Linear Voltage Regulator, LDO, High PSRR, 500 mA

The NCP4687 is a CMOS 500 mA LDO linear voltage regulator with high output voltage accuracy which features a high ripple rejection, low supply current with low dropout and chip enable with built-in low R_{DS(on)} NMOS transistor for fast output capacitor discharging as option. The device is composed of the voltage reference unit, error amplifier, resistor divider for output voltage sensing or precise output voltage setting. The current limit and thermal shutdown makes the device very suitable for industrial applications and portable communication equipments.

Features

- Operating Input Voltage Range: 2.5 V to 5.25 V
- Output Voltage Range: 0.7 to 3.6 V (available in 0.1 V steps)
- ±0.8% Output Voltage Accuracy @ V_{out} > 1.8 V
- Output noise : $40 \mu V_{rms}$
- Line Regulation: 0.02%/V
- Current Limit Circuit
- High PSRR: 75 dB at 1 kHz, 70 dB at 10 kHz
- Thermal Shutdown
- Available in SOT-23-5, SOT-89-5 and uDFN 1.2 x 1.2 mm Packages
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Home Appliances, Industrial Equipment
- DVB–T and DVB–S Receivers
- Car Audio Equipment, Navigation Systems
- Notebook Adaptors, LCD TVs, Cordless Phones and Private LAN Systems

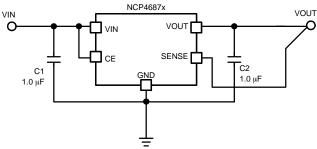
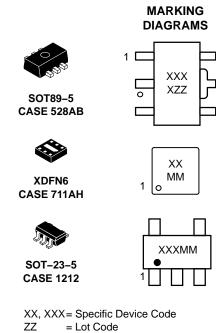
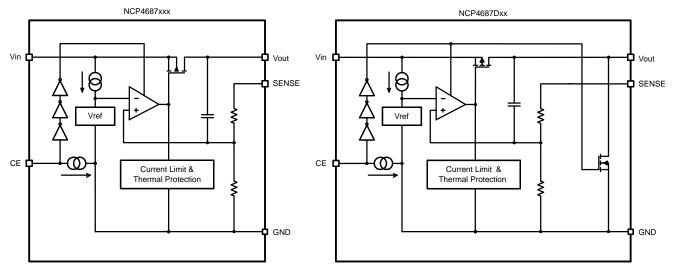
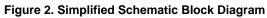



Figure 1. Typical Application Schematic

ON Semiconductor[™]


http://onsemi.com



= Date Code MM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet.

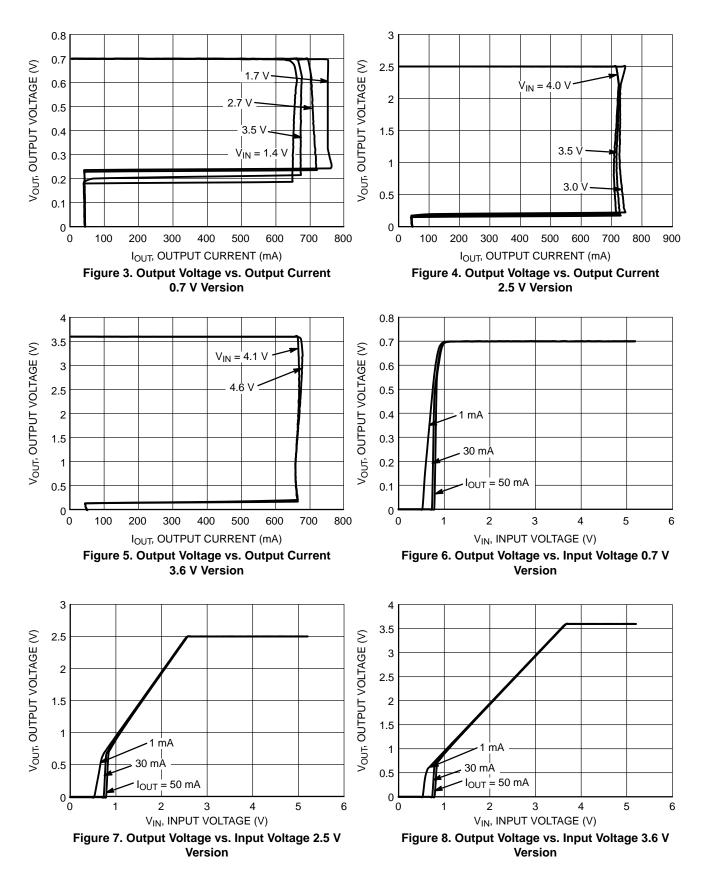
Pin No. SOT-23-5	Pin No. SOT-89-5	Pin No. DFN1212	Pin Name	Description
1	4	6	VIN	Input pin
2	2	3	GND	Ground pin
3	3	4	CE	Chip enable pin ("H" active)
4	1	2	SENSE	Output Voltage Sensing
5	5	1	VOUT	Output pin
		5	NC	Non Connected
		*EP	EP	Exposed Pad (leave floating or connect to GND)

