onsemi

PNP General-Purpose Amplifier

NSVT5401MR6

Features

- This Device Has Matched Dies
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)

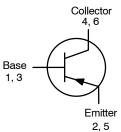
 $(T_A = 25^{\circ}C, \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-150	V
Collector – Base Voltage	V _{CBO}	-160	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current – Continuous	۱ _C	-600	mA
Operating and Storage Junction Temperature Range	T _J , T _{STG}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are based on a maximum junction temperature of 150°C.

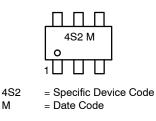
 These are steady-state limits. onsemi should be consulted on applications involving pulsed or low-duty-cycle operations.

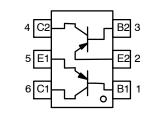

THERMAL CHARACTERISTICS (Note 3)

(T_A = 25° C, unless otherwise noted)

Characteristic	Symbol	Max	Unit
Total Device Dissipation	PD	700	mW
Thermal Resistance, Junction-to-Ambient, Total	R_{\thetaJA}	180	°C/W

3. Device mounted on a 1 in 2 pad of 2 oz copper.


ELECTRICAL CONNECTION



TSOT23 6-Lead CASE 419BL

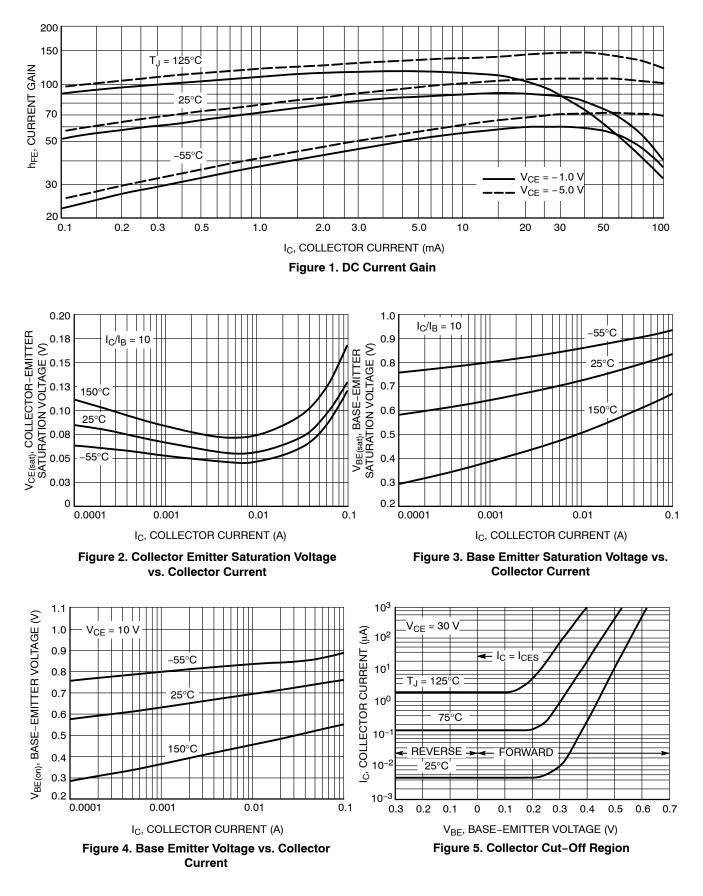
MARKING DIAGRAM

ORDERING INFORMATION

Device	evice Package	
NSVT5401MR6T1G	TSOT23–6 (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NSVT5401MR6


