NCV4266

Regulator with Enable, 150 mA, Low-Dropout Voltage

The NCV4266 is a 150 mA output current integrated low dropout regulator family designed for use in harsh automotive environments. It includes wide operating temperature and input voltage ranges. The device is offered with fixed voltage versions of 3.3 V and 5.0 V available in 2% output voltage accuracy. It has a high peak input voltage tolerance and reverse input voltage protection. It also provides overcurrent protection, overtemperature protection and enable function for control of the state of the output voltage. The NCV4266 is available in SOT-223 surface mount package. The output is stable over a wide output capacitance and ESR range. The NCV4266 has improved startup behavior during input voltage transients.

Features

• 3.3 V and 5.0 V Output Voltage
• 150 mA Output Current
• 500 mV (max) Dropout Voltage
• Enable Input
• Very Low Current Consumption
• Fault Protection
 ♦ +45 V Peak Transient Voltage
 ♦ −42 V Reverse Voltage
 ♦ Short Circuit
 ♦ Thermal Overload
• NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
• These are Pb–Free Devices

Figure 1. Block Diagram
PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>Input; Battery Supply Input Voltage.</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>Enable Input; low level disables the IC.</td>
</tr>
<tr>
<td>3</td>
<td>Q</td>
<td>Output; Bypass with a capacitor to GND.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground.</td>
</tr>
</tbody>
</table>

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_I</td>
<td>-42</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>Input Peak Transient Voltage</td>
<td>V_I</td>
<td></td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>Enable Input Voltage</td>
<td>V_{EN}</td>
<td>-42</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_Q</td>
<td>-1.0</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Ground Current</td>
<td>I_q</td>
<td></td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Input Voltage Operating Range</td>
<td>V_I</td>
<td>$V_Q + 0.5$ V or 4.5 (Note 1)</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>ESD Susceptibility (Human Body Model)</td>
<td></td>
<td>-4.0</td>
<td>250</td>
<td>kV</td>
</tr>
<tr>
<td>ESD Susceptibility (Machine Model)</td>
<td></td>
<td>-4.0</td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>-40</td>
<td>150</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-50</td>
<td>150</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

*During the voltage range which exceeds the maximum tested voltage of V_I, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely.

1. Minimum $V_I = 4.5$ V or $(V_Q + 0.5$ V), whichever is higher.

LEAD TEMPERATURE SOLDERING REFLOW AND MSL (Note 2)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Temperature Soldering</td>
<td>T_{SLD}</td>
<td></td>
<td>240</td>
<td>ºC</td>
</tr>
<tr>
<td>Reflow (SMD styles only), Leaded, 60–150 s above 183, 30 s max at peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflow (SMD styles only), Free, 60–150 s above 217, 40 s max at peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Solder (through hole styles only), 12 sec max</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>MSL</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

2. Per IPC / JEDEC J-STD–020C.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions (Typical Value)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Pad Board (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction-to-Tab (ψ_{UL4})</td>
<td>15.7</td>
<td>C/W</td>
</tr>
<tr>
<td>Junction-to-Ambient (R_{UA}, I_{UA})</td>
<td>96</td>
<td>C/W</td>
</tr>
<tr>
<td>1° Pad Board (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction-to-Tab (ψ_{UL4})</td>
<td>18</td>
<td>C/W</td>
</tr>
<tr>
<td>Junction-to-Ambient (R_{UA}, I_{UA})</td>
<td>77</td>
<td>C/W</td>
</tr>
</tbody>
</table>