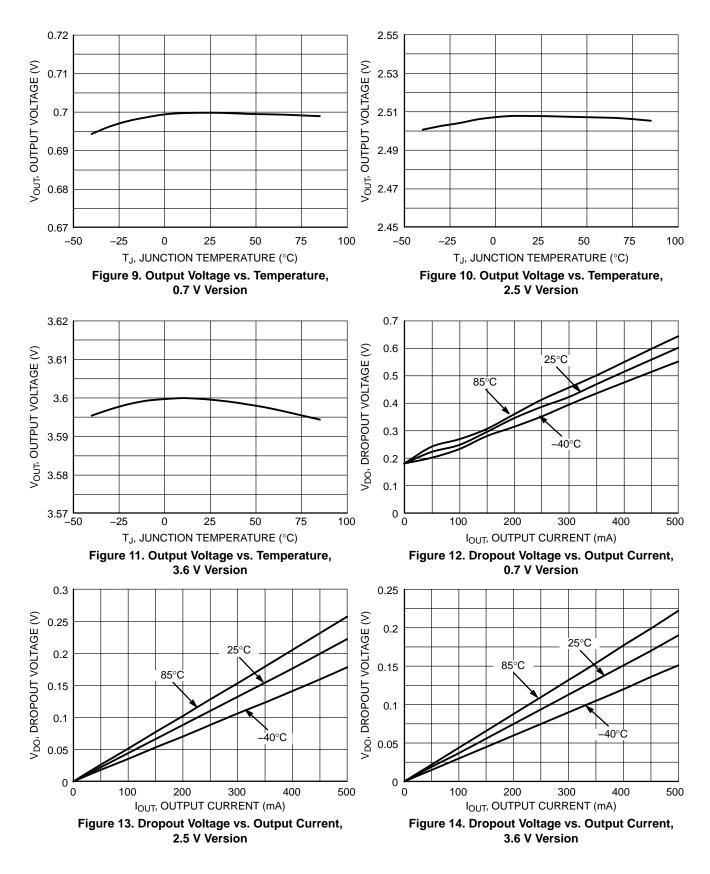
PIN FUNCTION DESCRIPTION

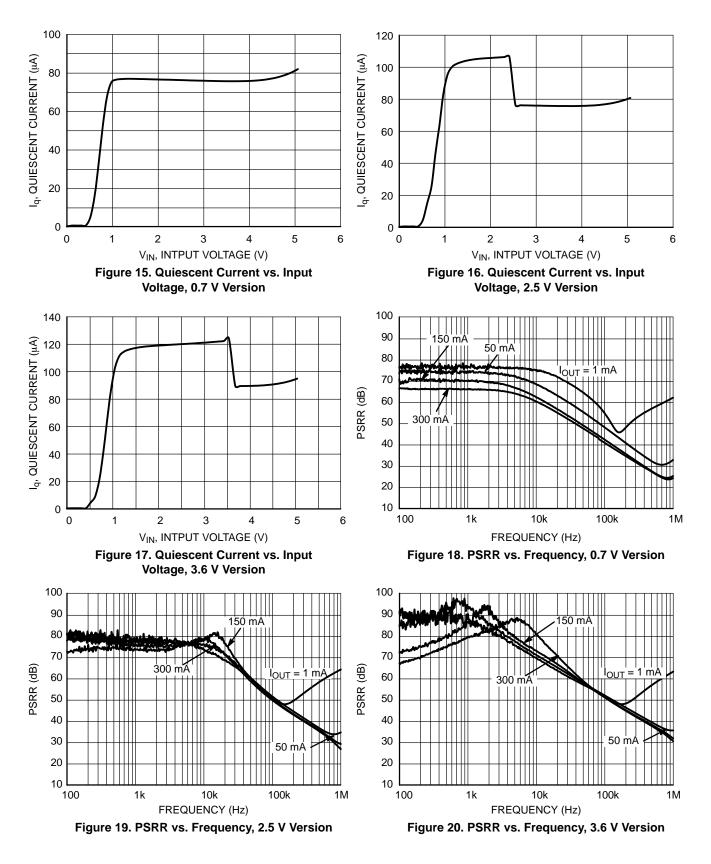
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{IN}	0 – 6	V
Output Voltage	Vout	–0.3 to VIN – 0.3	V
Chip Enable Input	VCE	-0.3 - 6	V
Power Dissipation SOT-23-5	PD	420	mW
Power Dissipation uDFN 1.2 x 1.2 mm		600	
Power Dissipation SOT-89-5		900	
Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{STG}	-55 to 125	°C
ESD Capability, Human Body Model (Note 1)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 1)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78

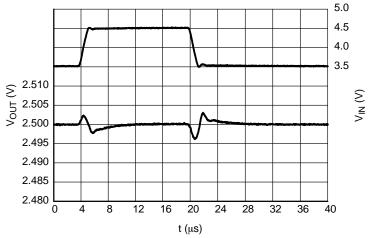

THERMAL CHARACTERISTICS

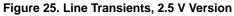

Rating	Symbol	Value	Unit
Thermal Characteristics, SOT–23–5 Thermal Resistance, Junction–to–Air	$R_{ ext{ hetaJA}}$	238	°C/W
Thermal Characteristics, uDFN 1.2x1.2 Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	167	°C/W
Thermal Characteristics, SOT–89–5 Thermal Resistance, Junction–to–Air	$R_{ hetaJA}$	111	°C/W

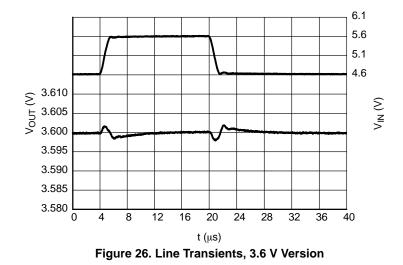

ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_A \le 85^{\circ}C$; $C_{IN} = C_{OUT} = 1.0 \ \mu\text{F}$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.

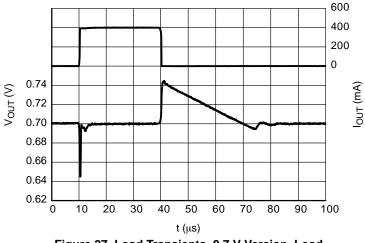
Parameter	Test Condi	Test Conditions		Min	Тур	Max	Unit
Operating Input Voltage	Vout ≤ 1.5 V Vout > 1.5 V		Vin	2.5		5.25	V
				Vouт + 1		5.25	
Output Voltage	Ta = 25°C, Vo⊔t > 1.8 V		Vout	x0.992		x1.008	V
	-40°C < Ta < 85°C, Vo∪τ > 1.8 V			x0.985		x1.015	V
	Ta = 25°C, Vou⊤ ≤ 1.8 V			-18		+18	mV
	-40°C < Ta < 85°C,	Vout ≤ 1.8 V		-55		+55	mV
Output Voltage Temp.	-40°C < Ta < 85°C,	Vout > 1.8 V			±30		ppm/°C
Coefficient	-40°C < Ta < 85°C,	Vout ≤ 1.8 V			±100		
Load Regulation	1 mA < louт ≤	500 mA	Load _{Reg}		1	20	mV
Line Regulation	Set Vout + 0.5 V <	Vin < 5.25 V	Line _{Reg}		0.02	0.1	%/V
Dropout Voltage	I _{OUT} = 500 mA	0.7 V ≤ V _{OUT} < 0.8 V	VDO		0.58	0.88	V
		0.8 V ≤ V _{OUT} < 0.9 V			0.52	0.80	
		0.9 V ≤ V _{OUT} < 1.0 V			0.45	0.70	
		1.0 V ≤ V _{OUT} < 1.2 V			0.42	0.64	
		1.2 V ≤ V _{OUT} < 1.4 V			0.35	0.53	
		1.4 V ≤ V _{OUT} < 1.8 V			0.31	0.48	
		1.8 V ≤ V _{OUT} < 2.1 V			0.27	0.41	
		2.1 V ≤ V _{OUT} < 2.5 V			0.25	0.38	
		2.5 V ≤ V _{OUT} < 3.0 V			0.23	0.34	
		3.0 V ≤ V _{OUT} < 3.6 V			0.22	0.32	
Output Current			Ιουτ	500			mA
Short Current Limit	V _{OUT} = 0	V	I _{SC}		50		mA
Quiescent Current	I _{OUT} = 0 mA	Vout > 1.5 V	lq		80	115	μA
		Vout ≤ 1.5 V			75		
Standby Current	V _{IN} = V _{IN max} , \	/ _{CE} = 0 V	Istb		0.1	1.0	μA
CE Pin Pull–Down Current		-	IPD		0.3	0.6	μA
CE Pin Threshold Voltage	CE Input Voltage "H"		Vсен	1.0		V _{IN}	V
-	CE Input Volt	VCEL			0.4		
Power Supply Rejection Ratio	$V_{OUT} \le 2.0 \text{ V} @ \text{Vin} = 3.0 \text{ V}, V_{OUT} > 2.0 \text{ V} @ \text{Vin} =$	f = 1 kHz	PSRR		75		dB
TO T	$= \text{Set } V_{\text{OUT}} + 1.0 \text{ V},$ $\Delta V_{\text{IN}_P\text{K}=P\text{K}} = 0.2 \text{ V},$ $I_{\text{OUT}} = 30 \text{ mA}$	f = 10 kHz			70		
Output Noise Voltage	I _{OUT} = 30 mA , f = 10 Hz to 100 kHz, V _{OUT} > 1.8 V		VNOISE		20 х Vouт		μV_{rms}
	I _{OUT} = 30 mA, f = 10 Hz to 1			40 х Vouт			
Thermal Shutdown / Hysteresis					165/65		°C
Auto-discharge N-MOS Resistance	VIN = 4.0 V, VCE = 0	.0 V (Note 2)	RDS(on)		60		Ω

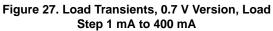
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2.