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Max	Unit
Collector-Emitter Breakdown Voltage (Note 4)	BV _{CEO}	I _C = -1.0 mA, I _B = 0	-150	-	V
Collector-Base Breakdown Voltage	BV _{CBO}	$I_{C} = -100 \ \mu A, \ I_{E} = 0$	-160	-	V
Emitter-Base Breakdown Voltage	BV _{EBO}	I _E = −10 μA, I _C = 0	-5.0	-	V
Collector Cut-Off Current	I _{CBO}	V _{CB} = -120 V, I _E = 0	-	-50	nA
		$V_{CB} = -120 \text{ V}, \text{ I}_{E} = 0, \text{ T}_{A} = 100^{\circ}\text{C}$	-	-50	μΑ
Emitter Cut-Off Current	I _{EBO}	$V_{EB} = -3 V, I_{C} = 0$	-	-50	nA
DC Current Gain (Note 4)	h _{FE1}	$V_{CE} = -5 \text{ V}, I_{C} = -1 \text{ mA}$	50	-	-
Variation Ratio of h _{FE1} Between Die 1 and Die 2	DIVID1	h _{FE1} (Die1) / h _{FE1} (Die2)	0.9	1.1	-
DC Current Gain (Note 4)	h _{FE2}	$V_{CE} = -5 \text{ V}, \text{ I}_{C} = -10 \text{ mA}$	60	240	-
Variation Ratio of h _{FE2} Between Die 1 and Die 2	DIVID2	h _{FE2} (Die1) / h _{FE2} (Die2)	0.95	1.05	-
DC Current Gain (Note 4)	h _{FE3}	$V_{CE} = -5 \text{ V}, \text{ I}_{C} = -50 \text{ mA}$	50	-	-
Variation Ratio of h _{FE3} Between Die 1 and Die 2	DIVID3	h _{FE3} (Die1) / h _{FE3} (Die2)	0.9	1.1	-
Collector-Emitter Saturation Voltage (Note 4)	V _{CE} (sat)	$I_{\rm C} = -10$ mA, $I_{\rm B} = -1$ mA	-	-0.2	V
		$I_{\rm C} = -50$ mA, $I_{\rm B} = -5$ mA	-	-0.5	
Base-Emitter Saturation Voltage	V _{BE} (sat)	I _C = -10 mA, I _B = -1 mA	-	-1	V
(Note 4)		$I_{\rm C} = -50$ mA, $I_{\rm B} = -5$ mA	-	-1	
Base-Emitter On Voltage (Note 4)	V _{BE} (on)	$V_{CE} = -5 \text{ V}, \text{ I}_{C} = -10 \text{ mA}$	-	-1	V
Difference of V _{BE} (on) Between Die1 and Die 2	DEL	V _{BE} (on)(Die) – V _{BE} (on)(Die2)	-8	8	mV
Current Gain Bandwidth Product	f _T	$V_{CE} = -10 \text{ V}, \text{ I}_{C} = -10 \text{ mA},$ f = 100 MHz	100	300	MHz
Output Capacitance	C _{ob}	V _{CB} = -10 V, I _E = 0, f = 1 MHz	-	6.0	pF
Noise Figure	NF	$\begin{array}{l} V_{CE}=-5.0 \text{ V}, \text{ I}_{C}=-250 \ \mu\text{A}, \\ \text{R}_{S}=1.0 \ \text{k}\Omega \\ \text{f}=10 \ \text{Hz} \ \text{to} \ 15.7 \ \text{kHz} \end{array}$	-	8.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse test: Pulse width \leq 300 ms, duty cycle \leq 2%

NSVT5401MR6

TYPICAL PERFORMANCE CHARACTERISTICS

NSVT5401MR6

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

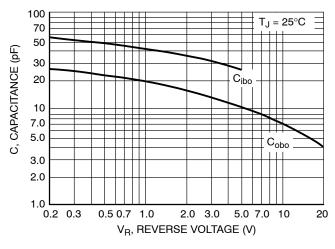
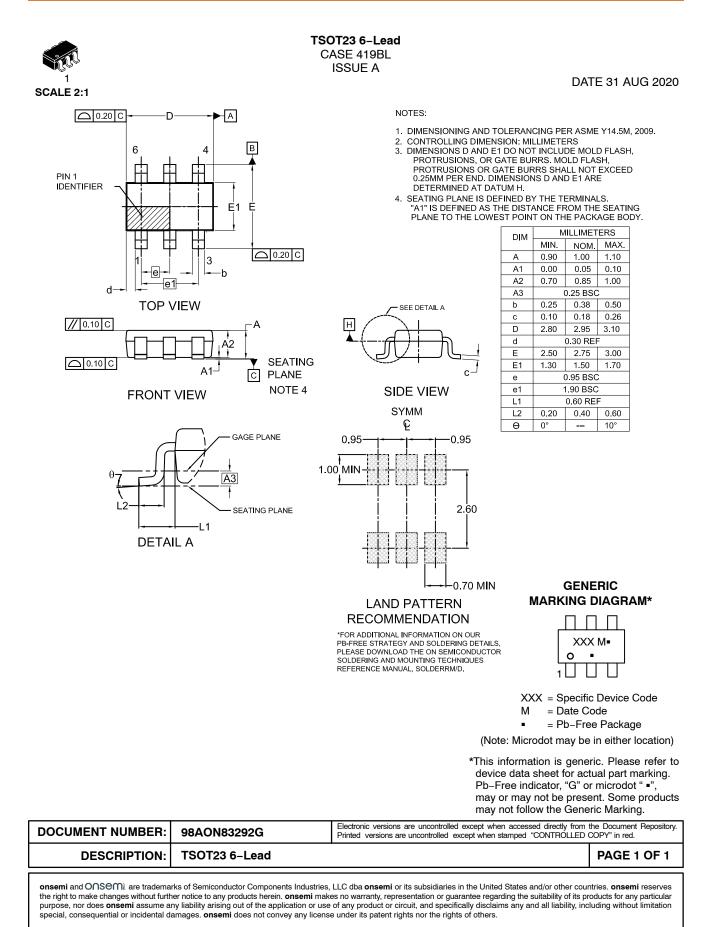



Figure 6. Capacitances

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>