

Is Now Part of

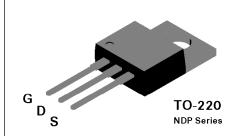
ON Semiconductor®

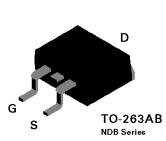
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

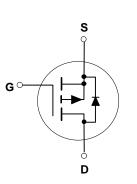
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

June 1997

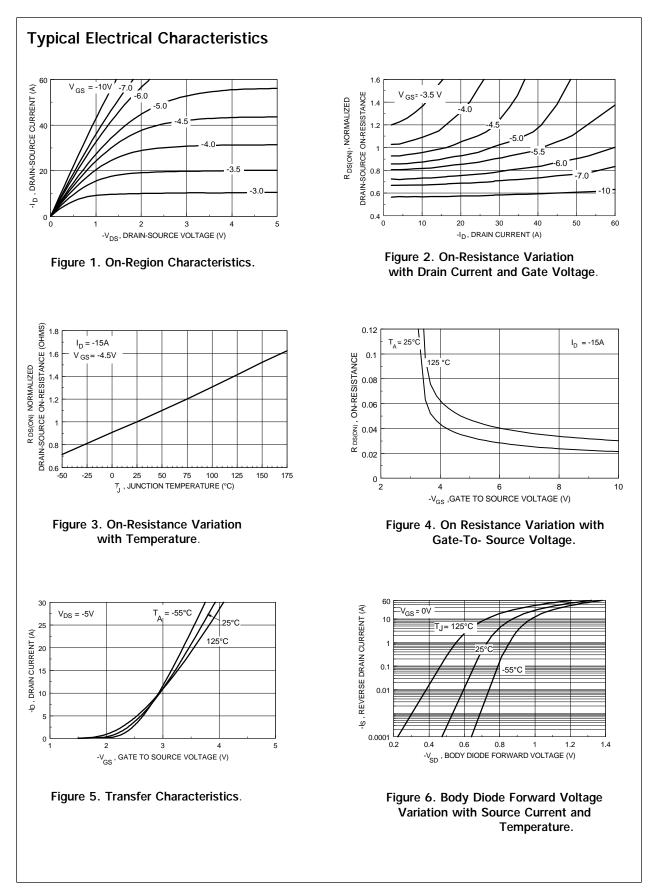

NDP6030PL / NDB6030PL P-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description

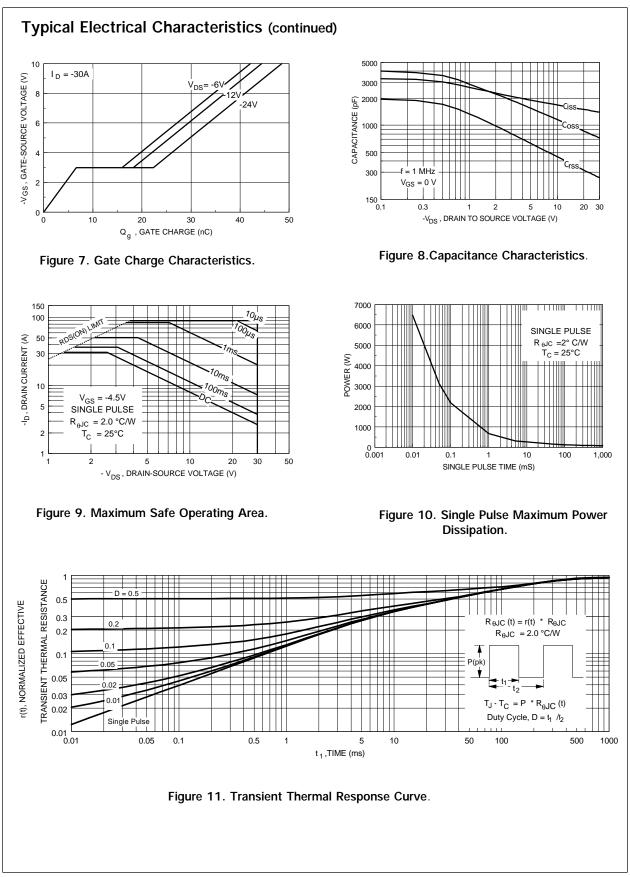

These P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as DC/DC converters and high efficiency switching circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- $\begin{array}{c|c} \bullet & -30 \mbox{ A, } -30 \mbox{ V. } R_{\rm DS(ON)} = 0.042 \ \Omega \ @ \ V_{\rm GS} = -4.5 \ V \\ R_{\rm DS(ON)} = 0.025 \ \Omega \ @ \ V_{\rm GS} = -10 \ V. \end{array}$
- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- High density cell design for extremely low R_{DS(ON)}.
- 175°C maximum junction temperature rating.


Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter	NDP6030PL	NDB6030PL	Units
V _{DSS}	Drain-Source Voltage	-30		V
V _{GSS}	Gate-Source Voltage - Continuous	±16		V
l _D	Drain Current - Continuous	-30		
	- Pulsed	-90		
P _D	Total Power Dissipation @ $T_c = 25^{\circ}C$	75		W
	Derate above 25°C	(0.5	
T_,T _{stg}	Operating and Storage Temperature Range	-65 to 175		°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	275		°C
T_,,T _{stg}	Operating and Storage Temperature Range	-65 1	to 175	°C
THERMA	L CHARACTERISTICS			
R _{ejc}	Thermal Resistance, Junction-to-Case	2		°C/W
R _{eja}	Thermal Resistance, Junction-to-Ambient	6	2.5	°C/W


© 1997 Fairchild Semiconductor Corporation

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS			1	•	1	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$		-30			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = -250 µA, Referenced to 25 °C			-36		mV/°C
l _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V, V_{GS} = 0 V$				-250	μA
			T _J = 125°C			1	mA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 16 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				-100	nA
GSSR	Gate - Body Leakage, Reverse	V _{GS} = -16 V, V _{DS} = 0 V				-100	nA
ON CHARAG	CTERISTICS (Note)			•	•	•	
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp.Coefficient	$I_{\rm D}$ = -250 μ A, Referenced to 25 °C			2.2		mV/°C
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = -250 \mu {\rm A}$		-1	-1.4	-2	V
(-)			T _J = 125°C	-0.8	-1.08	-1.6	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = -4.5 V, I _D = -15 A			0.037	0.042	Ω
			T _J = 125°C		0.053	0.075	
		$V_{GS} = -10 \text{ V}, I_{D} = -19 \text{ A}$	•		0.021	0.025	
D(on)	On-State Drain Current	V _{GS} = -4.5 V, V _{DS} = -5 V		-20			Α
9 _{FS}	Forward Transconductance	$V_{\rm DS} = -4.5 \text{ V}, \text{ I}_{\rm D} = -19 \text{ A}$			20		S
DYNAMIC C	HARACTERISTICS				•		
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			1570		pF
C _{oss}	Output Capacitance				975		pF
C _{rss}	Reverse Transfer Capacitance				360		pF
	CHARACTERISTICS (Note)						1
D(on)	Turn - On Delay Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -5 \text{ A},$ $V_{GS} = -5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$			12.5	25	nS
r	Turn - On Rise Time				60	120	nS
D(off)	Turn - Off Delay Time				50	100	nS
t f	Turn - Off Fall Time				52	100	nS
<u>າ</u> ວູ	Total Gate Charge	V_{DS} = -12 V I_{D} = -30 A, V_{GS} = -5 V			26	36	nC
~ <u>g</u> Q _{gs}	Gate-Source Charge				6.5		nC
Q _{gd}	Gate-Drain Charge				11.5		nC
-	RCE DIODE CHARACTERISTICS			1		1	
s	Maximum Continuos Drain-Source Diode Forward Current					-30	Α
SM	Maximum Pulsed Drain-Source Diode Forwa	d Current				-100	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{\rm GS} = 0 \text{ V}, \text{ I}_{\rm S} = -15 \text{ A} \text{ (Note)}$			-0.92	-1.3	V
	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_F = -30 \text{ A}$ $dI_F/dt = 100 \text{ A}/\mu\text{s}$			58		ns
	Reverse Recovery Current				-1.5		А

Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

NDP6030PL Rev.B1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC