Single 3-Input OR Gate ## **NL17SZ332** The NL17SZ332 is a single 3-input OR Gate in tiny footprint packages. ### **Features** - $\bullet\,$ Designed for 1.65 V to 5.5 V V_{CC} Operation - 2.4 ns t_{PD} at $V_{CC} = 5 \text{ V (Typ)}$ - Inputs/Outputs Overvoltage Tolerant up to 5.5 V - I_{OFF} Supports Partial Power Down Protection - Source/Sink 24 mA at 3.0 V - Chip Complexity < 100 FETs - This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant Figure 1. Logic Symbol ## MARKING DIAGRAMS SC-74 CASE 318F-05 UDFN6 1.45 x 1.0 CASE 517AQ UDFN6 1.0 x 1.0 CASE 517BX X, XX = Specific Device Code M = Date Code Pb-Free Package ## **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. Figure 2. Pinout (Top View) ## **PIN ASSIGNMENT** | Pin | Function | |-----|-----------------| | 1 | Α | | 2 | GND | | 3 | В | | 4 | Υ | | 5 | V _{CC} | | 6 | С | ## **FUNCTION TABLE** (Y = A + B + C) | | Output | | | |---|--------|---|---| | Α | В | С | Υ | | Н | Х | Х | Н | | Х | Н | Х | Н | | Х | Х | Н | Н | | L | L | L | L | H = HIGH Logic Level L = LOW Logic Level X = Either LOW or HIGH Logic Level ### **MAXIMUM RATINGS** | Symbol | Cha | Value | Unit | | |-------------------------------------|-------------------------------------|---|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage | Active-Mode (High or Low State)
Tri-State Mode (Note 1)
Power-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -50 | mA | | l _{OUT} | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or I _{GND} | DC Supply Current per Supply Pin or | r Ground Pin | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case | for 10 secs | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Note 2) | SC-74
UDFN6 | 320
154 | °C/W | | P _D | Power Dissipation in Still Air | SC-74
UDFN6 | 390
812 | mW | | MSL | Moisture Sensitivity | | Level 1 | _ | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
1000 | V | | I _{Latchup} | Latchup Performance (Note 4) | | ± 100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Applicable to devices with outputs that may be tri-stated. Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (March 1997). - 4. Tested to EIA/JESD78 Class II. ## RECOMMENDED OPERATING CONDITIONS | Symbol | Chara | Min | Max | Unit | | |---------------------------------|-----------------------------|---|-------------|-------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | 1.65 | 5.5 | V | | V _{IN} | DC Input Voltage | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{\rm CC}$ = 0 V) | 0
0
0 | V _{CC}
5.5
5.5 | | | T _A | Operating Temperature Range | | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time | $\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array}$ | 0
0
0 | 20
20
10
5 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | Т, | 4 = 25°(| C | -55°C ≤ T | _A ≤ 125°C | | |------------------|------------------------------|--|---|---|--|---|---|---|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | V _{IH} | High-Level Input | | 1.65 to 1.95 | 0.65 V _{CC} | _ | _ | 0.65 V _{CC} | _ | ٧ | | | Voltage | | 2.3 to 5.5 | 0.70 V _{CC} | - | - | 0.70 V _{CC} | - | | | V _{IL} | Low-Level Input | | 1.65 to 1.95 | - | - | 0.35 V _{CC} | - | 0.35 V _{CC} | V | | | Voltage | | 2.3 to 5.5 | - | - | 0.30 V _{CC} | - | 0.30 V _{CC} | | | V _{OH} | High-Level Output
Voltage | V _{IN} = V _{IH} or V _{IL}
I _{OH} = -100 µA
I _{OH} = -4 mA
I _{OH} = -8 mA
I _{OH} = -16 mA
I _{OH} = -24 mA
I _{OH} = -32 mA | 1.65 to 5.5
1.65
2.3
3.0
3.0
4.5 | V _{CC} - 0.1
1.29
1.9
2.4
2.3
3.8 | V _{CC}
1.4
2.1
2.7
2.5
4.0 | -
-
-
-
- | V _{CC} - 0.1
1.29
1.9
2.4
2.3
3.8 | -
-
-
-
- | V | | V _{OL} | Low-Level Output
