onsemi

Single 2-Input Non-Inverting Multiplexer

NL17SZ157

The NL17SZ157 is a single 2–input non–inverting multiplexer operating from a 1.65 to 5.5 V supply.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.4 ns t_{PD} at $V_{CC} = 5 V (Typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 32 mA at 4.5 V
- Available in SC-88, SC-74 and UDFN6 Packages
- Chip Complexity < 100 FETs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

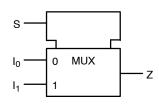
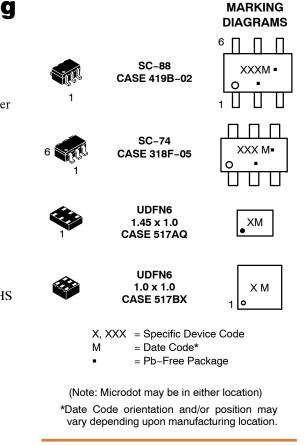
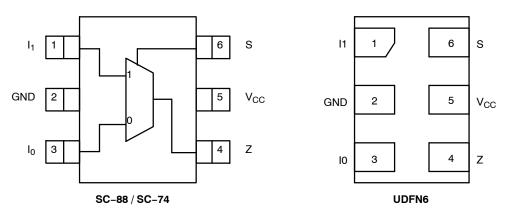




Figure 1. Logic Symbol

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

PIN ASSIGNMENT

Pin	Function
1	11
2	GND
3	10
4	Z
5	V _{CC}
6	S

FUNCTION TABLE

Inputs			Output
S	I ₁	I ₀	$Z = (I_0) \cdot (\overline{S}) + (I_1) \cdot (S)$
L	Х	L	L
L	Х	Н	Н
Н	L	Х	L
Н	Н	Х	Н

H = HIGH Logic Level L = LOW Logic Level X = Don't Care

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		–0.5 to +6.5	V
V _{OUT}		ode (High or Low State) Tri-State Mode (Note 1) Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
IOUT	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88 SC-74 UDFN6	377 320 154	°C/W
PD	Power Dissipation in Still Air	SC-88 SC-74 UDFN6	332 390 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

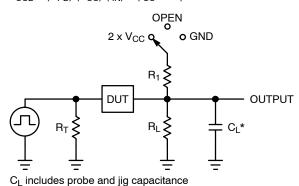
Symbol	Characteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ $V_{CC} = 4.5 V \text{ to } 5.5 V$	0 0 0 0	20 20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

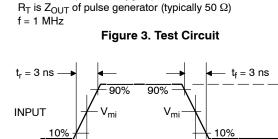
			Vcc	Т,	م = 25°0	C	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
VIH	High-Level Input		1.65 to 1.95	0.65 V _{CC}	-	-	0.65 V _{CC}	-	V
	Voltage		2.3 to 5.5	0.70 V _{CC}	-	-	0.70 V _{CC}	-	
V _{IL}	Low-Level Input		1.65 to 1.95	-	-	$0.35 V_{CC}$	-	0.35 V _{CC}	V
	Voltage		2.3 to 5.5	-	-	0.30 V _{CC}	-	0.30 V _{CC}	
V _{OH}	High-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ I_{OH} = -100 \ \mu A \\ I_{OH} = -4 \ m A \\ I_{OH} = -8 \ m A \\ I_{OH} = -16 \ m A \\ I_{OH} = -24 \ m A \\ I_{OH} = -32 \ m A \end{array} $	1.65 to 5.5 1.65 2.3 3 3 4.5	V _{CC} - 0.1 1.29 1.9 2.4 2.3 3.8	V _{CC} 1.52 2.1 2.7 2.5 4		V _{CC} - 0.1 1.29 1.9 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 3 3 4.5		- 0.08 0.12 0.24 0.26 0.31	0.1 0.24 0.3 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	-	1.0	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

