NCP3012

Synchronous PWM Controller

The NCP3012 is a PWM device designed to operate from a wide input range and is capable of producing an output voltage as low as 0.8 V. The NCP3012 provides integrated gate drivers and an internally set 75 kHz oscillator. The NCP3012 has an externally compensated transconductance error amplifier with an internally fixed soft-start. The NCP3012 incorporates output voltage monitoring with a Power Good pin to indicate that the system is in regulation. The dual function SYNC pin synchronizes the device to a higher frequency (Slave Mode) or outputs a 180° out–of–phase clock signal to drive another NCP3012 (Master Mode). Protection features include lossless current limit and short circuit protection, output overvoltage and undervoltage protection, and input undervoltage lockout. The NCP3012 is available in a 14-pin TSSOP package.

Features
• Input Voltage Range from 4.7 V to 28 V
• 75 kHz Operation
• 0.8 V ± 1.0% Reference Voltage
• Buffered External +1.25 V Reference
• Current Limit and Short Circuit Protection
• Power Good
• Enable/Disable Pin
• Input Undervoltage Lockout
• External Synchronization
• Output Overvoltage and Undervoltage Protection
• This is a Pb–Free Device

Typical Applications
• Set Top Box
• Power Modules
• ASIC / DSP Power Supply

![Figure 1. Typical Application Circuit](image)

Figure 1. Typical Application Circuit

MARKING DIAGRAM

3012 ALYW 1
1 14

3012= Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
• = Pb–Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

VREF VCC
EN BST
NC HSDR
SYNC VSW
PG LSDR
COMP NC
FB GND
CO RFB1
Q1 LO
Q2

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP3012DTHBR2G</td>
<td>TSSOP–14 (Pb–Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Figure 2. NCP3012 Block Diagram
Pin Function Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
<td>The VREF pin is the output for a 1.25 V reference (1 mA max). A 100 kΩ resistor in parallel with a 1 μF ceramic capacitor must be connected from this pin to GND to ensure external reference stability.</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>The EN pin is the enable/disable input. A logic high on this pin enables the device. This pin has also an internal current source pull up. A 10 kΩ resistor should be connected in series with this pin if VEN is externally biased from a separate supply.</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>4</td>
<td>SYNC</td>
<td>The dual function SYNC pin synchronizes the device to a higher frequency (Slave Mode). Alternately, it outputs an 85 kHz clock signal with 180° of phase shift (Master Mode). Connect a 60 kΩ resistor from SYNC to GND to enable Master Mode. No resistor is required for Slave Mode.</td>
</tr>
<tr>
<td>5</td>
<td>PG</td>
<td>The Power Good pin is an open drain output that is low when the regulated output voltage is beyond the “Power Good” upper and lower thresholds. Otherwise, it is a high impedance pin.</td>
</tr>
<tr>
<td>6</td>
<td>COMP</td>
<td>The COMP pin connects to the output of the Operational Transconductance Amplifier (OTA) and the positive terminal of the PWM comparator. This pin is used in conjunction with the FB pin to compensate the voltage mode control feedback loop.</td>
</tr>
<tr>
<td>7</td>
<td>FB</td>
<td>The FB pin is connected to the inverting input of the OTA. This pin is used in conjunction with the COMP pin to compensate the voltage mode control feedback loop.</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>9</td>
<td>LSDR</td>
<td>The LSDR pin is connected to the output of the low side driver which connects to the gate of the low side N-FET. It is also used to set the threshold of the current limit circuit (ISET) by connecting a resistor from LSDR to GND.</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>11</td>
<td>VSW</td>
<td>The VSW pin is the return path for the high side driver. It is also used in conjunction with the VCC pin to sense current in the high side MOSFET.</td>
</tr>
<tr>
<td>12</td>
<td>HSDR</td>
<td>The HSDR pin is connected to the output of the high side driver which connects to the gate of the high side N-FET.</td>
</tr>
<tr>
<td>13</td>
<td>BST</td>
<td>The BST pin is the supply rail for the gate drivers. A capacitor must be connected between this pin and the VSW pin.</td>
</tr>
<tr>
<td>14</td>
<td>VCC</td>
<td>The VCC pin is the main voltage supply input. It is also used in conjunction with the VSW pin to sense current in the high side MOSFET.</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS
(measured vs. GND pin 8, unless otherwise noted)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>V_{MAX}</th>
<th>V_{MIN}</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Side Drive Boost Pin</td>
<td>BST</td>
<td>45</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Boost to V_{SW} differential voltage</td>
<td>BST−V_{SW}</td>
<td>13.2</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>COMP</td>
<td>COMP</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Enable</td>
<td>EN</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Feedback</td>
<td>FB</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>High–Side Driver Output</td>
<td>HSDR</td>
<td>40</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Low–Side Driver Output</td>
<td>LSDR</td>
<td>13.2</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Power Good</td>
<td>PG</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Synchronization</td>
<td>SYNC</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Main Supply Voltage Input</td>
<td>V_{CC}</td>
<td>40</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>External Reference</td>
<td>V_{REF}</td>
<td>5.5</td>
<td>−0.3</td>
<td>V</td>
</tr>
<tr>
<td>Switch Node Voltage</td>
<td>V_{SW}</td>
<td>40</td>
<td>−0.6</td>
<td>V</td>
</tr>
</tbody>
</table>

Maximum Average Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>I_{max}</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}, BST, HSDRV, LSDRV, V_{SW}, GND</td>
<td>130</td>
<td>mA</td>
</tr>
<tr>
<td>REF</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>SYNC</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Operating Junction Temperature Range (Note 1)

| T_J | −40 to +140 | °C |

Maximum Junction Temperature

| $T_{J(MAX)}$ | +150 | °C |

Storage Temperature Range

| T_{stg} | −55 to +150 | °C |

Thermal Characteristics (Note 2)

| R_{thJA} | 190 | °C/W |

Lead Temperature Soldering (10 sec): Reflow (SMD styles only) Pb–Free (Note 3)

| R_{FR} | 260 Peak | °C |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The maximum package power dissipation limit must not be exceeded.

$$P_D = \frac{T_{J(MAX)} - T_A}{R_{thJA}}$$

2. When mounted on minimum recommended FR–4 or G–10 board
3. 60–180 seconds minimum above 237°C.
ELECTRICAL CHARACTERISTICS

(−40°C < TJ < +125°C, VCC = 12 V, for min/max values unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>EN = 0 VCC = 12 V</td>
<td>4.7</td>
<td>28</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

