The NLAS2750 is a dual SPDT low on–resistance analog switch. It can operate from a single 1.8 V to 5.0 V power supply. It is a bi–directional switch that can switch a negative voltage swing audio signal without requiring a coupling capacitor. With a single power supply, the audio signal can swing over the range from −2.5 V to VCC.

Features
• Capable to Switch Negative Swing Audio Signals Without Requiring a DC Blocking Capacitor
• Low On–resistance (RON)
• Low Voltage Digital Control Logic: ($V_{\text{INH}} = 1.4 \text{ V @ } V_{\text{CC}} = 2.7 \text{ V to } 4.3 \text{ V}$)
• Low Power Consumption ($I_{\text{CC}} \leq 250 \text{ nA}$)
• Space Saving 1.4 mm x 1.8 mm Package UQFN Package
• This is a Pb–Free Device

Typical Applications
• Cellular Phones
• Portable Media Players

ORDERING INFORMATION
See detailed ordering and shipping information on page 7 of this data sheet.
Figure 1. Logic Equivalent Circuit

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Positive DC Supply Voltage</td>
<td>−0.3 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IS}</td>
<td>Analog Input Voltage (COM, NO, NC) (Notes 1 and 2)</td>
<td>Min. $V_{IS} = V_{CC} - 6.5$ V or $V_{IS} = 2.5$ V (whichever is greater)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. $V_{IS} = V_{CC} + 0.3$ V</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Digital (IN1, IN2)</td>
<td>−0.3 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Current (GND, V_{CC})</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>I_{IS}</td>
<td>Continuous Switch Current (COM, NO, NC) (Note 1)</td>
<td>±250 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{ISP}</td>
<td>Peak Switch Current (Pulsed at 1 ms, 10% Duty Cycle)</td>
<td>±500 mA</td>
<td>mA</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>−65 to +150 °C</td>
<td>°C</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation</td>
<td>200 mW</td>
<td></td>
</tr>
<tr>
<td>V_{ESD}</td>
<td>ESD (Human Body Model)</td>
<td>All pins I/O to GND</td>
<td>6 kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O to GND</td>
<td>8 kV</td>
</tr>
<tr>
<td>I_{LU}</td>
<td>Latch-up (per JESD78)</td>
<td>300 mA</td>
<td>mA</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Signals on COM, NO, NC, exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum is used in this data sheet.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Power Supply Range</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Digital Select Input Voltage Overvoltage Tolerance (OVT) (IN1, IN2)</td>
<td>GND</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IS}</td>
<td>Analog Input Voltage (NC, NO, COM) (Note 3)</td>
<td>−2.5</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>T_{A}</td>
<td>Operating Temperature Range</td>
<td>−40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>t_{r}, t_{f}</td>
<td>Input Rise or Fall Time (IN1, IN2)</td>
<td></td>
<td></td>
<td>ns/V</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3. The voltage across the switch should be ≤ 5.5 V.
ELECTRICAL CHARACTERISTICS (V_{CC} = 2.7 V, ±10%) (Note 4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Guaranteed Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
</tbody>
</table>

ANALOG SWITCH

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Guaranteed Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
</tbody>
</table>

DIGITAL CONTROL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Guaranteed Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
</tbody>
</table>

POWER CONSUMPTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Guaranteed Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
</tbody>
</table>

Notes

6. Guaranteed by design, not subject to production testing.
7. VIS = input voltage to perform proper function.
8. Crosstalk Measured between channels.

www.onsemi.com
TYPICAL CHARACTERISTICS
(25°C, unless otherwise specified)

Figure 2. On Resistance (R_{ON}) vs. Analog Input Voltage (V_{IS})
TYPICAL CHARACTERISTICS
(25°C, unless otherwise specified)

Figure 3. Bandwidth Measurement – Gain vs. Frequency

Figure 4. Off Isolation Measurement

Figure 5. Cross Talk Measurement
Figure 6. t_BBM (Time Break−Before−Make)

Figure 7. t_ON/t_OFF

Figure 8. t_ON/t_OFF
Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO}, Bandwidth and V_{ONL} are independent of the input signal direction.

$$V_{ISO} = \text{Off Channel Isolation} = 20 \log \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz}$$

$$V_{ONL} = \text{On Channel Loss} = 20 \log \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz to } 50 \text{ MHz}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 9. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

Figure 10. Charge Injection: (Q)

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLAS2750MUTAG</td>
<td>UQFN10 (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
PACKAGE DIMENSIONS

UQFN10 1.4x1.8, 0.4P
CASE 488AT
ISSUE A

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
 FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD
 AS WELL AS THE TERMINALS.

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>A1</td>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>b</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>D</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>E</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>L</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>L1</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>L2</td>
<td>0.40</td>
<td>0.50</td>
</tr>
</tbody>
</table>

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.