Voltage | $\begin{split} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 100 \mu\text{A} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \\ &I_{OL} = 16 \text{ mA} \\ &I_{OL} = 24 \text{ mA} \\ &I_{OL} = 32 \text{ mA} \end{split}$ | 1.65 to 5.5
1.65
2.3
3.0
3.0
4.5 | -
-
-
- | -
0.08
0.2
0.28
0.38
0.42 | 0.1
0.24
0.3
0.4
0.55
0.55 | -
-
-
- | 0.1
0.24
0.3
0.4
0.55
0.55 | V | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 1.65 to 5.5 | _ | - | ±0.1 | - | ±1.0 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | - | - | 1.0 | _ | 10 | μΑ | | Icc | Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 5.5 | - | _ | 1.0 | - | 10 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **AC ELECTRICAL CHARACTERISTICS** | | | | V _{CC} | T _A = 25°C | | | -55°C ≤ T _A ≤ 125°C | | | |-------------------|---|---|-----------------|-----------------------|-----|------|--------------------------------|------|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | t _{PLH,} | t _{PLH} , t _{PHL} Propagation Delay, A or B or C to Y (Figures 3 and 4) | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 1.65 to 1.95 | - | 6.5 | 18.5 | - | 19.0 | ns | | ^τ PHL | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 2.3 to 2.7 | - | 3.0 | 11.0 | _ | 11.5 | | | | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 3.0 to 3.6 | - | 2.4 | 7.5 | _ | 8.0 | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | | - | 3.0 | 8.5 | _ | 9.0 | | | | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 4.5 to 5.5 | - | 1.9 | 5.5 | - | 6.0 | | | | | $R_L = 500 \Omega$, $C_L = 50 pF$ | 1 | _ | 2.4 | 7.0 | _ | 7.5 | | ## **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |------------------|--|---|---------|-------| | C _{IN} | Input Capacitance | V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC} | 2.5 | pF | | C _{OUT} | Output Capacitance | V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC} | 2.5 | pF | | C _{PD} | Power Dissipation Capacitance (Note 5) | 10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC} | 9
11 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$. | Test | Switch
Position | C _L , pF | R_L, Ω | R ₁ , Ω | | |-------------------------------------|---------------------|------------------------------|---------------|--------------------|--| | t _{PLH} / t _{PHL} | Open | See AC Characteristics Table | | | | | t _{PLZ} / t _{PZL} | 2 x V _{CC} | 50 | 500 | 500 | | | t _{PHZ} / t _{PZH} | GND | 50 | 500 | 500 | | X = Don't Care C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit Figure 4. Switching Waveforms | | | V _m | | | |---------------------|---------------------|-------------------------------------|---|--------------------| | V _{CC} , V | V _{mi} , V | t _{PLH} , t _{PHL} | t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ} | V _Y , V | | 1.65 to 1.95 | V _{CC} /2 | V _{CC} / 2 | V _{CC} / 2 | 0.15 | | 2.3 to 2.7 | V _{CC} /2 | V _{CC} / 2 | V _{CC} / 2 | 0.15 | | 3.0 to 3.6 | V _{CC} /2 | V _{CC} / 2 | V _{CC} / 2 | 0.3 | | 4.5 to 5.5 | V _{CC} /2 | V _{CC} / 2 | V _{CC} / 2 | 0.3 | ### **DEVICE ORDERING INFORMATION** | Device | Packages | Specific Device Code | Pin 1 Orientation
(See below) | Shipping [†] | |-------------------------------------|-----------------------|----------------------|----------------------------------|-----------------------| | NL17SZ332DBVT1G | SC-74 | AE | Q4 | 3000 / Tape & Reel | | NL17SZ332MU1TCG
(In Development) | UDFN6, 1.45x1.0, 0.5P | 6 | Q4 | 3000 / Tape & Reel | | NL17SZ332MU3TCG