				•	T _A = +25°C	;	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t_{PLH},t_{PHL}	Propagation Delay, S to Z	1.65 to 1.95	$C_{L} = 15 \text{ pF},$	-	6.0	11.5	-	12.0	ns
	(Figure 3, 4)	2.3 to 2.7	R _L = 1 MΩ,	-	3.5	6.1	-	6.5	
		3.0 to 3.6		-	2.6	4.1	-	4.5	
		4.5 to 5.5		-	1.9	3.2	-	3.5	
	Propagation Delay, I _n to Z	1.65 to 1.95	C _L = 15 pF,	-	5.9	10.0	-	10.5	
	(Figure 3, 4)	2.3 to 2.7	R _L = 1MΩ,	-	3.5	5.8	-	6.1	
		3.0 to 3.6		-	2.6	3.9	-	4.2	
		4.5 to 5.5		-	1.9	3.1	-	3.3	
	Propagation Delay, S to Z	3.0 to 3.6	C _L = 50 pF,	-	3.2	4.8	-	5.2	
	(Figure 3, 4)	4.5 to 5.5	R _L = 500 Ω,	-	2.4	3.8	-	4.1	
	Propagation Delay, I _n to Z	3.0 to 3.6	$C_{L} = 50 \text{ pF},$	-	3.2	4.6	-	5.0	
	(Figure 3, 4)	4.5 to 5.5	R _L = 500 Ω,	-	2.4	3.7	-	4.0	

CAPACITIVE CHARACTERISTICS

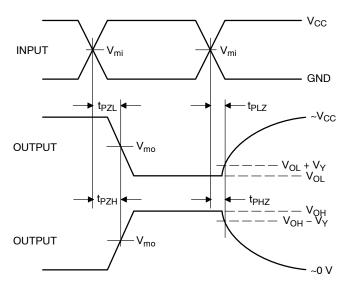

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	4.0	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	4.0	pF

5. CPD is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static)$.

Test	Switch Position	C _L , pF	R_{L}, Ω	R_1, Ω
t _{PLH} / t _{PHL}	Open	See AC Character	istics Tal	ble
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$	50	500	500
t _{PHZ} / t _{PZH}	GND	50	500	500
	-			

X = Don't Care

V_{mo}


V_{mo}

t_{PHL}

Interpret PLH

OUTPUT

OUTPUT

Figure 4. Switching Waveforms

 V_{CC}

GND

VOH

VOL

VOH

– V_{OL}

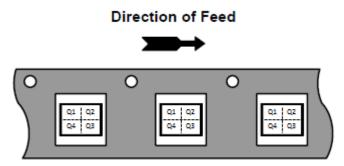
t_{PLH}

♦ t_{PHL}

 V_{mo}

 V_{mo}

		V _r	_{no} , V	
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.3
4.5 to 5.5	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.3

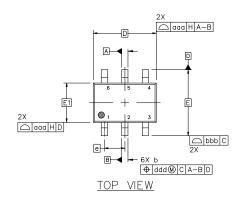

5

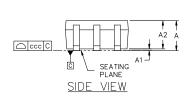
DEVICE ORDERING INFORMATION

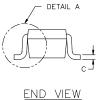
Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ157DFT2G	SC-88	ZF7	Q4	3000 / Tape & Reel
NL17SZ157DBVT1G	SC-74	AR	Q4	3000 / Tape & Reel
NL17SZ157MU1TCG (Contact onsemi sales)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
NL17SZ157MU3TCG (Contact onsemi sales)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

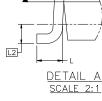
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN 1 ORIENTATION IN TAPE AND REEL

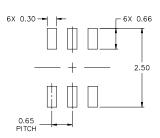



SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024



NOTES:


- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4.
- 5.
- 6.
- PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS & AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXPERSION & AT MAXIMUM MATERIAL 7. EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MI	LLIMETER	S
DIM	MIN.	NOM.	MAX.
A			1.10
A1	0.00		0.10
A2	0.70	0.90	1.00
b	0.15	0.20	0.25
с	0.08	0.15	0.22
D	2.00 BSC		
E		2.10 BSC	;
E1		1.25 BSC	;
е		0.65 BSC)
L	0.26	0.36	0.46
L2		0.15 BSC	
aaa	0.15		
bbb	0.30		
ccc	0.10		
ddd		0.10	

