Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

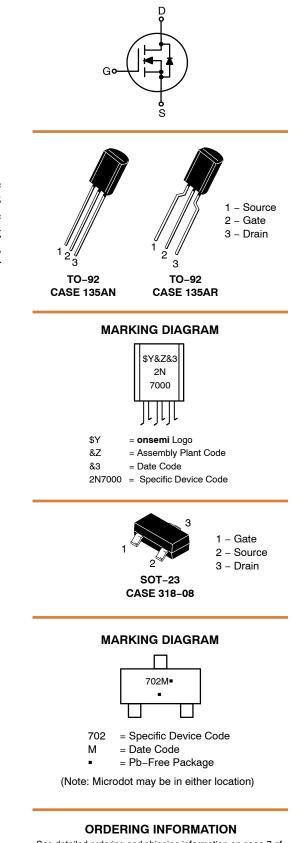
We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

onsemi

N-Channel Enhancement Mode Field Effect Transistor


2N7000, 2N7002, NDS7002A

Description

These N-channel enhancement mode field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while providing rugged, reliable, and fast switching performance. These products are particularly suited for low-voltage, low-current applications, such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High Density Cell Design for Low RDS(on)
- Voltage Controlled Small Signal Switch
- Rugged and Reliable
- High Saturation Current Capability
- ESD Protection Level: HBM > 100 V, CDM > 2 kV
- This Device is Pb-Free and Halogen Free

See detailed ordering and shipping information on page 7 of this data sheet.

			Value		
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
V _{DSS}	Drain-to-Source Voltage		60	•	V
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1$ MW)		60		V
V _{GSS}	Gate-Source Voltage - Continuous		±20		V
	Gate-Source Voltage - Non Repetitive (tp < 50 ms)		±40		
Ι _D	Maximum Drain Current – Continuous	200	115	280	mA
	Maximum Drain Current – Pulsed	500	800	1500	
PD	Maximum Power Dissipation Derated above 25°C	400	200	300	mW
		3.2	1.6	2.4	mW/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55	to 150	-65 to 150	°C
ΤL	Maximum Lead Temperature for Soldering Purposes, 1/16-inch from Case for 10 s		300		°C

ABSOLUTE MAXIMUM RATINGS Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

			Value		
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	312.5	625	417	°C/W

ELECTRICAL CHARACTERISTICS

Values are at T_C = 25°C unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 10 μ A	All	60	_	_	V
I _{DSS}	Zero Gate Voltage Drain	$V_{DS} = 48 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	2N7000	-	-	1	μA
	Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$		-	-	1	mA
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$	2N7002	_	-	1	μA
		V_{DS} = 60 V, V_{GS} = 0 V, T _C = 125°C	NDS7002A	-	-	0.5	mA
I _{GSSF}	Gate – Body Leakage,	V_{GS} = 15 V, V_{DS} = 0 V	2N7000	-	-	10	nA
	Forward	V_{GS} = 20 V, V_{DS} = 0 V	2N7002 NDS7002A	-	_	100	
I _{GSSR}	Gate – Body Leakage,	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$	2N7000	_	-	-10	nA
	Reverse	V_{GS} = -20 V, V_{DS} = 0 V	2N7002 NDS7002A	-	-	-100	1

ON CHARACTERISTICS

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	2N7000	0.8	2.1	3	V
		$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2N7002 NDS7002A	1	2.1	2.5	

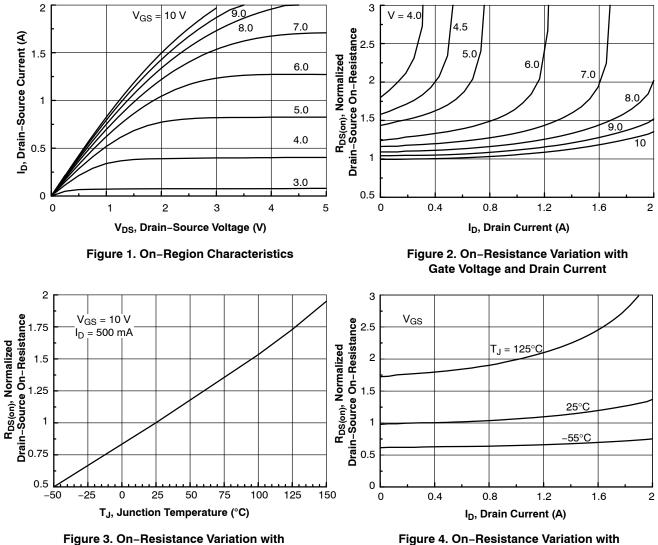
ELECTRICAL CHARACTERISTICS (continued) Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
ON CHARAC	TERISTICS						
R _{DS(on)}	Static Drain-Source	V_{GS} = 10 V, I _D = 500 mA	2N7000	-	1.2	5	Ω
	On-Resistance	V_{GS} = 10 V, I _D = 500 mA, T _C = 125°C		-	1.9	9	
		V _{GS} = 4.5 V, I _D = 75 mA		-	1.8	5.3	
		V_{GS} = 10 V, I _D = 500 mA	2N7002	-	1.2	7.5	
		$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{ mA}, \\ T_{C} = 100^{\circ}\text{C} \end{array}$		-	1.7	13.5	
		$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$		- 1.7	7.5	1	
		V_{GS} = 5 V, I _D = 50 mA, T _C = 100°C		-	2.4	13.5	
		V_{GS} = 10 V, I _D = 500 mA	NDS7002A	-	1.2	2	
		V_{GS} = 10 V, I_{D} = 500 mA, T_{C} = 125°C		-	2	3.5	
		V_{GS} = 5 V, I_D = 50 mA		-	1.7	3	
		V_{GS} = 5 V, I_D = 50 mA, T_C = 125°C		-	2.8	5	
V _{DS(on)}	Drain-Source On-Voltage	V _{GS} = 10 V, I _D = 500 mA	2N7000	-	0.6	2.5	V
		V_{GS} = 4.5 V, I _D = 75 mA		-	0.14	0.4	
		V_{GS} = 10 V, I _D = 500 mA	2N7002	-	0.6	3.75	
		$V_{GS} = 5.0 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$		-	0.09	1.5	
		V_{GS} = 10 V, I _D = 500 mA	NDS7002A	-	0.6	1	
		$V_{GS} = 5.0 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$		-	0.09	0.15	
g fs	Forward Transconductance	V_{DS} = 10 V, I _D = 200 mA	2N7000	100	320	-	mS
		$V_{DS} \geq 2 \ V_{DS(on)}, \ I_D = 200 \ mA$	2N7002	80	320	-]
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	NDS7002A	80	320	-]

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$	All	-	20	50	pF
Coss	Output Capacitance	f = 1.0 MHz	All	-	11	25	
C _{rss}	Reverse Transfer Capacitance		All	_	4	5	
t _{on}	Turn-On Time		2N7000	-	-	10	ns
			2N7002 NDS7002A	-	-	20	
t _{off}	Turn-Off Time		2N7000	-	-	10	ns
			2N7002 NDS7002A	-	-	20	
AIN-SO	URCE DIODE CHARACTERIS	TICS AND MAXIMUM RATINGS					-
ا _S	Maximum Continuous Drair	n-Source Diode Forward Current	2N7002	_	-	115	mA

۱ _S	Maximum Continuous Drain-Source Diode Forward Current	2N7002	-	-	115	mA
		NDS7002A	-	-	280	

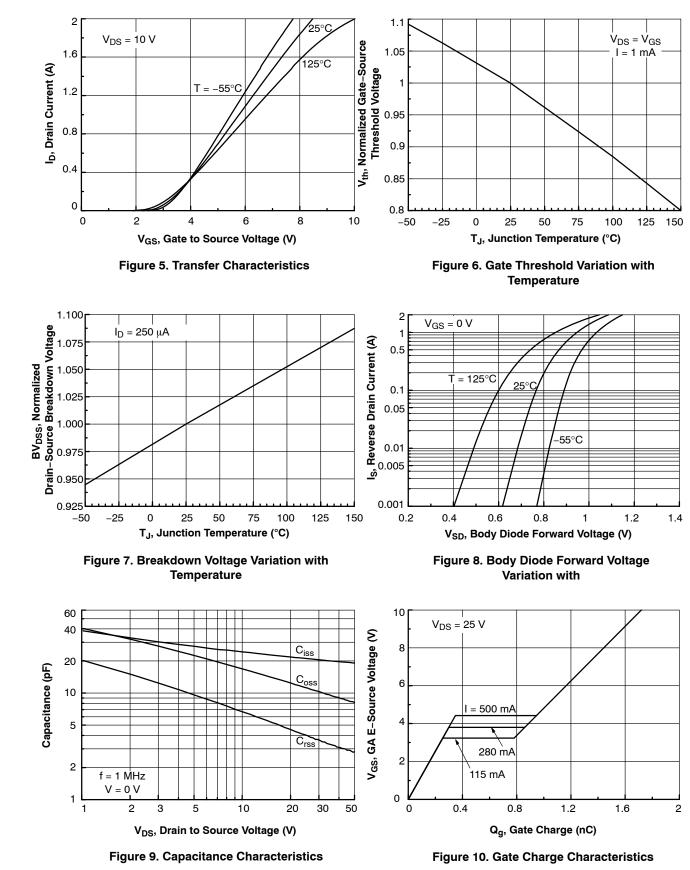

ELECTRICAL CHARACTERISTICS (continued)

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
DRAIN-SOU	RCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS					
I _{SM}	Maximum Pulsed Drain-Source	Diode Forward Current	2N7002	-	_	0.8	А
			NDS7002A	-	-	1.5	
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 115 mA (Note 1)	2N7002	-	0.88	1.5	V
		V_{GS} = 0 V, I _S = 400 mA (Note 1)	NDS7002A	_	0.88	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse test: Pulse Width \leq 300 $\mu s,$ Duty Cycel \leq 2 %



TYPICAL PERFORMANCE CHARACTERISTICS


Temperature

Figure 4. On–Resistance Variation with Drain Current and Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

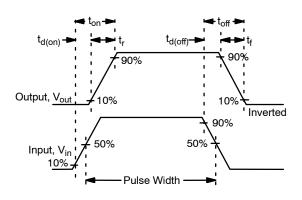


Figure 12. Switching Waveforms

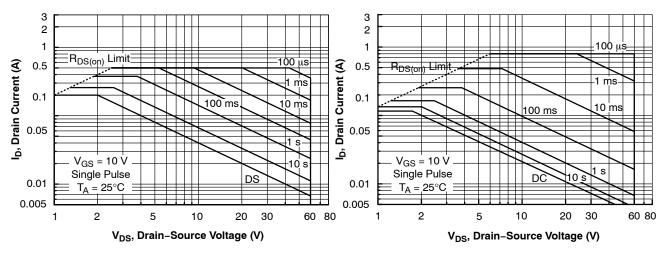


Figure 14. 2N7002 Maximum Safe Operating Area

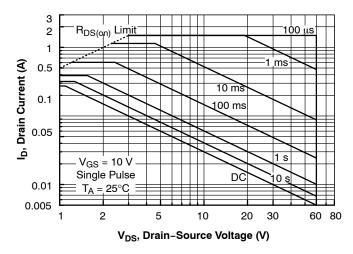


Figure 15. NDS7000A Maximum Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

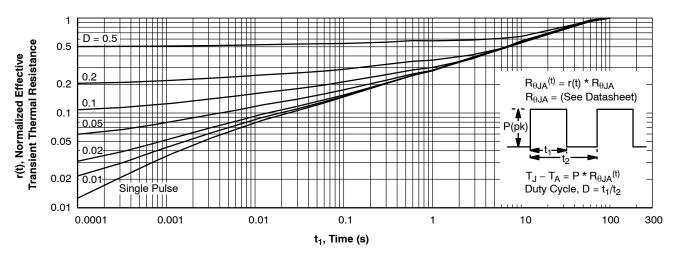


Figure 16. TO-92, 2N7000 Transient Thermal Response Curve

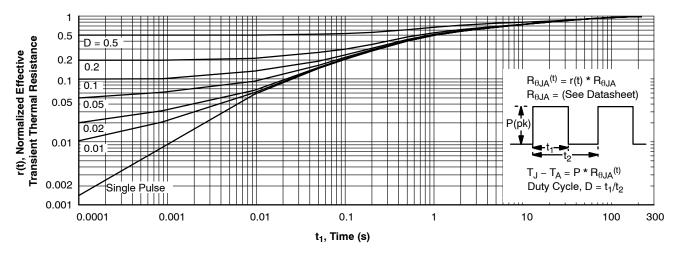


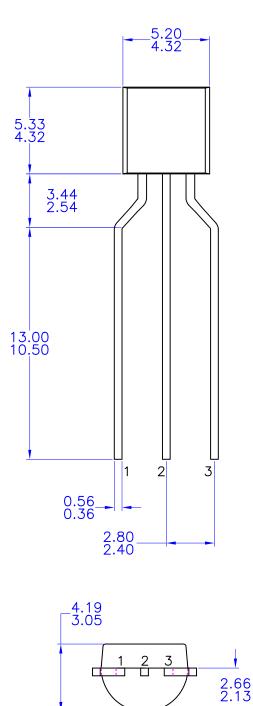
Figure 17. SOT-23, 2N7002 / NDS7002A Transient Thermal Response Curve

ORDERING INFORMATION

Part Number	Marking	Package	Packing Method †	Min Order Qty / Immediate Pack Qty
2N7000	2N7000	TO-92 3L	Bulk	10000 / 1000
2N7000-D74Z		(Pb-Free)	Ammo	2000 / 2000
2N7000-D75Z			Tape and Reel	2000 / 2000
2N7000-D26Z				2000 / 2000
2N7002	702	SOT-23 3L	Tape and Reel	3000 / 3000
NDS7002A	712	(Pb-Free)		3000 / 3000

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi


TO-92 3 4.825x4.76 CASE 135AN ISSUE O DATE 31 JUL 2016 _5.20_ ______ 5.33 (0.81) 15.62 2 3 1 0.52 0.56 0.36 1.27 NOTES: UNLESS OTHERWISE SPECIFIED 2.54 A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. B) ALL DIMENSIONS ARE IN MILLIMETERS. с́э DRAWING CONFORMS TO ASME Y14.5M-2009. 4.19 3.05 2.66 2.13 2 3 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON13880G **DESCRIPTION:** TO-92 3 4.825X4.76 PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 3 4.83x4.76 LEADFORMED CASE 135AR ISSUE O

DATE 30 SEP 2016

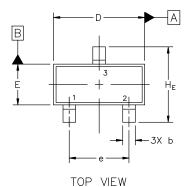
NOTES: UNLESS OTHERWISE SPECIFIED

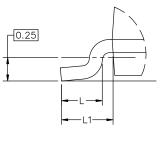
A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.

- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

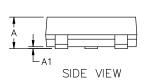
DOCUMENT NUMBER:	98AON13879G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-92 3 4.83X4.76 LEADF	ORMED	PAGE 1 OF 1				

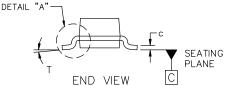
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

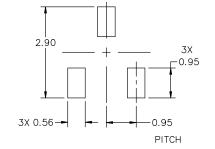

semi



SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318**


ISSUE AU


DATE 14 AUG 2024



XXX = Specific Device Code М = Date Code

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

MILLIMETERS							
DIM	MIN	NOM	МАХ				
А	0.89	1.00	1.11				
A1	0.01	0.06	0.10				
b	0.37	0.44	0.50				
с	0.08	0.14	0.20				
D	2.80	2.90	3.04				
E	1.20	1.30	1.40				
е	1.78	1.90	2.04				
L	0.30	0.43	0.55				
L1	0.35	0.54	0.69				
Ηe	2.10	2.40	2.64				
Т	0°		10°				

NOTES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS: 1.

2. MILLIMETERS.

MILLIME IERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE 3.

BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS, OR GATE BURRS.

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION: SOT-23 (TO-236) 2.90x1.30x1.00 1.90P PAGE 1 OF 2								
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours as no warranty, representation or guarantee regarding the suitability of its pro of any product or circuit, and specifically disclaims any and all liability, incl e under its patent rights nor the rights of others.	oducts for any particular					

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CÁSE 318** ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	I PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CONTROLLED CONTROLLEC CONTROLLEC CONTROLLECCONTROLLEC CONTROLLEC C		
DESCRIPTION: SOT-23 (TO-236)	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>