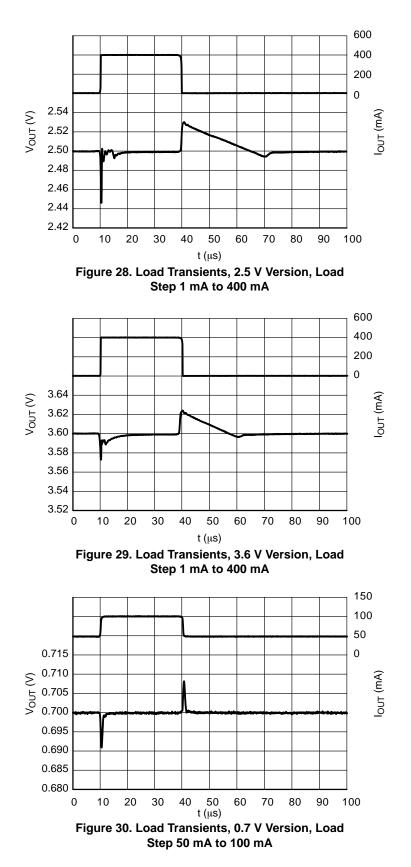


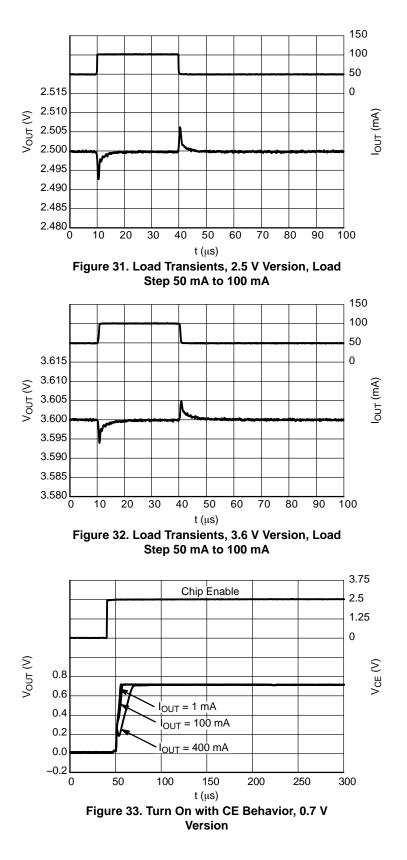


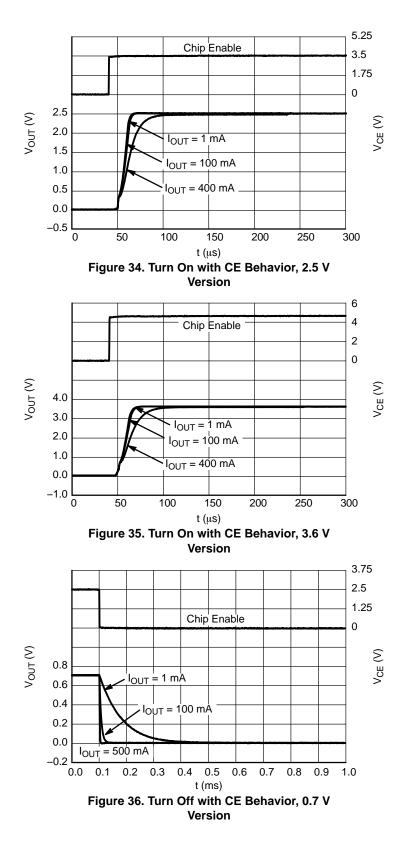

V_N (µV_{ms}/V<u>Hz</u>)

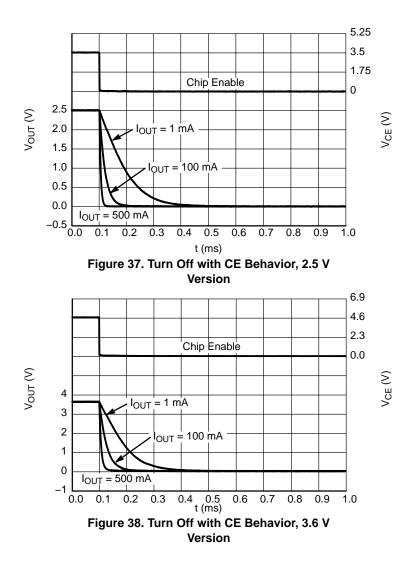

TYPICAL CHARACTERISTICS 2.0 4.0 1.8 3.5 1.6 3.0 1.4 V_N (µV_{ms/√Hz}) 2.5 1.2 1.0 2.0 0.8 1.5 0.6 1.0 0.4 0.5 0.2 0.0 0.0 10 10k 100k 10 100 10k 100 1k 1M 1k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 21. Output Noise vs. Frequency, 0.7 V Figure 22. Output Noise vs. Frequency, 2.5 V Version Version 4.5 4.0 3.5 V_N (μV_{rms}/√<u>Hz</u>) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 23. Output Noise vs. Frequency, 3.6 V Version 3.2 2.7 2.2 1.7 V_{IN} (V) 0.695 0.690 0.685 0.680 0 16 20 24 28 32 36 4 8 12 40

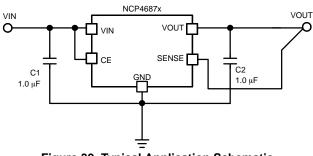

 $t (\mu s) \label{eq:taus}$ Figure 24. Line Transients, 0.7 V Version











APPLICATION INFORMATION

A typical application circuit for NCP4687 series is shown in the Figure 39.

