NUD4011

Low Current LED Driver

This device is designed to replace discrete solutions for driving LEDs in AC/DC high voltage applications (up to 200 V). An external resistor allows the circuit designer to set the drive current for different LED arrays. This discrete integration technology eliminates individual components by combining them into a single package, which results in a significant reduction of both system cost and board space. The device is a small surface mount package (SO–8).

Features

- Supplies Constant LED Current for Varying Input Voltages
- External Resistor Allows Designer to Set Current – up to 70 mA
- Offered in Surface Mount Package Technology (SO–8)
- Pb–Free Package is Available

Benefits

- Maintains a Constant Light Output During Battery Drain
- One Device can be used for Many Different LED Products
- Reduces Board Space and Component Count
- Simplifies Circuit and System Designs

Typical Applications

- Portables: For Battery Back–up Applications, also Simple Ni–CAD Battery Charging
- Industrial: General Lighting Applications and Small Appliances
- Automotive: Tail Lights, Directional Lights, Back–up Light, Dome Light

PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vin</td>
<td>Positive input voltage to the device</td>
</tr>
<tr>
<td>2</td>
<td>Boost</td>
<td>This pin may be used to drive an external transistor as described in the App Note AND8198/D.</td>
</tr>
<tr>
<td>3</td>
<td>Rext</td>
<td>An external resistor between Rext and Vin pins sets different current levels for different application needs</td>
</tr>
<tr>
<td>4</td>
<td>PWM</td>
<td>For high voltage applications (higher than 48 V), pin 4 is connected to the LEDs array. For low voltage applications (lower than 48 V), pin 4 is connected to ground.</td>
</tr>
<tr>
<td>5, 6, 7, 8</td>
<td>Iout</td>
<td>The LEDs are connected from these pins to ground</td>
</tr>
</tbody>
</table>

MARKING DIAGRAM

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUD4011DR2</td>
<td>SO–8</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NUD4011DR2G</td>
<td>SO–8 (Pb–Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_in</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Output Current (For V_drop ≤ 16 V) (Note 1)</td>
<td>I_out</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_out</td>
<td>198</td>
<td>V</td>
</tr>
<tr>
<td>Human Body Model (HBM)</td>
<td>ESD</td>
<td>500</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. \(V_{\text{drop}} = V_{\text{in}} - 0.7 \text{ V} - V_{\text{LEDs}} \).

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_A</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_STG</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Total Power Dissipation (Note 2)</td>
<td>P_D</td>
<td>1.13</td>
<td>W</td>
</tr>
<tr>
<td>Derating above 25°C (Figure 3)</td>
<td></td>
<td>9.0</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 2)</td>
<td>R_{JA}</td>
<td>110</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Lead (Note 2)</td>
<td>R_{JL}</td>
<td>77</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

2. Mounted on FR−4 board, 2 in sq pad, 1 oz coverage.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current1 (Note 3) ((V_{\text{in}} = 120 \text{ Vdc}, R_{\text{ext}} = 24 \Omega, V_{\text{LEDs}} = 90 \text{ V}))</td>
<td>I_{out1}</td>
<td>26.0</td>
<td>27.5</td>
<td>29.5</td>
<td>mA</td>
</tr>
<tr>
<td>Output Current2 (Note 3) ((V_{\text{in}} = 200 \text{ Vdc}, R_{\text{ext}} = 68 \Omega, V_{\text{LEDs}} = 120 \text{ V}))</td>
<td>I_{out2}</td>
<td>11.5</td>
<td>14.0</td>
<td>15.5</td>
<td>mA</td>
</tr>
<tr>
<td>Bias Current ((V_{\text{in}} = 120 \text{ Vdc}, R_{\text{ext}} = \text{Open}, R_{\text{shunt}} = 80 \text{ kΩ}))</td>
<td>I_{Bias}</td>
<td>–</td>
<td>1.1</td>
<td>2.0</td>
<td>mA</td>
</tr>
<tr>
<td>Voltage Overhead (Note 4)</td>
<td>V_{over}</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
</tbody>
</table>

3. Device’s pin 4 connected to the LEDs array (as shown in Figure 5).
4. \(V_{\text{over}} = V_{\text{in}} - V_{\text{LEDs}} \).
1. Define LED’s current:
 a. $I_{\text{LED}} = 30 \text{ mA}$