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

= Date Code*

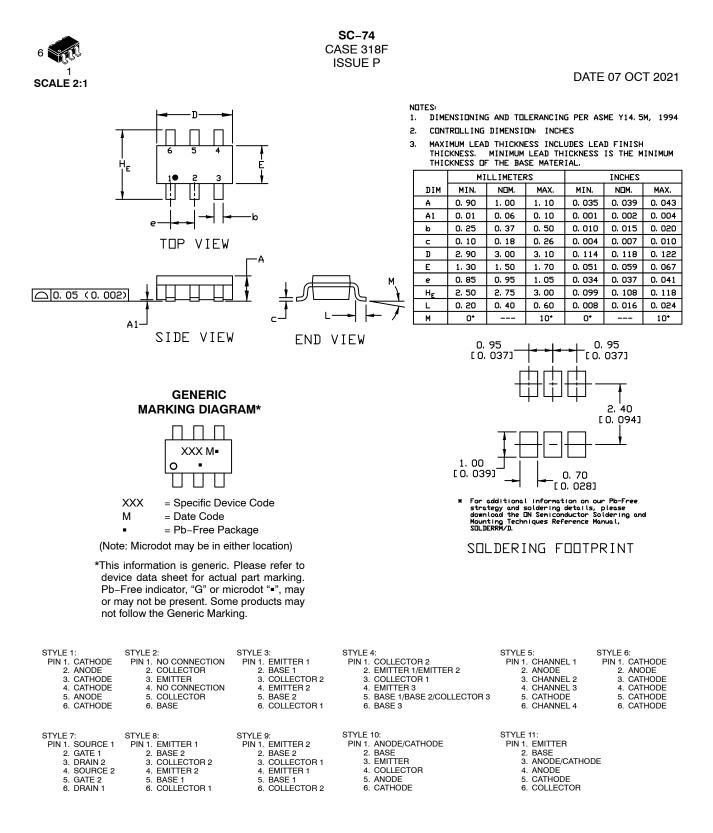
Μ

= Pb-Free Package

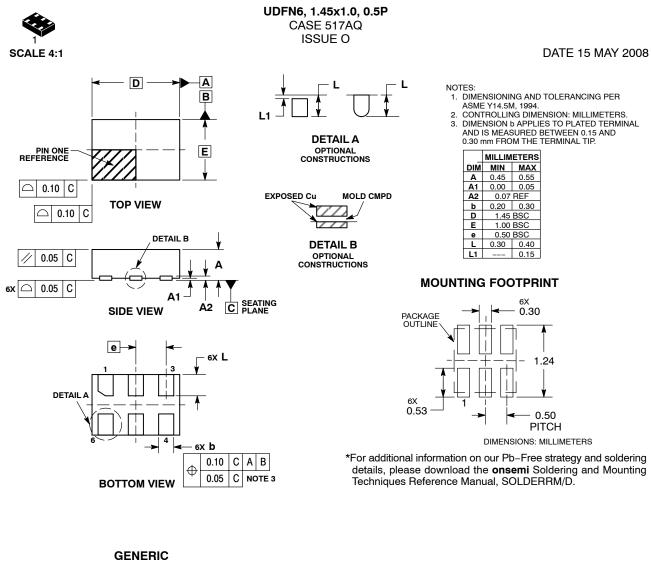
(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "∎", may or may not be present. Some products may not follow the Generic Marking.



GENERIC **MARKING DIAGRAM***


H

www.onsemi.com 7

MARKING DIAGRAM*

M = Date Code

Х

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

PIN ONE REFERENCE

0.10 С

> 0.10 C

0.05 C

1 L1 4

2X 🗅

2X $|\Box$

//

 \Box 0.05 С UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**

AB

Ε

A3

A1

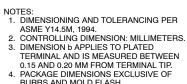
5X L

6X b

 \oplus

0.10 M C A B

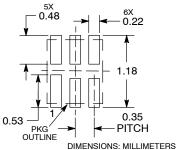
0.05 M C NOTE 3


D

TOP VIEW

SIDE VIEW

е


DATE 18 MAY 2011

- BURRS AND MOLD FLASH.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00 0.05			
A3	0.13 REF			
b	0.12	0.22		
D	1.00	BSC		
Е	1.00	BSC		
е	0.35	BSC		
L	0.25	0.25 0.35		
L1	0.30	0.40		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC **MARKING DIAGRAM***

BOTTOM VIEW

X = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any s

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <u>www.onsemi.com/design/resources/technical-documentation</u> onsemi Website: <u>www.onsemi.com</u> ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales