NSI45060DDT4G

Adjustable Constant Current Regulator & LED Driver

45 V, 60 – 100 mA ± 15%, 2.7 W Package

The adjustable constant current regulator (CCR) is a simple, economical and robust device designed to provide a cost effective solution for regulating current in LEDs. The CCR is based on patent-pending Self-Biased Transistor (SBT) technology and regulates current over a wide voltage range. It is designed with a negative temperature coefficient to protect LEDs from thermal runaway at extreme voltages and currents.

The CCR turns on immediately and is at 20% of regulation with only 0.5 V Vak. The R_adj pin allows I_reg(SS) to be adjusted to higher currents by attaching a resistor between R_adj (Pin 3) and the Cathode (Pin 4). The R_adj pin can also be left open (No Connect) if no adjustment is required. It requires no external components allowing it to be designed as a high or low-side regulator. The high anode-cathode voltage rating withstands surges common in Automotive, Industrial and Commercial Signage applications. This device is available in a thermally robust package, which is lead-free RoHS compliant and uses halogen-free molding compound. For the AEC–Q101 part please see the NSI45060JD datasheet.

Features
- Robust Power Package: 2.7 Watts
- Adjustable up to 100 mA
- Wide Operating Voltage Range
- Immediate Turn-On
- Voltage Surge Suppressing – Protecting LEDs
- SBT (Self-Biased Transistor) Technology
- Negative Temperature Coefficient
- Eliminates Additional Regulation
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications
- Automobile: Chevron Side Mirror Markers, Cluster, Display & Instrument Backlighting, CHMSL, Map Light
- AC Lighting Panels, Display Signage, Decorative Lighting, Channel Lettering
- Switch Contact Wetting
- Application Note AND8391/D – Power Dissipation Considerations
- Application Note AND8349/D – Automotive CHMSL

ON Semiconductor®

http://onsemi.com

I_reg(SS) = 60 – 100 mA
@ Vak = 7.5 V

MARKING DIAGRAM

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSI45060DDT4G</td>
<td>DPAK</td>
<td>2500/Tape & Reel</td>
</tr>
</tbody>
</table>

1For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
MAXIMUM RATINGS \((T_A = 25^\circ C \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode–Cathode Voltage</td>
<td>Vak Max</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>(V_R)</td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>Operating and Storage Junction Temperature Range</td>
<td>(T_J, T_{stg})</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Rating:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Body Model</td>
<td>ESD</td>
<td>Class 2</td>
<td></td>
</tr>
<tr>
<td>Machine Model</td>
<td></td>
<td>Class B</td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS \((T_A = 25^\circ C \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State Current @ Vak = 7.5 V</td>
<td>(I_{reg(SS)})</td>
<td>51</td>
<td>60</td>
<td>69</td>
<td>mA</td>
</tr>
<tr>
<td>Voltage Overhead (Note 2)</td>
<td>(V_{overhead})</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Pulse Current @ Vak = 7.5 V (Note 3)</td>
<td>(I_{reg(P)})</td>
<td>54.7</td>
<td>66</td>
<td>76.95</td>
<td>mA</td>
</tr>
<tr>
<td>Capacitance @ Vak = 7.5 V (Note 4)</td>
<td>(C)</td>
<td>17</td>
<td></td>
<td>70</td>
<td>pF</td>
</tr>
</tbody>
</table>

1. \(I_{reg(SS)}\) steady state is the voltage (Vak) applied for a time duration \(\geq 80\) sec, using FR–4 @ 300 mm\(^2\) 2 oz. Copper traces, in still air.

2. \(V_{overhead} = V_{in} - V_{LEDs}\). \(V_{overhead}\) is typical value for 65% \(I_{reg(SS)}\).

3. \(I_{reg(P)}\) non-repetitive pulse test. Pulse width \(t \leq 300\) μsec.