Figure 39. Typical Application Schematic

Input Decoupling Capacitor (C1)

A 1.0 μ F ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4687 device. Higher values and lower ESR improves line transient response.

Output Decoupling Capacitor (C2)

A 1.0 μ F ceramic output decoupling capacitor is sufficient to achieve stable operation of the device. If tantalum capacitor is used, and its ESR is high, the loop oscillation may result. The capacitor should be connected as close as possible to the output and ground pin. Larger values and lower ESR improves dynamic parameters.

Enable Operation

The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down current source which assure off state of LDO in case the CE pin will stay floating. If the enable function is not needed connect CE pin to VIN.

The D version of the NCP4687 device includes a transistor between Vout and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode.

Thermal Consideration

As a power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications.

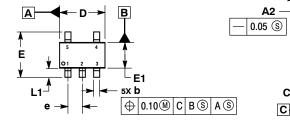
The IC includes internal thermal shutdown circuit that stops operation of regulator, if junction temperature is higher than 165°C. After that, when junction temperature decreases below 100°C, the operation of voltage regulator would restart. While high power dissipation condition is, the regulator starts and stops repeatedly and protects itself against overheating.

Sense Pin

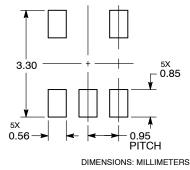
The SENSE pin improves significantly the load regulation. The connection resistance between the LDO and the load given by PCB parameters has reduced impact to load regulation. If possible, use wide PCB traces as short as possible.

ORDERING INFORMATION

Device	Marking	Nominal Output Voltage	Feature	Package	Shipping [†]
NCP4687DH12T1G	A12D	1.2 V	Auto discharge	SOT-89 (Pb-Free)	1000 / Tape & Reel
NCP4687DH15T1G	A15D	1.5 V	Auto discharge	SOT–89 (Pb–Free)	1000 / Tape & Reel
NCP4687DH18T1G	A18D	1.8 V	Auto discharge	SOT–89 (Pb–Free)	1000 / Tape & Reel
NCP4687DH25T1G	A25D	2.5 V	Auto discharge	SOT–89 (Pb–Free)	1000 / Tape & Reel
NCP4687DH33T1G	A33D	3.3 V	Auto discharge	SOT–89 (Pb–Free)	1000 / Tape & Reel
NCP4687DMX18TCG	9P	1.8 V	Auto discharge	XDFN6 (Pb–Free)	5000 / Tape & Reel
NCP4687DMX25TCG	9X	2.5 V	Auto discharge	XDFN6 (Pb–Free)	5000 / Tape & Reel
NCP4687DMX33TCG	0G	3.3 V	Auto discharge	XDFN6 (Pb–Free)	5000 / Tape & Reel
NCP4687DSN18T1G	J18	1.8 V	Auto discharge	SOT–23 (Pb–Free)	3000 / Tape & Reel
NCP4687DSN25T1G	J25	2.5 V	Auto discharge	SOT–23 (Pb–Free)	3000 / Tape & Reel
NCP4687DSN28T1G	J28	2.8 V	Auto discharge	SOT–23 (Pb–Free)	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

semi



SOT-23 5-LEAD **CASE 1212** ISSUE A

DATE 28 JAN 2011

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3 DATUM C IS THE SEATING PLANE.

	MILLIMETERS			
DIM	MIN	MAX		
Α		1.45		
A1	0.00	0.10		
A2	1.00 1.3			
b	0.30 0.50			
C	0.10 0.25			
D	2.70	3.10		
Е	2.50	3.10		
E1	1.50 1.80			
е	0.95	BSC		
L	0.20			
L1	0.45	0.75		

GENERIC **MARKING DIAGRAM***

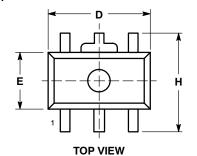
XXX = Specific Device Code

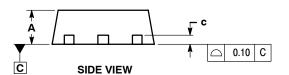
- Μ = Date Code
- = Pb-Free Package .

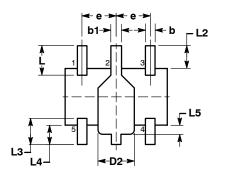
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

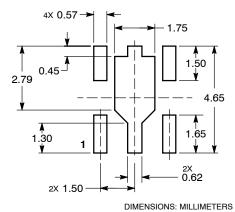
DOCUMENT NUMBER:	98ASH70518A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 5-LEAD		PAGE 1 OF 1		


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the subsiliaries and on other or subsiliaries in the onitied states and/of other countries. Or subsiliaries in the onitied states and/of other countries on subsiliaries in the onitied states and/of other countries. The subsiliaries in the onitied states and/of other countries of services in the onitied states and/of other countries. The subsiliaries in the onitied states and/of other countries of services and/of other countries. The subsiliaries in the onitied states and/of other countries of services and/of other countries. The one services are subsiliaries in the onitied states and/of other countries of services and/of other countries. The one services are subsiliaries in the onitied states and/of other countries of services are subsiliaries in the onitied states and/of other countries. The one services are subsiliaries in the onitied states and/of other countries of services are subsiliaries in the onitied states and/of other countries. The one services are subsiliaries in the onitied states and/of other countries of services are subsiliaries in the onitied states and/of other countries. The one services are subsiliaries in the onitied states and/of other countries of services are subsiliaries in the onitied states and/of other countries of services are subsiliaries in the onitied states and/of other countries of services are subsiliaries and services are subsiliaries in the onitied states and/of other countries of services are subsiliaries and services are subsiliaries in the onitied states and/of other countries of services are subsiliaries are subsiliaries and services are subsiliaries a special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.





SCALE 2:1



BOTTOM VIEW

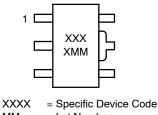
RECOMMENDED **MOUNTING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON47037E Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-89, 5 LEAD PAGE 1 OF 1

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-89, 5 LEAD CASE 528AB-01 **ISSUE O**


DATE 23 NOV 2009

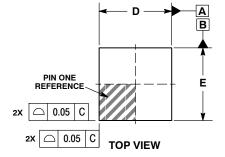
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

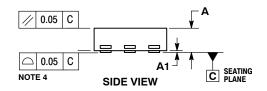
- 2.
- 3.
- 4.
- Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. LEAD THICKNESS INCLUDES LEAD FINISH. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEA-SURED AT DATUM PLANE C. 5.

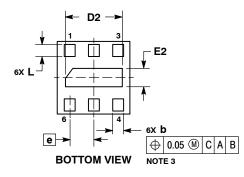
	MILLIMETERS			
DIM	MIN MAX			
Α	1.40	1.60		
b	0.32	0.52		
b1	0.37	0.57		
С	0.30	0.50		
D	4.40	4.60		
D2	1.40 1.80			
Е	2.40 2.60			
е	1.40 1.60			
н	4.25 4.45			
L	1.10	1.50		
L2	0.80	1.20		
L3	0.95	1.35		
L4	0.65 1.05			
L5	0.20 0.60			

GENERIC **MARKING DIAGRAM***

MM


= Lot Number = Pb-Free Package


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.



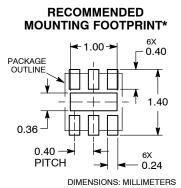
SCALE 4:1

XDFN6 1.20x1.20, 0.40P CASE 711AH ISSUE O

DATE 14 SEP 2011

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.

CONTROLLING DIMENSION: MILLING FIERS
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS.
 COPLANARITY APPLIES TO ALL OF THE TERMINAL


TERMIN	FERMINALS.				
	MILLIMETERS				
DIM	MIN MAX				
Α		0.40			
A1	0.00	0.05			
b	0.13	0.13 0.23			
D	1.20 BSC				
D2	0.89 0.99				
E	1.20	BSC			
E2	0.25	0.25 0.35			
е	0.40 BSC				
L	0.15 0.25				
L1	0.05	BSC			

GENERIC **MARKING DIAGRAM***

XX MM 0

XX = Specific Device Code MM = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON59261E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	XDFN6, 1.20 X 1.20, 0.40P		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>