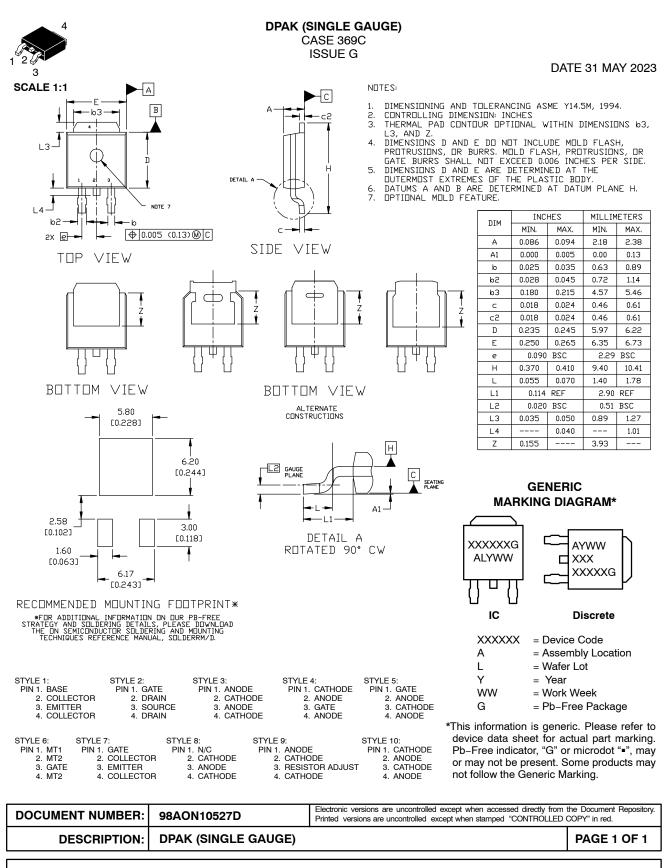



Figure 19. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>