4. \(f = 1\) MHz, 0.02 V RMS.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Device Dissipation (Note 5)</td>
<td>(P_D)</td>
<td>1771</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>14.16</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 5)</td>
<td>(R_{JUA})</td>
<td>70.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 5)</td>
<td>(R_{JL4})</td>
<td>6.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation (Note 6)</td>
<td>(P_D)</td>
<td>2083</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>16.67</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 6)</td>
<td>(R_{JUA})</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 6)</td>
<td>(R_{JL4})</td>
<td>6.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation (Note 7)</td>
<td>(P_D)</td>
<td>2080</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>16.64</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 7)</td>
<td>(R_{JUA})</td>
<td>60.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 7)</td>
<td>(R_{JL4})</td>
<td>6.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation (Note 8)</td>
<td>(P_D)</td>
<td>2441</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>19.53</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 8)</td>
<td>(R_{JUA})</td>
<td>51.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 8)</td>
<td>(R_{JL4})</td>
<td>5.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation (Note 9)</td>
<td>(P_D)</td>
<td>2309</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>18.47</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 9)</td>
<td>(R_{JUA})</td>
<td>54.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 9)</td>
<td>(R_{JL4})</td>
<td>6.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation (Note 10)</td>
<td>(P_D)</td>
<td>2713</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>21.71</td>
<td>mW/C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient (Note 10)</td>
<td>(R_{JUA})</td>
<td>46.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction–to–Lead 4 (Note 10)</td>
<td>(R_{JL4})</td>
<td>5.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>(T_J, T_{stg})</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE: Lead measurements are made by non–contact methods such as IR with treated surface to increase emissivity to 0.9. Lead temperature measurement by attaching a T/C may yield values as high as 30% higher °C/W values based upon empirical measurements and method of attachment.

5. FR–4 @ 300 mm\(^2\), 1 oz. copper traces, still air.
6. FR–4 @ 300 mm\(^2\), 2 oz. copper traces, still air.
7. FR–4 @ 500 mm\(^2\), 1 oz. copper traces, still air.
8. FR–4 @ 500 mm\(^2\), 2 oz. copper traces, still air.
9. FR–4 @ 700 mm\(^2\), 1 oz. copper traces, still air.
10. FR–4 @ 700 mm\(^2\), 2 oz. copper traces, still air.
TYPICAL PERFORMANCE CURVES
Minimum FR-4 @ 300 mm², 2 oz Copper Trace, Still Air

Figure 1. General Performance Curve for CCR

Figure 2. Steady State Current ($I_{\text{reg(ss)}}$) vs. Anode–Cathode Voltage (V_{ak})

Figure 3. Pulse Current ($I_{\text{reg(p)}}$) vs. Anode–Cathode Voltage (V_{ak})

Figure 4. Steady State Current vs. Pulse Current Testing

Figure 5. Current Regulation vs. Time

Figure 6. $I_{\text{reg(ss)}}$ vs. R_{adj}
Number of LED's that can be connected is determined by:
D1 is a reverse battery protection diode
LED’s = \((V_{\text{in}} - Q_x V_F - D1 V_F) / V_{\text{LED}} \)
Example: \(V_{\text{in}} = 12 \text{ Vdc, } Q_x V_F = 3.5 \text{ Vdc, } D1V_F = 0.7 \text{ V} \)
LED \(V_F = 2.2 \text{ Vdc @ 30 mA} \)
(12 Vdc – 4.2 Vdc)/2.2 Vdc = 3 LEDs in series.

Number of LED’s that can be connected is determined by:
D1 is a reverse battery protection diode
Example: \(V_{\text{in}} = 12 \text{ Vdc, } Q_x V_F = 3.5 \text{ Vdc, } D1V_F = 0.7 \text{ V} \)
LED \(V_F = 2.6 \text{ Vdc @ 90 mA} \)
(12 Vdc – (3.5 + 0.7 Vdc))/2.6 Vdc = 3 LEDs in series.
Number of Drivers = LED current/30 mA
90 mA/30 mA = 3 Drivers (Q1, Q2, Q3)
Comparison of LED Circuit using CCR vs. Resistor Biasing

<table>
<thead>
<tr>
<th>ON Semiconductor CCR Design</th>
<th>Resistor Biased Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant brightness over full Supply Voltage (more efficient), see Figure 10</td>
<td>Large variations in brightness over full Automotive Supply Voltage</td>
</tr>
<tr>
<td>Little variation of power in LEDs, see Figure 11</td>
<td>Large variations of current (power) in LEDs</td>
</tr>
<tr>
<td>Constant current extends LED strings lifetime, see Figure 10</td>
<td>High Supply Voltage/Higher Current in LED strings limits lifetime</td>
</tr>
<tr>
<td>Current decreases as voltage increases, see Figure 10</td>
<td>Current increases as voltage increases</td>
</tr>
<tr>
<td>Current supplied to LED string decreases as temperature increases (self-limiting), see Figure 2</td>
<td>LED current decreases as temperature increases</td>
</tr>
<tr>
<td>Single resistor is used for current select</td>
<td>Requires costly inventory (need for several resistor values to match LED intensity)</td>
</tr>
<tr>
<td>Fewer components, less board space required</td>
<td>More components, more board space required</td>
</tr>
<tr>
<td>Surface mount component</td>
<td>Through-hole components</td>
</tr>
</tbody>
</table>

Current Regulation: Pulse Mode ($I_{\text{reg(P)}}$) vs DC Steady-State ($I_{\text{reg(SS)}}$)

There are two methods to measure current regulation: Pulse mode ($I_{\text{reg(P)}}$) testing is applicable for factory and incoming inspection of a CCR where test times are a minimum. ($t < 300$ μs). DC Steady-State ($I_{\text{reg(SS)}}$) testing is applicable for application verification where the CCR will be operational for seconds, minutes, or even hours. ON Semiconductor has correlated the difference in $I_{\text{reg(P)}}$ to $I_{\text{reg(SS)}}$ for stated board material, size, copper area and copper thickness. $I_{\text{reg(P)}}$ will always be greater than $I_{\text{reg(SS)}}$ due to the die temperature rising during $I_{\text{reg(SS)}}$. This heating effect can be minimized during circuit design with the correct selection of board material, metal trace size and weight, for the operating current, voltage, board operating temperature (T_A) and package. (Refer to Thermal Characteristics table).
DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS L3, L4 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIONAL MOLD FEATURE.

SCALE 1:1

![Diagram of DPAK (SINGLE GAUGE) Case 369C](#)

STYLE 1:
- PIN 1: BASE
- PIN 2: COLLECTOR
- PIN 3: EMMITER
- PIN 4: COLLECTOR

STYLE 2:
- PIN 1: GATE
- PIN 2: DRAIN
- PIN 3: SOURCE
- PIN 4: DRAIN

STYLE 3:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: ANODE
- PIN 4: CATHODE

STYLE 4:
- PIN 1: CATHODE
- PIN 2: ANODE
- PIN 3: CATHODE
- PIN 4: ANODE

STYLE 5:
- PIN 1: GATE
- PIN 2: ANODE
- PIN 3: CATHODE
- PIN 4: ANODE

STYLE 6:
- PIN 1: MT1
- PIN 2: MT2
- PIN 3: GATE
- PIN 4: MT2

STYLE 7:
- PIN 1: GATE
- PIN 2: COLLECTOR
- PIN 3: EMMITER
- PIN 4: COLLECTOR

STYLE 8:
- PIN 1: N/C
- PIN 2: SOURCE
- PIN 3: RESISTOR ADJUST
- PIN 4: CATHODE

STYLE 9:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: RESISTOR ADJUST
- PIN 4: CATHODE

STYLE 10:
- PIN 1: CATHODE
- PIN 2: ANODE
- PIN 3: CATHODE
- PIN 4: ANODE

SOLDERING FOOTPRINT

![Soldering Footprint Diagram](#)

GENERIC MARKING DIAGRAM

![Generic Marking Diagram](#)

XXX XXXXG
ALYWW
AYWW
XXX XXXXG

IC
Discrete

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER: 98AON10527D

STATUS: ON SEMICONDUCTOR STANDARD

NEW STANDARD: REF TO JEDEC TO−252

DESCRIPTION: DPAK SINGLE GAUGE SURFACE MOUNT

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

PAGE 1 OF 2
<table>
<thead>
<tr>
<th>ISSUE</th>
<th>REVISION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>RELEASED FOR PRODUCTION. REQ. BY L. GAN</td>
<td>24 SEP 2001</td>
</tr>
<tr>
<td>A</td>
<td>ADDED STYLE 8. REQ. BY S. ALLEN.</td>
<td>06 AUG 2008</td>
</tr>
<tr>
<td>B</td>
<td>ADDED STYLE 9. REQ. BY D. WARNER.</td>
<td>16 JAN 2009</td>
</tr>
<tr>
<td>C</td>
<td>ADDED STYLE 10. REQ. BY S. ALLEN.</td>
<td>09 JUN 2009</td>
</tr>
<tr>
<td>D</td>
<td>RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.</td>
<td>29 JUN 2010</td>
</tr>
<tr>
<td>E</td>
<td>ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA.</td>
<td>06 FEB 2014</td>
</tr>
<tr>
<td>F</td>
<td>ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.</td>
<td>21 JUL 2015</td>
</tr>
</tbody>
</table>