3. 1 oz. copper, 0.26 inch² (168 mm²) copper area, 0.062” thick FR4.
4. 1 oz. copper, 1.14 inch² (736 mm²) copper area, 0.062” thick FR4.
ELECTRICAL CHARACTERISTICS \((V_i = 13.5 \text{ V}; -40^\circ \text{C} < T_J < 150^\circ \text{C}; \text{unless otherwise noted.})\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage (5.0 V Version)</td>
<td>(V_Q)</td>
<td>5.0 mA < (I_Q) < 150 mA, 6 V < (V_I) < 28 V</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage (3.3 V Version)</td>
<td>(V_Q)</td>
<td>5.0 mA < (I_Q) < 150 mA, 4.5 V < (V_I) < 28 V</td>
<td>3.234</td>
<td>3.3</td>
<td>3.366</td>
<td>V</td>
</tr>
<tr>
<td>Output Current Limitation</td>
<td>(I_Q)</td>
<td>(V_Q = 90% V_{Q\text{Typ}})</td>
<td>150</td>
<td>200</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent Current (Sleep Mode) (I_Q = I_I - I_O)</td>
<td>(I_Q)</td>
<td>(V_{EN} = 0 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>Quiescent Current, (I_Q = I_I - I_O)</td>
<td>(I_Q)</td>
<td>(I_Q = 1.0 \text{ mA})</td>
<td>–</td>
<td>130</td>
<td>200</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>Quiescent Current, (I_Q = I_I - I_O)</td>
<td>(I_Q)</td>
<td>(I_Q = 150 \text{ mA})</td>
<td>–</td>
<td>10</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Dropout Voltage (5.0 V Version)</td>
<td>(V_{DR})</td>
<td>(I_Q = 150 \text{ mA}, V_{DR} = V_I - V_Q) (Note 5)</td>
<td>–</td>
<td>250</td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_{Q\text{LO}})</td>
<td>(I_Q = 5.0 \text{ mA to 150 mA})</td>
<td>–</td>
<td>3.0</td>
<td>20</td>
<td>mV</td>
</tr>
<tr>
<td>Line Regulation (5.0 V Version)</td>
<td>(\Delta V_Q)</td>
<td>(\Delta V_I = 6.0 \text{ V to 28 V, } I_Q = 5.0 \text{ mA})</td>
<td>–</td>
<td>10</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>Line Regulation (3.3 V Version)</td>
<td>(\Delta V_Q)</td>
<td>(\Delta V_I = 4.5 \text{ V to 28 V, } I_Q = 5.0 \text{ mA})</td>
<td>–</td>
<td>10</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>Power Supply Ripple Rejection</td>
<td>PSRR</td>
<td>(I_f = 100 \text{ Hz, } V_f = 0.5 V_{PP})</td>
<td>–</td>
<td>70</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Temperature Output Voltage Drift</td>
<td>(dV_{Q\text{DT}})</td>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>mV/K</td>
</tr>
<tr>
<td>ENABLE INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable Voltage, Output High</td>
<td>(V_{EN})</td>
<td>(V_Q \geq V_{Q\text{MIN}})</td>
<td>–</td>
<td>2.3</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>Enable Voltage, Output Low (Off)</td>
<td>(V_{EN})</td>
<td>(V_Q \leq 0.1 \text{ V})</td>
<td>1.8</td>
<td>2.2</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Enable Input Current</td>
<td>(I_{EN})</td>
<td>(V_{EN} = 5.0 \text{ V})</td>
<td>5.0</td>
<td>10</td>
<td>20</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>THERMAL SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Temperature*</td>
<td>(T_{SD})</td>
<td>–</td>
<td>150</td>
<td>–</td>
<td>210</td>
<td>°C</td>
</tr>
</tbody>
</table>

*Guaranteed by design, not tested in production.

5. Measured when the output voltage \(V_Q\) has dropped 100 mV from the nominal value obtained at \(V = 13.5 \text{ V}\).

Figure 2. Applications Circuit
Figure 3. Output Stability with Output Capacitor ESR

Figure 4. Output Voltage vs. Junction Temperature, 5.0 V Version

Figure 5. Output Voltage vs. Junction Temperature, 3.3 V Version

Figure 6. Quiescent Current vs. Input Voltage, 5.0 V Version

Figure 7. Quiescent Current vs. Input Voltage, 3.3 V Version
Figure 8. Output Voltage vs. Input Voltage, 5.0 V Version

Figure 9. Output Voltage vs. Input Voltage, 3.3 V Version

Figure 10. Input Current vs. Input Voltage, 5.0 V Version

Figure 11. Input Current vs. Input Voltage, 3.3 V Version

Figure 12. Dropout Voltage vs. Output Current (5.0 V Version only)

Figure 13. Maximum Output Current vs. Input Voltage
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 14. Quiescent Current vs. Output Current (Low Load), 5.0 V Version

Figure 15. Quiescent Current vs. Output Current (High Load), 5.0 V Version

Figure 16. Quiescent Current vs. Output Current (Low Load), 3.3 V Version

Figure 17. Quiescent Current vs. Output Current (High Load), 3.3 V Version
Circuit Description
The NCV4266 is an integrated low dropout regulator that provides a regulated voltage at 150 mA to the output. It is enabled with an input to the enable pin. The regulator voltage is provided by a PNP pass transistor controlled by an error amplifier with a bandgap reference, which gives it the lowest possible dropout voltage. The output current capability is 150 mA, and the base drive quiescent current is controlled to prevent oversaturation when the input voltage is low or when the output is overloaded. The regulator is protected by both current limit and thermal shutdown. Thermal shutdown occurs above 150°C to protect the IC during overloads and extreme ambient temperatures.

Regulator
The error amplifier compares the reference voltage to a sample of the output voltage (V_Q) and drives the base of a PNP series pass transistor via a buffer. The reference is a bandgap design to give it a temperature-stable output. Saturation control of the PNP is a function of the load current and input voltage. Oversaturation of the output power device is prevented, and quiescent current in the ground pin is minimized. See Figure 2, Test Circuit, for circuit element nomenclature illustration.

Regulator Stability Considerations
The input capacitors (C_I1 and C_I2) are necessary to stabilize the input impedance to avoid voltage line influences. Using a resistor of approximately 1.0 Ω in series with C_I2 can stop potential oscillations caused by stray inductance and capacitance.

The output capacitor helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (−25°C to −40°C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturer’s data sheet usually provides this information.

The value for the output capacitor C_Q, shown in Figure 2, should work for most applications; see also Figure 3 for output stability at various load and Output Capacitor ESR conditions. Stable region of ESR in Figure 3 shows ESR values at which the LDO output voltage does not have any permanent oscillations at any dynamic changes of output load current. Marginal ESR is the value at which the output voltage waving is fully damped during four periods after the load change and no oscillation is further observable.

ESR characteristics were measured with ceramic capacitors and additional series resistors to emulate ESR. Low duty cycle pulse load current technique has been used to maintain junction temperature close to ambient temperature.

Enable Input
The enable pin is used to turn the regulator on or off. By holding the pin down to a voltage less than 1.8 V, the output of the regulator will be turned off. When the voltage on the enable pin is greater than 2.8 V, the output of the regulator will be enabled to power its output to the regulated output voltage. The enable pin may be connected directly to the input pin to give constant enable to the output regulator.
Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 18) is:

\[
P_D(\text{max}) = [V_{I(\text{max})} - V_{Q(\text{min})}]I_{Q(\text{max})} + V_{I(\text{max})}I_q \tag{1}\]

where

- \(V_{I(\text{max})}\) is the maximum input voltage,
- \(V_{Q(\text{min})}\) is the minimum output voltage,
- \(I_{Q(\text{max})}\) is the maximum output current for the application,
- \(I_q\) is the quiescent current the regulator consumes at \(I_{Q(\text{max})}\).

Once the value of \(P_D(\text{max})\) is known, the maximum permissible value of \(R_{JA}\) can be calculated:

\[
R_{JA} = \frac{150°C - T_A}{P_D} \tag{2}\]

The value of \(R_{JA}\) can then be compared with those in the package section of the data sheet. Those packages with \(R_{JA}\) less than the calculated value in Equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

Heatsinks

A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of \(R_{JA}\):

\[
R_{JA} = R_{JC} + R_{CS} + R_{SA} \tag{3}\]

where

- \(R_{JC}\) is the junction-to-case thermal resistance,
- \(R_{CS}\) is the case-to-heatsink thermal resistance,
- \(R_{SA}\) is the heatsink-to-ambient thermal resistance.

\(R_{JC}\) appears in the package section of the data sheet. Like \(R_{JA}\), it too is a function of package type. \(R_{CS}\) and \(R_{SA}\) are functions of the package type, heatsink and the interface between them. These values appear in data sheets of heatsink manufacturers.

Thermal, mounting, and heatsinking considerations are discussed in the ON Semiconductor application note AN1040/D.

Figure 18. Single Output Regulator with Key Performance Parameters Labeled
Figure 19. R_{JA}/C_{0113} vs. Copper Spreader Area

COPPER HEAT SPREADER AREA (mm²)

$R_{\text{JA}},$ THERMAL RESISTANCE (°C/W)

<table>
<thead>
<tr>
<th>Copper Area</th>
<th>1 oz</th>
<th>2 oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 20. Single-Pulse Heating Curves

TIME (sec)

Cu Area 167 mm²

Cu Area 736 mm²

Figure 21. Duty Cycle for 1" Spreader Boards

PULSE WIDTH (sec)

50% Duty Cycle

20%

10%

5%

2%

1%

Non-normalized Response
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device*</th>
<th>Output Voltage</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV4266ST33T3G</td>
<td>3.3 V</td>
<td>SOT–223 (Pb–Free)</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td>NCV4266ST50T3G</td>
<td>5.0 V</td>
<td>SOT–223 (Pb–Free)</td>
<td>4000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

SOT-223 (TO-261)
CASE 318E-04
ISSUE R

DATE 02 OCT 2018

NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSSIONS OR GATE BURRS. MOLD FLASH, PROTRUSSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS b AND b1.

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>DIM</th>
<th>MIN.</th>
<th>NOM.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td>1.63</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.02</td>
<td>0.06</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.60</td>
<td>0.75</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>2.90</td>
<td>3.06</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0.24</td>
<td>0.29</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.30</td>
<td>6.50</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2.30</td>
<td></td>
<td>BSC</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.20</td>
<td></td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>1.50</td>
<td>1.75</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>6.70</td>
<td>7.00</td>
<td>7.30</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0°</td>
<td></td>
<td>10°</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED MOUNTING FOOTPRINT

© Semiconductor Components Industries, LLC, 2018
www.onsemi.com
SOT–223 (TO–261)
CASE 318E–04
ISSUE R

DATE 02 OCT 2018

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. Emitter
4. COLLECTOR

STYLE 2:
PIN 1. ANODE
2. CATHODE
3. NC
4. CATHODE

STYLE 3:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

STYLE 4:
PIN 1. SOURCE
2. DRAIN
3. GATE
4. SOURCE

STYLE 5:
PIN 1. DRAIN
2. GATE
3. SOURCE
4. DRAIN

STYLE 6:
PIN 1. RETURN
2. INPUT
3. OUTPUT
4. INPUT

STYLE 7:
PIN 1. ANODE 1
2. CATHODE
3. ANODE 2
4. CATHODE

STYLE 8:
CANCELLED

STYLE 9:
PIN 1. INPUT
2. GROUND
3. LOGIC
4. GROUND

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE

STYLE 11:
PIN 1. MT 1
2. MT 2
3. GATE
4. MT 2

STYLE 12:
PIN 1. INPUT
2. OUTPUT
3. NC
4. OUTPUT

STYLE 13:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

GENERIC
MARKING DIAGRAM*

AYW
XXXXX•

A = Assembly Location
Y = Year
W = Work Week
XXXXX = Specific Device Code
• = Pb–Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, “G” or microdot “•”, may or may not be present. Some products may not follow the Generic Marking.

© Semiconductor Components Industries, LLC, 2018 www.onsemi.com