SUPPLY CURRENT

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent Supply Current</td>
<td>EN = 0 VCC = 12 V</td>
<td>2.5</td>
<td>4.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>VCC Supply Current</td>
<td>VFB = 0.75 V, Switching, VCC = 4.7 V</td>
<td>5.8</td>
<td>8.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>VCC Supply Current</td>
<td>VFB = 0.75 V, Switching, VCC = 28 V</td>
<td>6.0</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

UNDER VOLTAGE LOCKOUT

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVLO Rising Threshold</td>
<td>VCC Rising Edge</td>
<td>3.8</td>
<td>4.3</td>
<td>4.7</td>
<td>V</td>
</tr>
<tr>
<td>UVLO Falling Threshold</td>
<td>VCC Falling Edge</td>
<td>3.5</td>
<td>4.0</td>
<td>4.3</td>
<td>V</td>
</tr>
</tbody>
</table>

OSCILLATOR

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator Frequency</td>
<td>TJ = +25°C, 4.7 V ≤ VCC ≤ 28 V</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>TJ = −40°C to +125°C, 4.7 V ≤ VCC ≤ 28 V</td>
<td>62</td>
<td>75</td>
<td>88</td>
<td>kHz</td>
</tr>
<tr>
<td>Ramp–Amplitude Voltage</td>
<td>Vpeak – Valley</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Ramp Valley Voltage</td>
<td></td>
<td>0.44</td>
<td>0.8</td>
<td>0.96</td>
<td>V</td>
</tr>
</tbody>
</table>

PWM

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Duty Cycle</td>
<td></td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td></td>
<td>82</td>
<td>86</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Soft Start Ramp Time</td>
<td>VFB = VCOMP</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>ms</td>
</tr>
</tbody>
</table>

EXTERNAL VOLTAGE REFERENCE

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREF Voltage</td>
<td>IREF = 1 mA</td>
<td>1.14</td>
<td>1.25</td>
<td>1.35</td>
<td>V</td>
</tr>
<tr>
<td>VREF Line Regulation</td>
<td>VCC = 4.7 V – 28 V</td>
<td>−1</td>
<td>–</td>
<td>+1</td>
<td>%</td>
</tr>
<tr>
<td>VREF Load Regulation</td>
<td>IREF = 0 mA to 1.5 mA</td>
<td>−2</td>
<td>−0.2</td>
<td>+2</td>
<td>%</td>
</tr>
<tr>
<td>Short Circuit Output Current</td>
<td>VREF = 0 V</td>
<td>4.5</td>
<td>5.7</td>
<td>7.0</td>
<td>mA</td>
</tr>
</tbody>
</table>

ENABLE

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Threshold High</td>
<td></td>
<td>–</td>
<td>–</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>Enable Threshold Low</td>
<td></td>
<td>1.0</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Enable Source Current</td>
<td></td>
<td>20</td>
<td>50</td>
<td>90</td>
<td>μA</td>
</tr>
</tbody>
</table>

POWER GOOD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Good High Threshold</td>
<td>VCC = 12 V</td>
<td>0.72</td>
<td>0.89</td>
<td>1.06</td>
<td>V</td>
</tr>
<tr>
<td>Power Good Low Threshold</td>
<td>VCC = 12 V</td>
<td>0.65</td>
<td>0.71</td>
<td>0.75</td>
<td>V</td>
</tr>
<tr>
<td>Power Good Low Voltage</td>
<td>VCC = 12 V, IPG = 4 mA</td>
<td>0.13</td>
<td>0.22</td>
<td>0.35</td>
<td>V</td>
</tr>
</tbody>
</table>

SYNC

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY NC Input High Threshold</td>
<td></td>
<td>–</td>
<td>–</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>SY NC Output High</td>
<td>10 μA load</td>
<td>–</td>
<td>5.0</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>SY NC Output Low</td>
<td></td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>mV</td>
</tr>
<tr>
<td>Phase Delay</td>
<td>(Note 4)</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td>°</td>
</tr>
<tr>
<td>SY NC Drive Current (Sourcing)</td>
<td></td>
<td>–</td>
<td>1.6</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Master Threshold Current</td>
<td></td>
<td>5.0</td>
<td>14.4</td>
<td>25</td>
<td>μA</td>
</tr>
<tr>
<td>Master Frequency</td>
<td></td>
<td>70</td>
<td>85</td>
<td>100</td>
<td>kHz</td>
</tr>
</tbody>
</table>

4. Guaranteed by design.
5. The voltage sensed across the high side MOSFET during conduction.
6. This assumes 100 pF capacitance to ground on the COMP pin and a typical internal Ro of > 10 MΩ.
7. This is not a protection feature.

http://onsemi.com
ELECTRICAL CHARACTERISTICS

\((-40 ^\circ C < T_J < +125 ^\circ C, \ V_{CC} = 12 \ V, \ for\ min/max\ values\ unless\ otherwise\ noted)\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR AMPLIFIER (GM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transconductance</td>
<td></td>
<td>0.9</td>
<td>1.33</td>
<td>1.9</td>
<td>mS</td>
</tr>
<tr>
<td>Open Loop dc Gain</td>
<td>(Notes 4 and 6)</td>
<td>–</td>
<td>70</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Output Source Current</td>
<td></td>
<td>45</td>
<td>70</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Output Sink Current</td>
<td></td>
<td>45</td>
<td>70</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>FB Input Bias Current</td>
<td></td>
<td>–</td>
<td>0.5</td>
<td>500</td>
<td>nA</td>
</tr>
<tr>
<td>Feedback Voltage</td>
<td>(T_J = 25^\circ C)</td>
<td>0.792</td>
<td>0.8</td>
<td>0.808</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(-40^\circ C < T_J < +125^\circ C,\ 4.7 V < V_IN < 28 V)</td>
<td>0.788</td>
<td>0.8</td>
<td>0.812</td>
<td>V</td>
</tr>
<tr>
<td>COMP High Voltage</td>
<td>(V_{FB} = 0.75 \ V)</td>
<td>4.0</td>
<td>4.4</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>COMP Low Voltage</td>
<td>(V_{FB} = 0.85 \ V)</td>
<td>–</td>
<td>60</td>
<td>–</td>
<td>mV</td>
</tr>
<tr>
<td>OUTPUT VOLTAGE FAULTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback OOV Threshold</td>
<td></td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>Feedback OUV Threshold</td>
<td></td>
<td>0.55</td>
<td>0.59</td>
<td>0.65</td>
<td>V</td>
</tr>
<tr>
<td>OVER CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISET Source Current</td>
<td></td>
<td>7.0</td>
<td>14</td>
<td>18</td>
<td>μA</td>
</tr>
<tr>
<td>Current Limit Set Voltage (Note 5)</td>
<td>(R_{SET} = 22.2 \ k\Omega)</td>
<td>140</td>
<td>240</td>
<td>360</td>
<td>mV</td>
</tr>
<tr>
<td>GATE DRIVERS AND BOOST CLAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSDRV Pullup Resistance</td>
<td>(V_{CC} = 8 \ V\ \text{and} \ V_{BST} = 7.5 \ V)</td>
<td>4.0</td>
<td>10.5</td>
<td>20</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>(V_{SW} = \text{GND}, \ 100 \ mA \text{out of HSDR pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSDRV Pulldown Resistance</td>
<td>(V_{CC} = 8 \ V\ \text{and} \ V_{BST} = 7.5 \ V)</td>
<td>2.0</td>
<td>5.0</td>
<td>11.5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>(V_{SW} = \text{GND}, \ 100 \ mA \text{into HSDR pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSDRV Pullup Resistance</td>
<td>(V_{CC} = 8 \ V\ \text{and} \ V_{BST} = 7.5 \ V)</td>
<td>3.0</td>
<td>8.9</td>
<td>16</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>(V_{SW} = \text{GND}, \ 100 \ mA \text{out of LSDR pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSDRV Pulldown Resistance</td>
<td>(V_{CC} = 8 \ V\ \text{and} \ V_{BST} = 7.5 \ V)</td>
<td>1.0</td>
<td>2.8</td>
<td>6.0</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>(V_{SW} = \text{GND}, \ 100 \ mA \text{into LSDR pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSDRV falling to LSDRV Rising Delay</td>
<td>(V_{CC}\ \text{and} \ V_{BST} = 8 \ V)</td>
<td>50</td>
<td>85</td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td>LSRDVR Falling to HSDRV Rising Delay</td>
<td>(V_{CC}\ \text{and} \ V_{BST} = 8 \ V)</td>
<td>60</td>
<td>85</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>Boost Clamp Voltage</td>
<td>(V_{IN} = 12 \ V, \ V_{SW} = \text{GND}, \ V_{COMP} = 1.3 \ V)</td>
<td>5.5</td>
<td>7.5</td>
<td>9.6</td>
<td>V</td>
</tr>
</tbody>
</table>

THERMAL SHUTDOWN

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Shutdown</td>
<td>(Notes 4 and 7)</td>
<td>–</td>
<td>150</td>
<td>–</td>
<td>°C</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>(Notes 4 and 7)</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>°C</td>
</tr>
</tbody>
</table>

4. Guaranteed by design.
5. The voltage sensed across the high side MOSFET during conduction.
6. This assumes 100 pF capacitance to ground on the COMP Pin and a typical internal \(R_o\) of > 10 MΩ.
7. This is not a protection feature.
NCP3012

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Feedback Reference Voltage vs. Input Voltage and Temperature

Figure 4. Switching Frequency vs. Input Voltage and Temperature

Figure 5. Supply Current vs. Input Voltage and Temperature

Figure 6. Supply Current (Disabled) vs. Input Voltage and Temperature

Figure 7. Transconductance vs. Input Voltage and Temperature

Figure 8. Input Undervoltage Lockout vs. Temperature

http://onsemi.com
Figure 9. Output Voltage Thresholds vs. Input Voltage and Temperature

Figure 10. Power Good Output Low Voltage vs. Input Voltage and Temperature

Figure 11. Enable Threshold vs. Input Voltage and Temperature

Figure 12. Enable Pullup Current vs. Input Voltage and Temperature

Figure 13. SYNC Threshold vs. Input Voltage and Temperature

Figure 14. Valley Voltage vs. Input Voltage and Temperature
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. External Reference Voltage vs. Input Voltage and Temperature

Figure 16. External Reference Voltage vs. Input Voltage and Temperature

Figure 17. Current Limit Set Current vs. Temperature
DETAILED DESCRIPTION

OVERVIEW

The NCP3012 operates as a 75 kHz, voltage−mode, pulse−width−modulated, (PWM) synchronous buck converter. It drives high−side and low−side N−channel power MOSFETs. The NCP3012 incorporates an internal boost circuit consisting of a boost Clamp and boost diode to provide supply voltage for the high side MOSFET Gate driver. The NCP3012 also integrates several protection features including input undervoltage lockout (UVLO), output undervoltage (OUV), output overvoltage (OOV), adjustable high−side current limit (ISET and I_LIM), and thermal shutdown (TSD). The NCP3012 includes a Power Good (PG) open drain output which flags out of regulation conditions.

The operational transconductance amplifier (OTA) provides a high gain error signal which is compared to the internal ramp signal using the PWM comparator. This results in a voltage mode PWM feedback stage. The PWM signal is sent to the internal gate drivers to modulate MOSFET on and off times. The gate driver stage incorporates symmetrical fixed non−overlap time between the high−side and low−side MOSFET gate drives.

The NCP3012 has a dual function Master/Slave SYNC pin In Slave mode, the NCP3012 synchronizes to an external clock signal. In Master mode, the NCP3012 can output a phase shifted clock signal to drive another master slave equipped power stage to provide a 180° switching relationship between the power stages. This can help to reduce the required input filter capacitance in multi−stage power converters.

The external 1.25 V reference voltage (VREF) is provided for system level use. It remains active even when the NCP3012 is disabled.

POR and UVLO

The device contains an internal Power On Reset (POR) and input Undervoltage Lockout (UVLO) that inhibits the internal logic and the output stage from operating until V_CC reaches their respective predefined voltage levels. The internal logic takes approximately 50 μs to check the SYNC pin and determine if the device is in Master mode or Slave mode once the voltage at V_CC exceeds the rising UVLO threshold. The device remains in Standby if enable is not asserted following the 50 μs time period.

Enable/Disable

The device has an enable pin (EN) with internal 50 μA pullup current. This gives the user the option of driving EN with a push−pull or open−drain/collector enable signal. When driving EN with an external logic supply a 10 kΩ series current limiting resistor must be placed in series with EN. See Figure 18. The maximum enable threshold is 3.4 V. If no external drive voltage is available, the internal pullup can be used to enable the device, and an open drain/collector input, such as a MOSFET or BJT can be used to disable the device. A capacitor connected between EN and ground can be used with the internal pullup current source to provide a fixed delay to turn−on and turn off. See Equation 1.

\[
C_{EN_DLY} = \frac{I_{PU} \times T_{EN_DLY}}{V_{EN_TH}}
\]
(eq. 1)

C_{EN_DLY} = Delay Capacitance (F)
I_{PU} = Pullup Current
V_{EN_TH} = Enable Input High Threshold Voltage
T_{EN_DLY} = Desired Delay Time

Figure 18. Enable Circuits: Push−Pull, Open−Drain, or Open−Collector

http://onsemi.com

10
Startup and Shutdown

Once enable is asserted the device begins its startup process. Closed-loop soft-start begins after a 400 µs delay wherein the boost capacitor is charged, and the current limit threshold is set. During the 400 µs delay the OTA output is set to just below the valley voltage of the internal ramp. This is done to reduce delays and to ensure a consistent pre soft-start condition. The device increases the internal reference from 0 V to 0.8 V in 32 discrete steps while maintaining closed loop regulation at each step. Some overshoot may be evident at the start of each step depending on the voltage loop phase margin and bandwidth. See Figure 19. The total soft-start time is 14 ms.

The soft-stop process begins once the EN pin voltage goes below the input low threshold. Soft-stop decreases the internal reference from 0.8 V − 0 V in 32 steps as with Soft-Start. Soft-Stop finishes with one “last” high side gate pulse at half the period of the prior pulse. This helps ensure positive inductor current following turn off at light loads, which prevents negative output voltage.

Enable low during Soft-Start will result in Soft-Stop down counting from that step. Likewise, Enable high during Soft-Stop will result in Soft-Start up counting from that step.

![Figure 19. Soft-Start Details](image-url)
Master/Slave Synchronization

The SYNC pin performs two functions. The first function is to identify if the device is a master or a slave. The second function is to either synchronize to an external clock (Slave Mode) or provide an external clock that is shifted by 180° from the high side switch (Master Mode). The typical application circuit for this is shown in Figure 20.

Upon initial power up, the device determines if it is a Master or Slave by applying 1.25 V to the SYNC pin and determining whether the current draw from the pin is greater than the Master Threshold Current (ISYNCTRIP). If ISYNCTRIP is exceeded then the device enters master mode. If the current is less than ISYNCTRIP the device enters slave mode. Once identified as a Master, the device switching frequency is increased by 15%. See Equation 2.

\[
R_{Master} = \frac{SYNC_{ref}}{ISYNCTRIP} \quad \text{(eq. 2)}
\]

- \(R_{Master}\) = Master Select Resistor (\(\Omega\))
- \(SYNC_{ref}\) = Sync Reference Voltage (V)
- \(ISYNCTRIP\) = Master Threshold Current (A)

Figure 20. Master Slave Typical Application

Figure 21. Master Slave Typical Waveforms
The master slave identification begins when input voltage is applied prior to POR. Upon application of input voltage, the device waits for input pulses for a minimum of 40 μs as shown in Figure 21. During the pulse detection period if concurrent edges occur on the SYNC pin from an external source, the device enters slave mode and skips the master detection sequence. The device will remain in the detected state until power is cycled.

The equation for calculating the remaining ramp height is shown below:

$$V_{RAMP} = V_{RAMP_{typ}} \frac{F_{nom}}{F_{SYNC}} \frac{75 \text{ kHz}}{100 \text{ kHz}} = 1.125 \text{ V}$$

(eq. 3)

OOV, OUV, and Power Good

The output voltage of the buck converter is monitored at the Feedback pin of the output power stage. Four comparators are placed on the feedback node of the OTA to monitor the operating window of the feedback voltage as shown in Figures 23 and 24. All comparator outputs are ignored during the soft-start sequence as soft-start is regulated by the OTA and false trips would be generated. Further, the Power Good pin is held low until the comparators are evaluated. After the soft-start period has ended, if the feedback is below the reference voltage of comparator 4 (0.6 < V\text{FB}), the output is considered “undervoltage,” the device will initiate a restart, and the Power Good pin remains low with a 55 Ω pulldown resistance. If the voltage at the Feedback pin is between the reference voltages of comparator 4 and comparator 3 (0.60 < V\text{FB} < 0.72), then the output voltage is considered “power not good low” and the Power Good pin remains low. When the Feedback pin voltage rises between the reference voltages of comparator 3 and comparator 2 (0.72 < V\text{FB} < 0.88), then the output voltage is considered “power good” and the Power Good pin is released. If the voltage at the Feedback pin is between the reference voltages of comparator 2 and comparator 1 (0.88 < V\text{FB} < 1.00), the output voltage is considered “power not good high” and the power good pin is pulled low with a 55 Ω pulldown resistance. Finally, if the feedback voltage is greater than comparator 1 (1.0 < V\text{FB}), the output voltage is considered “overvoltage,” the Power Good pin will remain low, and the device will latch off. To clear a latch fault, input voltage must be recycled. Graphical representation of the OOV, OUV, and Power Good pin functionality is shown in Figures 25 and 26.
Figure 23. OOV, OUV, and Power Good Circuit Diagram

Figure 24. OOV, OUV, and Power Good Window Diagram
CURRENT LIMIT AND CURRENT LIMIT SET

Overview

The NCP3012 uses the voltage drop across the High Side MOSFET during the on time to sense inductor current. The

ILimit block consists of a voltage comparator circuit which compares the differential voltage across the VCC Pin and the VSW Pin with a resistor settable voltage reference. The sense portion of the circuit is only active while the HS MOSFET is turned ON.

CONTROL

Ilim Out

VCC

VSW

HS

V

LDR

Itrip Ref

13 uA

Ilimit

Vset

Switch

Cap

DAC / COUNTER

Iset

Figure 27. Iset / ILimit Block Diagram

Current Limit Set

The ILimit comparator reference is set during the startup sequence by forcing a typically 13 μA current through the low side gate drive resistor. The gate drive output will rise to a voltage level shown in the equation below:

\[V_{set} = I_{set} \times R_{set} \quad (eq. 4) \]

Where \(I_{set} \) is 13 μA and \(R_{set} \) is the gate to source resistor on the low side MOSFET.

This resistor is normally installed to prevent MOSFET leakage from causing unwanted turn on of the low side MOSFET. In this case, the resistor is also used to set the ILimit trip level reference through the ILimit DAC. The Iset process takes approximately 350 μs to complete prior to Soft–Start stepping. The scaled voltage level across the Iset resistor is converted to a 6 bit digital value and stored as the trip value. The binary ILimit value is scaled and converted to the analog ILimit reference voltage through a DAC counter. The DAC has 63 steps in 6.51 mV increments equating to a maximum sense voltage of 403 mV. During the Iset period prior to Soft–Start, the DAC counter increments the reference on the Iset comparator until it crosses the Vset voltage and holds the DAC reference output to that count value. This voltage is translated to the ILimit comparator during the ISense portion of the switching cycle through the switch cap circuit. See Figure 27. Exceeding the maximum sense voltage results in no current limit. Steps 0 to 10 result in an effective current limit of 0 mV.

