NSR10F40QNXT5G

Schottky Diode Optimized for High Frequency Switching Power Supplies

These Schottky barrier diodes are optimized for low forward voltage drop and low leakage current and are offered in a Chip Scale Package (CSP) to reduce board space. The low thermal resistance enables designers to meet the challenging task of achieving higher efficiency and meeting reduced space requirements.

Features
- Very Low Forward Voltage Drop – 490 mV @ 1.0 A
- Low Reverse Current – 10 µA @ 10 V VR
- 1.0 A of Continuous Forward Current
- ESD Rating – Human Body Model: Class 3B
- Machine Model: Class C
- Very High Switching Speed
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications
- LCD and Keypad Backlighting
- Camera Photo Flash
- Buck and Boost dc–dc Converters
- Reverse Voltage and Current Protection
- Clamping & Protection

Markets
- Mobile Handsets
- MP3 Players
- Digital Camera and Camcorders
- Notebook PCs & PDAs
- GPS

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Forward Current (DC)</td>
<td>I_F</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Forward Surge Current</td>
<td>I_{FSM}</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>ESD Rating: Human Body Model</td>
<td>ESD</td>
<td>> 8</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td>Machine Model</td>
<td>> 400</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

40 V SCHOTTKY BARRIER DIODE

MARKING DIAGRAMS

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR10F40QNXT5G</td>
<td>DSN2</td>
<td>5000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Junction-to-Ambient (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 1</td>
</tr>
<tr>
<td>Total Power Dissipation @ $T_A = 25^\circ C$</td>
<td>R_{UA}</td>
<td></td>
<td>P_D</td>
<td></td>
<td>$\frac{\ ^\circ C}{W}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228</td>
<td>548</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Thermal Resistance Junction-to-Ambient (Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 2</td>
</tr>
<tr>
<td>Total Power Dissipation @ $T_A = 25^\circ C$</td>
<td>R_{UA}</td>
<td></td>
<td>P_D</td>
<td></td>
<td>$\frac{\ ^\circ C}{W}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td>1.47</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td></td>
<td></td>
<td>-40 to $+125$</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td></td>
<td></td>
<td>$+150$</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

1. Mounted onto a 4 in square FR-4 board 50 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.
2. Mounted onto a 4 in square FR-4 board 1 in sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Leakage (V$_R = 10$ V)</td>
<td>I$_R$</td>
<td></td>
<td></td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>(V$_R = 40$ V)</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Forward Voltage (I$_F = 0.5$ A)</td>
<td>V$_F$</td>
<td></td>
<td></td>
<td>0.42</td>
<td>V</td>
</tr>
<tr>
<td>(I$_F = 1.0$ A)</td>
<td></td>
<td></td>
<td></td>
<td>0.49</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery (Special)</td>
<td>T$_{RR}$</td>
<td></td>
<td></td>
<td>28.7</td>
<td>ns</td>
</tr>
<tr>
<td>Switch from Forward Current to Reverse Voltage</td>
<td></td>
<td></td>
<td></td>
<td>27.4</td>
<td>ns</td>
</tr>
<tr>
<td>Time taken from 1 ns Transition Time to Fully Stabilized</td>
<td></td>
<td></td>
<td></td>
<td>28.7</td>
<td>ns</td>
</tr>
<tr>
<td>(I$_F = 750$ mA to $V_R = 36$ V, 25$^\circ C$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I$_F = 750$ mA to $V_R = 36$ V, 85$^\circ C$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Figure 1. Forward Voltage

Figure 2. Typical Reverse Current

Figure 3. Typical Capacitance

Figure 4. Typical Reverse Recovery

$I_F = 750$ mA to $V_R = 36$ V
Introduction
As wireless devices become smaller and thinner, more compact, energy efficient, solutions are necessary. To reduce the solution size, many people will integrate various discrete devices into the IC. While this may physically reduce the part count, this has some adverse side effects, such as performance degradation. The best way to improve the solution is to use optimized discrete devices that have been shrunk and electrically optimized. In this paper, we will discuss the intricacies of choosing an optimized Schottky diode for wireless devices.

First, a discussion of high frequency boost converters as an application is explored. Then various trends in space saving and energy saving design will be discussed. Finally, a stress test and bench tests are shown.

Background – Application
Most mobile phones use white LEDs to backlight the LCD display. These white LEDs typically have a forward voltage near 3.6 V. Since the typical power source in a mobile phone is a single of–cell Li–Ion battery that has an input voltage range of 2.7 V to 4.2 V. Since more than one LED is required to backlight a LCD panel either a single string (~up to 10 LEDs in series) or multiple strings of LEDs (~up to 10 LEDs in series) in parallel are used.

An example of a single string inductive boost circuit is shown in Figure 5. Typically, a very small voltage is measured over a precision resistor in series with the LEDs shown in Figure 5. Typically, a very small voltage is measured over a precision resistor in series with the LEDs.

![Figure 5. Simplified Typical Single Channel Converter](image)

Space Saving Ideas
The real issue with integrating all of the devices into the controller is that these power devices have an increased junction temperature compared to the controller. This increased junction temperature can lead to reliability issues due to the limited thermal conductivity of I.C. packages.

Another method for shrinking the size of an inductive boost application is to increase the switching frequency. When the switching frequency is increased, a lower value inductors can be used to keep a constant inductor current ripple. Lower value capacitors can be used because they become re–charged more frequently.

Unfortunately, the transistor and diode still need to carry the same average and peak currents. The LEDs for a backlight are generally set between 20 – 150 mA. This means that the transistor and diode need to conduct up to and above 1 A of current. If every element shrinks with exception to the diode and FET then all of this effort is for nothing. ON Semiconductor’s High Frequency optimized schottky diodes solve this problem.

Using ON Semiconductor’s Optimized Schottky Diodes
To continue to reduce space requirements for a non–integrated, inductive boost circuit, a diode and a transistor with low power dissipation during operation in a package is necessary. With the compact nature of wireless applications, the space is very constrained and there is no place for a large heat sink (so a thermally efficient package is required).

Typically for a 1 A diode with a $R_{\text{thA}} = 86 ^\circ \text{C/W}$ a SMA package is used. The SM package is 5.21 mm x 2.60 mm x 2.10 mm (L x W x H). ON Semiconductor’s new optimized Schottky diode line these packages have a $R_{\text{thA}} = 85 ^\circ \text{C/W}$ and are only 1.4 mm x 0.6 mm x 0.27 mm (L x W x H). This means that the same power can be dissipated in only 8% of the total space. Not only is there a thermal conductivity density advantage but there is also a performance improvement with these new optimized Schottky diodes.

Thermal Stress Testing Bench Results
Before being tested, a set of NSR10F40QNX5G Boost Optimized Schottky diodes were characterized for forward voltage and reverse current over temperature. Next, these diodes were placed in a “1 MHz” Boost converter, operating at near 750 kHz.

To augment the electrical stress seen on the ON Semiconductor Schottky Diodes an inductive boost regulator was set up with the following criteria: Input Voltage = 2.3 V, Output Voltage = 32 V, Output Load Current = 150 mA, L1 = 10 μH. This will cause higher than normal currents to conduct through the diode.

To further augment the stress seen by the Schottky diode a thermal component to the test was added when the Schottky diodes were mounted to external PCBs with only a minimum footprint pad size. Twisted, shielded pair cable with an inductance of less than 0.125 μH attached the diode PCBs to the “1 MHz” Boost board. This additional inductance is modeled in Figure 6 as Lapra1 and Lapar2 and seen as ringing. These cables allowed for the diode to run inside of an oven set to 85°C for 48 Hours.

After the 48–hour test was completed, the diodes were taken back to the characterization lab for a post condition analysis. This analysis showed that there was no shift in any of the parameters, forward voltage, reverse leakage current, and capacitance.

The graphs below shown below demonstrate the Pre and Post–Stress characterization graphs and how that there was no change in the part performance.
Finally these diodes were placed in the same circuit at 25°C for 1 week of continuous operation. The screen shots below in Figures 8 and 9 show the operation on the first day of continuous operation and five days respectively.

To further evaluate the performance, a thermal camera was used to take pictures of the NSR10F40QNXT5G during heavy load operation and 25°C. As seen in Figure 10 the case only got to 29.2°C. This translates to less than 20mW of total power dissipation.

With a heavy load condition (up to 1.2 A) through the NSR10F40QNXT5G on a minimum pad size the ambient temperature can rise up to 145°C and not degrade the performance. Using ON Semiconductor’s new ultra low profile Wireless Boost Application Optimized Schottky diodes will increase the overall efficiency and battery life while reducing board size and cost associated with thermal pads.
NSR10F40QNX5G

PACKAGE DIMENSIONS

DSN2, 1.4x0.6, 0.75P
CASE 152AD

ISSUE C

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.

MOUNTING FOOTPRINT*

DIMENSIONS: MILLIMETERS

CATHODE BAND MONTH CODING

INDICATES AUG 2009

See Application Note AND8464/D for more mounting details

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf ON Semiconductor reserves the right to make changes without further notice to any products herein.

ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.