2. Calculate Resistor Value for R_{ext}:
 a. $R_{\text{ext}} = \frac{V_{\text{sense}} (\text{see Figure 2})}{I_{\text{LED}}}$
 b. $R_{\text{ext}} = 0.7(T_j = 25 ^\circ\text{C}) / 0.030 = 24 \Omega$

3. Define V_{in}:
 a. Per example in Figure 5, $V_{\text{in}} = 120 \text{ Vdc}$

4. Define $V_{\text{LED}} @ I_{\text{LED}}$ per LED supplier’s data sheet: per example in Figure 5,
 a. $V_{\text{LED}} = 3.0 \text{ V (30 LEDs in series)}$
 b. $V_{\text{LEDs}} = 90 \text{ V}$

5. Calculate Vdrop across the NUD4001 device:
 a. $V_{\text{drop}} = V_{\text{in}} - V_{\text{sense}} - V_{\text{LEDs}}$
 b. $V_{\text{drop}} = 120 \text{ V} - 0.7 \text{ V} - 90 \text{ V}$
 c. $V_{\text{drop}} = 29.3 \text{ V}$

6. Calculate Power Dissipation on the NUD4001 device’s driver:
 a. $P_{\text{D,driver}} = V_{\text{drop}} \times I_{\text{out}}$
 b. $P_{\text{D,driver}} = 29.3 \text{ V} \times 0.030 \text{ A}$
 c. $P_{\text{D,driver}} = 0.879 \text{ W}$

7. Establish Power Dissipation on the NUD4001 device’s control circuit per below formula:
 a. $P_{\text{D,control}} = \frac{(V_{\text{in}} - 1.4 - V_{\text{LEDs}})^2}{20,000}$
 b. $P_{\text{D,control}} = 0.040 \text{ W}$

8. Calculate Total Power Dissipation on the device:
 a. $P_{\text{D,total}} = P_{\text{D,driver}} + P_{\text{D,control}}$
 b. $P_{\text{D,total}} = 0.879 \text{ W} + 0.040 \text{ W} = 0.919 \text{ W}$

9. If $P_{\text{D,total}} > 1.13 \text{ W}$ (or derated value per Figure 3), then select the most appropriate recourse and repeat steps 1–8:
 a. Reduce V_{in}
 b. Reconfigure LED array to reduce V_{drop}
 c. Reduce I_{out} by increasing R_{ext}
 d. Use external resistors or parallel device’s configuration

10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of R_{ext}.

Figure 5. 120 V Application (Series LED’s Array)
Design Guide for AC Applications

1. Define LED’s current:
 a. $I_{\text{LED}} = 30 \text{ mA}$

2. Define V_{in}:
 a. Per example in Figure 5, $V_{\text{in}} = 120 \text{ Vac}$

3. Define $V_{\text{LED}} @ I_{\text{LED}}$ per LED supplier’s data sheet:
 a. Per example in Figure 6, $V_{\text{LED}} = 3.0 \text{ V}$ (30 LEDs in series)
 $V_{\text{LEDs}} = 90 \text{ V}$

4. Calculate Resistor Value for R_{ext}:
 The calculation of the R_{ext} for AC applications is totally different than for DC. This is because current conduction only occurs during the time that the ac cycles’ amplitude is higher than V_{LEDs}. Therefore R_{ext} calculation is now dependent on the peak current value and the conduction time.
 a. Calculate θ for $V_{\text{LEDs}} = 90 \text{ V}$:
 $$V = V_{\text{peak}} \times \sin \theta$$
 $$90 \text{ V} = (120 \times \sqrt{2}) \times \sin \theta$$
 $$\theta = 32.027^\circ$$
 b. Calculate conduction time for $\theta = 32.027^\circ$. For a sinusoidal waveform V_{peak} happens at $\theta = 90^\circ$. This translates to 4.165 ms in time for a 60 Hz frequency, therefore 32.027° is 1.48 ms and finally:
 Conduction time $= (4.165 \text{ ms} - 1.48 \text{ ms}) \times 2 = 5.37 \text{ ms}$
 c. Calculate the I_{peak} needed for $I_{\text{avg}} = 30 \text{ mA}$
 Since a full bridge rectifier is being used (per Figure 6), the frequency of the voltage signal applied to the NUD4011 device is now 120 Hz. To simplify the calculation, it is assumed that the 120 Hz waveform is square shaped so that the following formula can be used:
 $I_{\text{avg}} = I_{\text{peak}} \times \text{duty cycle}$
 If 8.33 ms is 100% duty cycle, then 5.37 ms is 64.46%, then:
 $I_{\text{peak}} = I_{\text{avg}} / \text{duty cycle}$
 $I_{\text{peak}} = 30 \text{ mA} / 0.645 = 46 \text{ mA}$
 d. Calculate R_{ext}
 $$R_{\text{ext}} = \frac{0.7 \text{ V}}{I_{\text{peak}}} = \frac{15.21}{46} \text{ }$$

5. Calculate V_{drop} across the NUD4011 device:
 a. $V_{\text{drop}} = V_{\text{in}} - V_{\text{sense}} - V_{\text{LEDs}}$
 b. $V_{\text{drop}} = 120 \text{ V} - 0.7 \text{ V} - 90 \text{ V}$
 c. $V_{\text{drop}} = 29.3 \text{ V}$

6. Calculate Power Dissipation on the NUD4011 device’s driver:
 a. $P_{\text{D,driver}} = V_{\text{drop}} \times I_{\text{avg}}$
 b. $P_{\text{D,driver}} = 29.3 \text{ V} \times 0.030 \text{ A}$
 c. $P_{\text{D,driver}} = 0.879 \text{ W}$

7. Establish Power Dissipation on the NUD4011 device’s control circuit per below formula:
 a. $P_{\text{D,control}} = \frac{(V_{\text{in}} - 1.4 - V_{\text{LEDs}})^2}{20,000}$
 b. $P_{\text{D,control}} = 0.040 \text{ W}$

8. Calculate Total Power Dissipation on the device:
 a. $P_{\text{D,total}} = P_{\text{D,driver}} + P_{\text{D,control}}$
 b. $P_{\text{D,total}} = 0.879 \text{ W} + 0.040 \text{ W} = 0.919 \text{ W}$

9. If $P_{\text{D,total}} > 1.13 \text{ W}$ (or derated value per Figure 3), then select the most appropriate recourse and repeat steps 1–8:
 a. Reduce V_{in}
 b. Reconfigure LED array to reduce V_{drop}
 c. Reduce I_{out} by increasing R_{ext}
 d. Use external resistors or parallel device’s configuration

10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of R_{ext}.

Figure 6. 120 Vac Application (Series LED’s array)
Figure 7. 120 Vdc Application Circuit for a Series Array of 30 LEDs (3.0 V, 20 mA)

Figure 8. 120 Vac Application Circuit for a Series Array of 30 LEDs (3.0 V, 20 mA)
Figure 9. 120 Vdc Application with PWM / Enable Function, 30 LEDs in Series (3.0 V, 20 mA)

Figure 10. 120 Vac Application with PWM / Enable Function, 30 LEDs in Series (3.0 V, 20 mA)
NUD4011 Power Dissipation

The power dissipation of the SO–8 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, R_{thJA}, the thermal resistance from the device junction to ambient, and the operating temperature, T_A. Using the values provided on the data sheet for the SO–8 package, P_D can be calculated as follows:

$$P_D = \frac{T_{J(max)} - T_A}{R_{thJA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 1.13 W.

$$P_D = \frac{150°C - 25°C}{110°C} = 1.13 \text{ W}$$

The 110°C/W for the SO–8 package assumes the use of a FR–4 copper board with an area of 2 square inches with 2 oz coverage to achieve a power dissipation of 1.13 W. There are other alternatives to achieving higher dissipation from the SOIC package. One of them is to increase the copper area to reduce the thermal resistance. Figure 11 shows how the thermal resistance changes for different copper areas. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad®. Using a board material such as Thermal Clad or an aluminum core board, the power dissipation can be even doubled using the same footprint.

Figure 11. θ_{JA} versus Board Area

Figure 12. Transient Thermal Response
PACKAGE DIMENSIONS

SOIC–8NB
CASE 751–07
ISSUE AH

NOTES:

2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td>MIN</td>
</tr>
<tr>
<td>A</td>
<td>4.80</td>
</tr>
<tr>
<td>B</td>
<td>3.80</td>
</tr>
<tr>
<td>C</td>
<td>1.35</td>
</tr>
<tr>
<td>D</td>
<td>0.33</td>
</tr>
<tr>
<td>G</td>
<td>1.27</td>
</tr>
<tr>
<td>H</td>
<td>0.10</td>
</tr>
<tr>
<td>J</td>
<td>0.19</td>
</tr>
<tr>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>0.25</td>
</tr>
<tr>
<td>S</td>
<td>5.80</td>
</tr>
</tbody>
</table>

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Thermal Clad is a registered trademark of the Bergquist Company.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.