Current Sense Cycle

Figure 28 shows how the current is sampled as it relates to the switching cycle. Current level 1 in Figure 28 represents a condition that will not cause a fault. Current level 2 represents a condition that will cause a fault. The sense circuit is allowed to operate below the 3/4 point of a given switching cycle. A given switching cycle’s 3/4 Ton time is defined by the prior cycle’s Ton and is quantized in 10 ns steps. A fault occurs if the sensed MOSFET voltage exceeds the DAC reference within the 3/4 time window of the switching cycle.
Soft-Start Current limit
During soft-start the ISET value is doubled to allow for inrush current to charge the output capacitance. The DAC reference is set back to its normal value after soft-start has completed.

VSW Ringing
The ILimit block can lose accuracy if there is excessive VSW voltage ringing that extends beyond the 1/2 point of the high-side transistor on-time. Proper snubber design and keeping the ratio of ripple current and load current in the 10–30% range can help alleviate this as well.

Current Limit
A current limit trip results in completion of one switching cycle and subsequently half of another cycle Ton to account for negative inductor current that might have caused negative potentials on the output. Subsequently the power MOSFETs are both turned off and a 4 soft-start time period wait passes before another soft-start cycle is attempted.

Iave vs Trip Point
The average load trip current versus RSET value is shown the equation below:

\[
I_{\text{aveTRIP}} = \frac{I_{\text{set}} \times R_{\text{set}}}{R_{\text{DS(on)}}} - \frac{1}{4} \left[\frac{V_{\text{IN}} - V_{\text{OUT}}}{L} \times \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \frac{1}{F_{\text{SW}}} \right]
\]

(eq. 5)

Where:
L = Inductance (H)
ISET = 13 μA
RSET = Gate to Source Resistance (Ω)
RDS(on) = On Resistance of the HS MOSFET (Ω)
VIN = Input Voltage (V)
VOUT = Output Voltage (V)
FSW = Switching Frequency (Hz)

Boost Clamp Functionality
The boost circuit requires an external capacitor connected between the BST and VSW pins to store charge for supplying the high and low-side gate driver voltage. This clamp circuit limits the driver voltage to typically 7.5 V when VIN > 9 V, otherwise this internal regulator is in dropout and typically VIN ~ 1.25 V.

The boost circuit regulates the gate driver output voltage and acts as a switching diode. A simplified diagram of the boost circuit is shown in Figure 29. While the switch node is grounded, the sampling circuit samples the voltage at the boost pin, and regulates the boost capacitor voltage. The sampling circuit stores the boost voltage while the VSW is high and the linear regulator output transistor is reversed biased.

Figure 29. Boost Circuit
Reduced sampling time occurs at high duty cycles where the low side MOSFET is off for the majority of the switching period. Reduced sampling time causes errors in the regulated voltage on the boost pin. High duty cycle / input voltage induced sampling errors can result in increased boost ripple voltage or higher than desired DC boost voltage. Figure 30 outlines all operating regions.

The recommended operating conditions are shown in Region 1 (Green) where a 0.1 μF, 25 V ceramic capacitor can be placed on the boost pin without causing damage to the device or MOSFETS. Larger boost ripple voltage occurring over several switching cycles is shown in Region 2 (Yellow).

The boost ripple frequency is dependent on the output capacitance selected. The ripple voltage will not damage the device or ±12 V gate rated MOSFETs.

Conditions where maximum boost ripple voltage could damage the device or ±12 V gate rated MOSFETs can be seen in Region 3 (Orange). Placing a boost capacitor that is no greater than 10X the input capacitance of the high side MOSFET on the boost pin limits the maximum boost voltage < 12 V. The typical drive waveforms for Regions 1, 2 and 3 (green, yellow, and orange) regions of Figure 30 are shown in Figure 31.

Figure 30. Safe Operating Area for Boost Voltage with a 0.1 μF Capacitor
Figure 31. Typical Waveforms for Region 1 (top), Region 2 (middle), and Region 3 (bottom)

To illustrate, a 0.1 μF boost capacitor operating at > 80% duty cycle and > 22.5 V input voltage will exceed the specifications for the driver supply voltage. See Figure 32.
Inductor Selection

When selecting the inductor, it is important to know the input and output requirements. Some example conditions are listed below to assist in the process.

Table 1. DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (VIN)</td>
<td>9 V to 18 V</td>
</tr>
<tr>
<td>Nominal Input Voltage (VIN)</td>
<td>12 V</td>
</tr>
<tr>
<td>Output Voltage (VOUT)</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Input ripple voltage (VINRIPPLE)</td>
<td>300 mV</td>
</tr>
<tr>
<td>Output ripple voltage (VOUTRIPPLE)</td>
<td>50 mV</td>
</tr>
<tr>
<td>Output current rating (IOUT)</td>
<td>8 A</td>
</tr>
<tr>
<td>Operating frequency (Fsw)</td>
<td>75 kHz</td>
</tr>
</tbody>
</table>

A buck converter produces input voltage (VIN) pulses that are LC filtered to produce a lower dc output voltage (VOUT). The output voltage can be changed by modifying the on time relative to the switching period (T) or switching frequency. The ratio of high side switch on time to the switching period is called duty cycle (D). Duty cycle can also be calculated using VOUT, VIN, the low side switch voltage drop VLSD, and the High side switch voltage drop VHSD.

\[F = \frac{1}{T} \quad \text{(eq. 6)} \]

\[D = \frac{T_{ON}}{T} (1 - D) = \frac{T_{OFF}}{T} \quad \text{(eq. 7)} \]

\[D = \frac{V_{OUT} + V_{LSD}}{V_{IN} - V_{HSD} + V_{LSD}} = D = \frac{V_{OUT}}{V_{IN}} \quad \text{(eq. 8)} \]

\[\rightarrow 27.5\% = \frac{3.3}{12} \]

The ratio of ripple current to maximum output current simplifies the equations used for inductor selection. The formula for this is given in Equation 9.

\[ra = \frac{\Delta I}{I_{OUT}} \quad \text{(eq. 9)} \]

The designer should employ a rule of thumb where the percentage of ripple current in the inductor lies between 10% and 40%. When using ceramic output capacitors the ripple current can be greater thus a user might select a higher ripple current, but when using electrolytic capacitors a lower ripple current will result in lower output ripple. Now, acceptable values of inductance for a design can be calculated using Equation 10.

\[L = \frac{V_{OUT}}{I_{OUT} \cdot ra \cdot F_{SW}} \cdot (1 - D) \rightarrow 22 \mu H \quad \text{(eq. 10)} \]

\[= \frac{3.3}{8 \cdot 25\% \cdot 75 kHz} \cdot (1 - 27.5\%) \]

The relationship between ra and L for this design example is shown in Figure 33.
space

A minimum inductor value is particularly important in output inductor for a buck regulator is given by Equation 13. From a mechanical perspective, smaller inductor values generally correspond to smaller physical size. Since the inductor is often one of the largest components in the regulation system, it is important to minimize the volume while maintaining performance.

Input Capacitor Selection

The input capacitor has to sustain the ripple current produced during the on time of the upper MOSFET, so it must have a low ESR to minimize the losses. The RMS value of this ripple is:

$$I_{\text{RMS}} = I_{\text{OUT}} \cdot \sqrt{1 + \frac{ra^2}{12}} \Rightarrow 8.02 \, \text{A}$$ \hspace{1cm} (eq. 11)

$$I_{\text{PK}} = I_{\text{OUT}} \cdot \left(1 + \frac{ra}{2}\right) \Rightarrow 9.0 \, \text{A} = 8 \, \text{A} \cdot \left(1 + \frac{0.25}{2}\right)$$ \hspace{1cm} (eq. 12)

An inductor for this example would be around 3.3 \(\mu \text{H} \) and should support an rms current of 8.02 A and a peak current of 9.0 A.

The final selection of an output inductor has both mechanical and electrical considerations. From a mechanical perspective, smaller inductor values generally correspond to smaller physical size. Since the inductor is often one of the largest components in the regulation system, a minimum inductor value is particularly important in space-constrained applications. From an electrical perspective, the maximum current slew rate through the output inductor for a buck regulator is given by Equation 13.

$$\text{SlewRate}_{\text{OUT}} = \frac{V_{\text{IN}} - V_{\text{OUT}}}{L_{\text{OUT}}} \Rightarrow 0.4 \, \text{A/\mu}\text{s} = \frac{12 \, \text{V} - 3.3 \, \text{V}}{22 \, \mu\text{H}}$$ \hspace{1cm} (eq. 13)

This equation implies that larger inductor values limit the regulator’s ability to slew current through the output inductor in response to output load transients. Consequently, output capacitors must supply the load current until the inductor current reaches the output load current level. This results in larger values of output capacitance to maintain tight output voltage regulation. In contrast, smaller values of inductance increase the regulator’s maximum achievable slew rate and decrease the necessary capacitance, at the expense of higher ripple current. The peak-to-peak ripple current for the NCP3012 is given by the following equation:

$$I_{pp} = \frac{V_{\text{OUT}}(1 - D)}{L_{\text{OUT}} \cdot F_{\text{SW}}}$$ \hspace{1cm} (eq. 14)

I_{pp} is the peak to peak current of the inductor. From this equation it is clear that the ripple current increases as \(L_{\text{OUT}} \) decreases, emphasizing the trade-off between dynamic response and ripple current.

The power dissipation of an inductor consists of both copper and core losses. The copper losses can be further categorized into dc losses and ac losses. A good first order approximation of the inductor losses can be made using the DC resistance as they usually contribute to 90% of the losses of the inductor shown below:

$$L_{\text{Ptot}} = L_{\text{PCU DC}} + L_{\text{PCU AC}} + L_{\text{Pcore}}$$ \hspace{1cm} (eq. 16)

Input Start-up Current

To calculate the input startup current, the following equation can be used.

$$I_{\text{INRUSH}} = \frac{C_{\text{OUT}} \cdot V_{\text{OUT}}}{I_{SS}}$$ \hspace{1cm} (eq. 19)

I_{\text{INRUSH}} is the input current during startup, \(C_{\text{OUT}} \) is the total output capacitance, \(V_{\text{OUT}} \) is the desired output voltage, and \(I_{SS} \) is the soft start interval. If the inrush current is higher than the steady state input current during max load, then the input fuse should be rated accordingly, if one is used.
Output Capacitor Selection

The important factors to consider when selecting an output capacitor is dc voltage rating, ripple current rating, output ripple voltage requirements, and transient response requirements.

The output capacitor must be rated to handle the ripple current at full load with proper derating. The RMS ratings given in datasheets are generally for lower switching frequency than used in switch mode power supplies but a multiplier is usually given for higher frequency operation. The RMS current for the output capacitor can be calculated below:

$$C_{o\text{RMS}} = I_o \cdot \frac{ra}{\sqrt{12}}$$ \hspace{1cm} (eq. 20)

The maximum allowable output voltage ripple is a combination of the ripple current selected, the output capacitance selected, the equivalent series inductance (ESL) and ESR.

The main component of the ripple voltage is usually due to the ESR of the output capacitor and the capacitance selected.

$$V_{E\text{SR}_C} = I_o \cdot ra \cdot \left(\frac{ESR_{Co} + \frac{1}{8 \cdot F_{SW} \cdot Co}}{ESL} \right)$$ \hspace{1cm} (eq. 21)

The ESL of capacitors depends on the technology chosen but tends to range from 1 nH to 20 nH where ceramic capacitors have the lowest inductance and electrolytic capacitors then to have the highest. The calculated contributing voltage ripple from ESL is shown for the switch on and switch off below:

$$V_{E\text{SL}ON} = \frac{ESL \cdot I_{PP} \cdot F_{SW}}{D}$$ \hspace{1cm} (eq. 22)

$$V_{E\text{SL}OFF} = \frac{ESL \cdot I_{PP} \cdot F_{SW}}{(1 - D)}$$ \hspace{1cm} (eq. 23)

The output capacitor is a basic component for the fast response of the power supply. In fact, during load transient, for the first few microseconds it supplies the current to the load. The controller immediately recognizes the load transient and sets the duty cycle to maximum, but the current slope is limited by the inductor value.

During a load step transient the output voltage initially drops due to the current variation inside the capacitor and the ESR (neglecting the effect of the effective series inductance (ESL)).

$$\Delta V_{\text{OUT-ESR}} = \Delta I_{\text{TRAN}} \cdot ESR_{Co}$$ \hspace{1cm} (eq. 24)

A minimum capacitor value is required to sustain the current during the load transient without discharging it. The voltage drop due to output capacitor discharge is approximated by the following equation:

$$\Delta V_{\text{OUT-DISCHG}} = \frac{(I_{\text{TRAN}})^2 \cdot L_{OUT}}{C_{OUT} \cdot (V_{IN} - V_{OUT})}$$ \hspace{1cm} (eq. 25)

In a typical converter design, the ESR of the output capacitor bank dominates the transient response. It should be noted that $\Delta V_{\text{OUT-DISCHG}}$ and $\Delta V_{\text{OUT-ESR}}$ are out of phase with each other, and the larger of these two voltages will determine the maximum deviation of the output voltage (neglecting the effect of the ESL).

Conversely during a load release, the output voltage can increase as the energy stored in the inductor dumps into the output capacitor. The ESR contribution from Equation 21 still applies in addition to the output capacitor charge which is approximated by the following equation:

$$\Delta V_{\text{OUT-CHG}} = \frac{(I_{\text{TRAN}})^2 \cdot L_{OUT}}{C_{OUT} \cdot V_{OUT}}$$ \hspace{1cm} (eq. 26)

Power MOSFET Selection

Power dissipation, package size, and the thermal environment drive MOSFET selection. To adequately select the correct MOSFETs, the design must first predict its power dissipation. Once the dissipation is known, the thermal impedance can be calculated to prevent the specified maximum junction temperatures from being exceeded at the highest ambient temperature.

Power dissipation has two primary contributors: conduction losses and switching losses. The control or high–side MOSFET will display both switching and conduction losses. The synchronous or low–side MOSFET will exhibit only conduction losses because it switches into nearly zero voltage. However, the body diode in the synchronous MOSFET will suffer diode losses during the non–overlap time of the gate drivers.

Starting with the high–side or control MOSFET, the power dissipation can be approximated from:

$$P_{\text{D_CONTROL}} = P_{\text{COND}} + P_{\text{SW_TOT}}$$ \hspace{1cm} (eq. 27)

The first term is the conduction loss of the high–side MOSFET while it is on.

$$P_{\text{COND}} = (I_{\text{RMS_CONTROL}})^2 \cdot R_{DS(\text{on_CONTROL)}}$$ \hspace{1cm} (eq. 28)

Using the ra term from Equation 9, I_{RMS} becomes:

$$I_{\text{RMS_CONTROL}} = I_{\text{OUT}} \cdot \sqrt{D \cdot \left(1 + \frac{ra^2}{12}\right)}$$ \hspace{1cm} (eq. 29)

The second term from Equation 27 is the total switching loss and can be approximated from the following equations.

$$P_{\text{SW_TOT}} = P_{\text{SW}} + P_{\text{DS}} + P_{\text{RR}}$$ \hspace{1cm} (eq. 30)

The first term for total switching losses from Equation 30 includes the losses associated with turning the control MOSFET on and off and the corresponding overlap in drain voltage and current.

$$P_{\text{SW}} = P_{\text{TON}} + P_{\text{TOFF}}$$

$$= \frac{1}{2} \cdot (I_{\text{OUT}} \cdot V_{\text{IN}} \cdot f_{SW}) \cdot (t_{\text{ON}} + t_{\text{OFF}})$$ \hspace{1cm} (eq. 31)
where:

\[t_{ON} = \frac{Q_{GD}}{I_{G1}} = \frac{Q_{GD}}{(V_{BST} - V_{TH})/(R_{HSPU} + R_G)} \] (eq. 32)

and:

\[t_{OFF} = \frac{Q_{GD}}{I_{G2}} = \frac{Q_{GD}}{(V_{BST} - V_{TH})/(R_{HSPD} + R_G)} \] (eq. 33)

Next, the MOSFET output capacitance losses are caused by both the control and synchronous MOSFET but are dissipated only in the control MOSFET:

\[P_{DS} = \frac{1}{2} \cdot Q_{OSS} \cdot V_{IN} \cdot f_{SW} \] (eq. 34)

Finally the loss due to the reverse recovery time of the body diode in the synchronous MOSFET is shown as follows:

\[P_{RR} = Q_{RR} \cdot V_{IN} \cdot f_{SW} \] (eq. 35)

The low-side or synchronous MOSFET turns on into zero volts so switching losses are negligible. Its power dissipation only consists of conduction loss due to \(R_{DS(on)} \) and body diode loss during the non-overlap periods.

\[P_{D_SYNC} = P_{COND} + P_{BODY} \] (eq. 36)

Conduction loss in the low-side or synchronous MOSFET is described as follows:

\[P_{COND} = \left(I_{RMS_SYNC} \right)^2 \cdot R_{DS(on)} _SYNC \] (eq. 37)

where:

\[I_{RMS_SYNC} = I_{OUT} \cdot \sqrt{(1 - D) \cdot \left(1 + \left(\frac{r a^2}{12} \right) \right)} \] (eq. 38)

The body diode losses can be approximated as:

\[P_{BODY} = V_{FD} \cdot I_{OUT} \cdot f_{SW} \cdot (NOL_{HL} + NOL_{HL}) \] (eq. 39)

Once the MOSFET power dissipations are determined, the designer can calculate the required thermal impedance for each device to maintain a specified junction temperature at the worst case ambient temperature. The formula for calculating the junction temperature with the package in free air is:

\[T_J = T_A + P_D \cdot R_{iJA} \]

\(T_J \): Junction Temperature
\(T_A \): Ambient Temperature
\(P_D \): Power Dissipation of the MOSFET under analysis
\(R_{iJA} \): Thermal Resistance Junction–to–Ambient of the MOSFET’s package

As with any power design, proper laboratory testing should be performed to insure the design will dissipate the required power under worst case operating conditions. Variables considered during testing should include maximum ambient temperature, minimum airflow, maximum input voltage, maximum loading, and component variations (i.e. worst case MOSFET \(R_{DS(on)} \)).
Another consideration during MOSFET selection is their delay times. Turn-on and turn-off times must be short enough to prevent cross conduction. If not, there will be conduction from the input through both MOSFETs to ground. Therefore, the following conditions must be met.

\[t_{d(on)}^{\text{CONTROL}} + NOL_{LH} > t_{d(OFF)}^{\text{SYNC}} + t_f^{\text{SYNC}} \]

and

\[t_{d(on)}^{\text{SYNC}} + NOL_{HL} > t_{d(OFF)}^{\text{CONTROL}} + t_f^{\text{CONTROL}} \] \hspace{1cm} (eq. 40)

The MOSFET parameters, \(t_{d(on)} \), \(t_r \), \(t_{d(OFF)} \) and \(t_f \) can be found in their appropriate datasheets for specific conditions. \(NOL_{LH} \) and \(NOL_{HL} \) are the dead times which were described earlier and are 85 ns and 75 ns, respectively.

Feedback and Compensation

The NCP3012 is a voltage mode buck converter with a transconductance error amplifier compensated by an external compensation network. Compensation is needed to achieve accurate output voltage regulation and fast transient response. The goal of the compensation circuit is to provide a loop gain function with the highest crossing frequency and adequate phase margin (minimally 45°). The transfer function of the power stage (the output LC filter) is a double pole system. The resonance frequency of this filter is expressed as follows:

\[f_{p0} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C_{OUT}}} \] \hspace{1cm} (eq. 41)

Parasitic Equivalent Series Resistance (ESR) of the output filter capacitor introduces a high frequency zero to the filter network. Its value can be calculated by using the following equation:

\[f_{Z0} = \frac{1}{2 \cdot \pi \cdot C_{OUT} \cdot ESR} \] \hspace{1cm} (eq. 42)

The main loop zero crossover frequency \(f_0 \) can be chosen to be 1/10 - 1/5 of the switching frequency. Table 2 shows the three methods of compensation.

Table 2. COMPENSATION TYPES

<table>
<thead>
<tr>
<th>Zero Crossover Frequency Condition</th>
<th>Compensation Type</th>
<th>Typical Output Capacitor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_p0 < f_{Z0} < f_0 < f_S/2)</td>
<td>Type II</td>
<td>Electrolytic, Tantalum</td>
</tr>
<tr>
<td>(f_p0 < f_0 < f_{Z0} < f_S/2)</td>
<td>Type III Method I</td>
<td>Tantalum, Ceramic</td>
</tr>
<tr>
<td>(f_p0 < f_0 < f_S/2 < f_{Z0})</td>
<td>Type III Method II</td>
<td>Ceramic</td>
</tr>
</tbody>
</table>
Compensation Type II

This compensation is suitable for electrolytic capacitors. Components of the Type II compensation (Figure 36) network can be specified by the following equations:

![Figure 36. Type II Compensation](image)

\[
R_{C1} = \frac{2 \cdot \pi \cdot f_0 \cdot L \cdot V_{RAMP} \cdot V_{OUT}}{ESR \cdot V_{IN} \cdot V_{ref} \cdot gm} \quad (eq. 43)
\]

\[
C_{C1} = \frac{1}{0.75 \cdot 2 \cdot \pi \cdot f_{P0} \cdot R_{C1}} \quad (eq. 44)
\]

\[
C_{C2} = \frac{1}{\pi \cdot R_{C1} \cdot f_S} \quad (eq. 45)
\]

\[
R_1 = \frac{V_{OUT} - V_{ref}}{V_{ref}} \cdot R_2 \quad (eq. 46)
\]

\(VRAMP\) is the peak-to-peak voltage of the oscillator ramp and \(gm\) is the transconductance error amplifier gain. Capacitor \(C_{C2}\) is optional.

Compensation Type III

Tantalum and ceramics capacitors have lower ESR than electrolytic, so the zero of the output LC filter goes to a higher frequency above the zero crossover frequency. This requires a Type III compensation network as shown in Figure 37.

There are two methods to select the zeros and poles of this compensation network. Method I is ideal for tantalum output capacitors, which have a higher ESR than ceramic:

\[
f_{Z1} = 0.75 \cdot f_{P0} \quad (eq. 47)
\]

\[
f_{Z2} = f_{P0} \quad (eq. 48)
\]

\[
f_{P2} = f_{Z0} \quad (eq. 49)
\]

\[
f_{P3} = \frac{f_S}{2} \quad (eq. 50)
\]

Method II is better suited for ceramic capacitors that typically have the lowest ESR available:

\[
f_{Z2} = f_0 \cdot \frac{1 - \sin \theta_{max}}{1 + \sin \theta_{max}} \quad (eq. 51)
\]

\[
f_{P2} = f_0 \cdot \frac{1 + \sin \theta_{max}}{1 - \sin \theta_{max}} \quad (eq. 52)
\]

\[
f_{Z1} = 0.5 \cdot f_{Z2} \quad (eq. 53)
\]

\[
f_{P3} = 0.5 \cdot f_S \quad (eq. 54)
\]

\(\theta_{max}\) is the desired maximum phase margin at the zero crossover frequency, \(f_0\). It should be 45° – 75°. Convert degrees to radians by the formula:

\[
\theta_{max} = \theta_{max_{\text{degrees}}} \cdot \frac{2 \cdot \pi}{360} : \text{Units = radians} \quad (eq. 55)
\]

The remaining calculations are the same for both methods.

\[
R_{C1} > > \frac{2}{gm} \quad (eq. 56)
\]

\[
C_{C1} = \frac{1}{2 \cdot \pi \cdot f_{Z1} \cdot R_{C1}} \quad (eq. 57)
\]

\[
C_{C2} = \frac{1}{2 \cdot \pi \cdot f_{P3} \cdot R_{C1}} \quad (eq. 58)
\]

\[
C_{FB1} = \frac{2 \cdot \pi \cdot f_0 \cdot L \cdot V_{RAMP} \cdot C_{OUT}}{V_{IN} \cdot R_{C1}} \quad (eq. 59)
\]

\[
R_{FB1} = \frac{1}{2\pi \cdot C_{FB1} \cdot f_{P2}} \quad (eq. 60)
\]

\[
R_1 = \frac{1}{2 \cdot \pi \cdot C_{FB1} \cdot f_{Z2} - R_{FB1}} \quad (eq. 61)
\]

\[
R_2 = \frac{V_{ref}}{V_{OUT} - V_{ref}} \cdot R_1 \quad (eq. 62)
\]

If the equation in Equation 63 is not true, then a higher value of \(R_{C1}\) must be selected.

\[
\frac{R_1 \cdot R_2 \cdot R_{FB1}}{R_1 \cdot R_{FB1} + R_2 \cdot R_{FB1} + R_1 \cdot R_2} > \frac{1}{gm} \quad (eq. 63)
\]
This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “/C0071”, may or may not be present.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

TSSOP−14 WB

CASE 948G

ISSUE C

DATE 17 FEB 2016

NOTES:

2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE − W.

SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM

*This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “•”, may or may not be present.

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
* = Pb−Free Package

(Note: Microdot may be in either location)