(In Development) | UDFN6, 1.0x1.0, 0.35P | 6 | Q4 | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## PIN 1 ORIENTATION IN TAPE AND REEL ## Direction of Feed ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. SC-74 CASE 318F ISSUE P **DATE 07 OCT 2021** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 - 2. CONTROLLING DIMENSION: INCHES - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. | | MILLIMETERS | | | INCHES | | | | |-----|-------------|-------|-------|--------|--------|--------|--| | DIM | MIN. | N□M. | MAX. | MIN. | N□M. | MAX. | | | Α | 0. 90 | 1. 00 | 1. 10 | 0. 035 | 0. 039 | 0. 043 | | | A1 | 0. 01 | 0. 06 | 0.10 | 0. 001 | 0. 002 | 0. 004 | | | b | 0. 25 | 0. 37 | 0. 50 | 0. 010 | 0. 015 | 0. 020 | | | c | 0.10 | 0. 18 | 0. 26 | 0. 004 | 0. 007 | 0. 010 | | | D | 2. 90 | 3. 00 | 3. 10 | 0. 114 | 0. 118 | 0. 122 | | | Ε | 1. 30 | 1. 50 | 1. 70 | 0. 051 | 0. 059 | 0. 067 | | | e | 0. 85 | 0. 95 | 1. 05 | 0. 034 | 0. 037 | 0. 041 | | | HE | 2. 50 | 2. 75 | 3. 00 | 0. 099 | 0. 108 | 0. 118 | | | L | 0. 20 | 0. 40 | 0. 60 | 0. 008 | 0. 016 | 0. 024 | | | М | 0* | | 10* | 0* | | 10* | | ## GENERIC MARKING DIAGRAM* XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. For additional information on our Pb-Free strategy and soldering details, please download the UN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D. SOLDERING FOOTPRINT | STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | STYLE 5: | STYLE 6: | |--|--|--|--|---|---------------------------| | PIN 1. CATHODE | PIN 1. NO CONNECTION | PIN 1. EMITTER 1 | PIN 1. COLLECTOR 2 | PIN 1. CHANNEL 1 | PIN 1. CATHODE | | 2. ANODE | 2. COLLECTOR | 2. BASE 1 | 2. EMITTER 1/EMITTER 2 | 2. ANODE | ANODE | | CATHODE | 3. EMITTER | COLLECTOR 2 | 3. COLLECTOR 1 | CHANNEL 2 | CATHODE | | 4. CATHODE | 4. NO CONNECTION | 4. EMITTER 2 | 4. EMITTER 3 | CHANNEL 3 | CATHODE | | 5. ANODE | COLLECTOR | 5. BASE 2 | BASE 1/BASE 2/COLLECTOR 3 | CATHODE | CATHODE | | CATHODE | 6. BASE | COLLECTOR 1 | 6. BASE 3 | CHANNEL 4 | CATHODE | | STYLE 7:
PIN 1. SOURCE 1
2. GATE 1
3. DRAIN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1 | STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1 | STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 | STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE | STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHOD 4. ANODE 5. CATHODE 6. COLLECTOR | Ē | | DOCUMENT NUMBER: | 98ASB42973B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SC-74 | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. 6X L 6X b 0.10 | C | A | B 0.05 C NOTE 3 UDFN6, 1.45x1.0, 0.5P CASE 517AQ **DATE 15 MAY 2008** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 0.45 | 0.55 | | | A1 | 0.00 | 0.05 | | | A2 | 0.07 REF | | | | b | 0.20 | 0.30 | | | D | 1.45 BSC | | | | Е | 1.00 BSC | | | | Ф | 0.50 BSC | | | | ı | 0.30 | 0.40 | | | L1 | | 0.15 | | ## **MOUNTING FOOTPRINT** **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** **BOTTOM VIEW** SIDE VIEW е = Specific Device Code = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98AON30313E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-----------------------|---|-------------| | DESCRIPTION: | UDFN6, 1.45x1.0, 0.5P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O** **DATE 18 MAY 2011** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF - BURRS AND MOLD FLASH. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 0.45 | 0.55 | | | A1 | 0.00 | 0.05 | | | A3 | 0.13 REF | | | | b | 0.12 | 0.22 | | | D | 1.00 BSC | | | | E | 1.00 BSC | | | | е | 0.35 BSC | | | | L | 0.25 | 0.35 | | | L1 | 0.30 | 0.40 | | #### RECOMMENDED **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** X = Specific Device Code M = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON56787E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------------|---|-------------| | DESCRIPTION: | UDFN6, 1x1, 0.35P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales