NUD4700

LED Shunt

The NUD4700 is an electronic shunt which provides a current bypass in the case of a single LED going into open circuit. LEDs are by nature quite fragile when subjected to transients and surge conditions. There are also many cases where high reliability of the LED lighting must be maintained such as headlights, lighthouses, bridges, aircraft, runways and so forth. In these cases the low cost addition of the NUD4700 will provide full assurance that an entire string of LEDs will not extinguish should one LED fail. NUD4700 is also applicable to other loads where circuit continuity is required. This device is designed to be used with 1 W LEDs (nominally 350 mA @ 3 V).

Features
- A Simple Two Terminal Device
- Automatically Resets Itself if the LED Heals Itself or is Replaced
- ON-State Voltage Typically 1 V
- OFF-State Current less than 250 μA
- Available with White Package
- SZ Prefix (black package only) for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications
- LEDs where Preventive Maintenance is Non Practical
- LED Headlights
- LEDs with High Reliability Requirements
- Crowbar Protection for Open Circuit Conditions
- Overvoltage Protection for Sensitive Circuits

Features
- A Simple Two Terminal Device
- Automatically Resets Itself if the LED Heals Itself or is Replaced
- ON-State Voltage Typically 1 V
- OFF-State Current less than 250 μA
- Available with White Package
- SZ Prefix (black package only) for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications
- LEDs where Preventive Maintenance is Non Practical
- LED Headlights
- LEDs with High Reliability Requirements
- Crowbar Protection for Open Circuit Conditions
- Overvoltage Protection for Sensitive Circuits

Features
- A Simple Two Terminal Device
- Automatically Resets Itself if the LED Heals Itself or is Replaced
- ON-State Voltage Typically 1 V
- OFF-State Current less than 250 μA
- Available with White Package
- SZ Prefix (black package only) for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications
- LEDs where Preventive Maintenance is Non Practical
- LED Headlights
- LEDs with High Reliability Requirements
- Crowbar Protection for Open Circuit Conditions
- Overvoltage Protection for Sensitive Circuits
NUD4700

MAXIMUM RATINGS (Maximum ratings are those, that, if exceeded, may cause damage to the device. Electrical Characteristics are not guaranteed over this range)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Off State Voltage (Anode to Cathode)</td>
<td>VDM</td>
<td>−0.3 to 10</td>
<td>V</td>
</tr>
<tr>
<td>Average On–State Current, (TA = 25°C), (Note 1)</td>
<td>IT(AVG)</td>
<td>1.3 0.376</td>
<td>A</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Air (Note 1) (Note 2)</td>
<td>QJA</td>
<td>80 277</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Lead (Note 1) (Note 2)</td>
<td>QJL</td>
<td>35</td>
<td>°C/W</td>
</tr>
<tr>
<td>Power Dissipation (TA = 25°C) (Note 1) (Note 2)</td>
<td>PMAX</td>
<td>1.56 0.45</td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>TJ</td>
<td>−40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Non–Operating Temperature Range</td>
<td>TJ</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature, Soldering (10 Sec)</td>
<td>TL</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted onto a 1" x 1" square copper pad.
 Normally this device would be mounted on the same copper heat sink and adjacent to the LED. If the LED were to go open, then the NUD4700 shunt would now dissipate the power using the same copper heat sink. Since the NUD4700 has a voltage that is nominally 30% of the LED, then the power dissipation would be easily handled by the same heat sink as the LED.

2. Device mounted on minimum copper pad.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: TA = 25°C)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off–State Current</td>
<td>ILEAK</td>
<td>–</td>
<td>100</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>V(BR)</td>
<td>5.5</td>
<td>–</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>Holding Current</td>
<td>IH</td>
<td>–</td>
<td>6.0</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>Latching Current</td>
<td>IL</td>
<td>–</td>
<td>35</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>On–State Voltage</td>
<td>VT</td>
<td>–</td>
<td>1.0</td>
<td>1.2</td>
<td>V</td>
</tr>
</tbody>
</table>

DYNAMIC CHARACTERISTICS

| Critical Rate–of–Rise of Off State Voltage | dV/dt | 250 | – | – | V/μs |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL PERFORMANCE CURVES
(T_A = 25°C unless otherwise noted)

Figure 1. Latching Current vs Temperature

Figure 2. Holding Current vs Temperature

Figure 3. Capacitance vs Voltage

Figure 4. Leakage Current vs Temperature

Figure 5. On-State Voltage vs. Temperature

Figure 6. On-State Voltage vs. On-State Current (I_T) at 25°C
Figure 7. Typical Application Circuit
TYPICAL OPERATION WAVEFORMS

Figure 8. NUD4700 Switching Waveforms

Figure 9. Zoom in of Figure 8
PACKAGE DIMENSIONS

POWERMITE

CASE 457-04

ISSUE F

POWERMITE is a registered trademark of and used under a license from Microsemi Corporation.

NOTES:

2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

SOLDERING FOOTPRINT

For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

SOLDERING FOOTPRINT

For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.