MARKING

DIAGRAM

CCKK

XYZ

CCKK

XXXM=

.

XYZ

SIP6 1.45X1.0

MicroPak

CASE 127EB

UDFN6 1.0X1.0, 0.35P

MicroPak2TM

CASE 517DP

= Specific Device Code

2-Digit Date Code

SC-88

= Assembly Plant Code

CC

KK

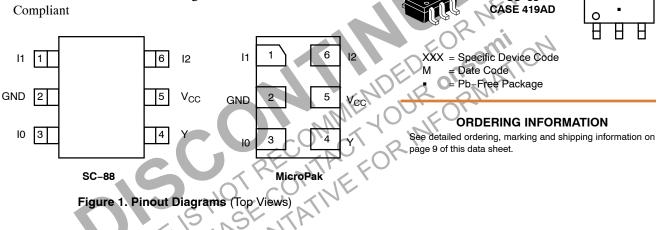
XY

7

Pin 1

= 2-Digit Lot Run Traceability Code

Pin 1


TinyLogic ULP-A Universal Configurable Logic Gates

NC7SV57, NC7SV58

The NC7SV57 and NC7SV58 are universal configurable logic gates in tiny footprint packages. The devices are designed to operate for $V_{CC} = 0.9$ V to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 2.4 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC-88 and MicroPakTM Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

PIN ASSIGNMENT

Pin	SC-88	MicroPak
1		
2	GND	GND
3	10	10
4	Y	Y
5	V _{CC}	V _{CC}
6	12	12

FUNCTION TABLE

	Inputs		NC7SV57	NC7SV58
12	l1	10	Y = (10) • (12) + (11) • (12)	$Y = (10) \cdot (\overline{12}) + (\overline{11}) \cdot (12)$
L	L	L	Н	L
L	L	Н	L	Н
L	Н	L	Н	L
L	Н	Н	L	Н
Н	L	L	L	Н
Н	L	Н	L	Н
Н	н	L	Н	L
Н	Н	Н	Н	L

FUNCTION SELECTION TABLE

2-Input Logic Function	Device Selection	Connection Configuration
2–Input AND	NC7SV57	Figure 2
2-Input AND with inverted input	NC7SV58	Figure 8, 9
2-Input AND with both inputs inverted	NC7SV57	Figure 5
2-Input NAND	NC7SV58	Figure 7
2-Input NAND with inverted input	NC7SV57	Figure 3, 4
2-Input NAND with both inputs inverted	NC7SV58	Figure 10
2-Input OR	NC7SV58	Figure 10
2-Input OR with inverted input	NC7SV57	Figure 3, 4
2-Input OR with both inputs inverted	NC7SV58	Figure 7
2-Input NOR	NC7SV57	Figure 5
2-Input NOR with inverted input	NC7SV58	Figure 8, 9
2-Input NOR with both inputs inverted	NC7SV57	Figure 2
2-Input XOR	NC7SV58	Figure 11
2-Input XNOR	NC7SV57	Figure 6

Logic Configurations NC7SV57

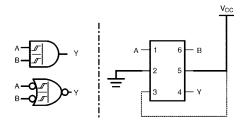


Figure 2. 2-Input AND Gate

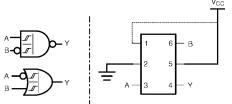
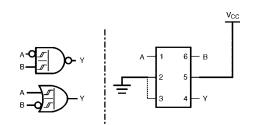
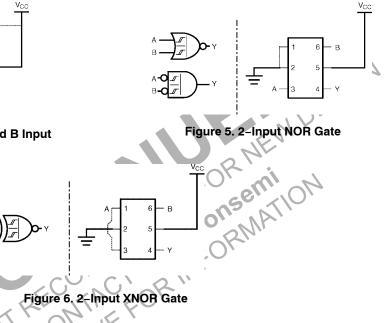




Figure 4. 2-Input NAND with Inverted B Input

Figure 3. 2-Input NAND with Inverted A Input

NOTE: Figure 2 through Figure 6 show the logical functions that can be implemented using the NC7SV57. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

Logic Configurations NC7SV58

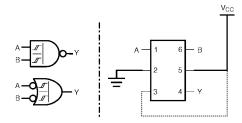
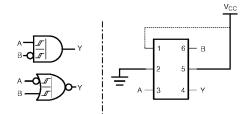
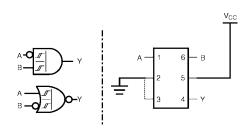


Figure 7. 2-Input NAND Gate

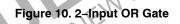


Figure 9. 2-Input AND with Inverted B Input

Figure 8. 2-Input AND with Inverted A Input

AC

Figure 11. 2-Input XOR Gate

в

NOTE: Figure 7 through Figure 11 show the logical functions that can be implemented using the NC7SV58. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +4.3	V
V _{IN}	DC Input Voltage	-0.5 to +4.3	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	$\begin{array}{c} -0.5 \text{ to } V_{CC} + 0.5 \\ -0.5 \text{ to } +4.3 \\ -0.5 \text{ to } +4.3 \end{array}$	V
I _{IK}	DC Input Diode Current V _{IN} < GND	-50	mA
Ι _{ΟΚ}	DC Output Diode Current V _{OUT} < GND	-50	mA
lout	DC Output Source/Sink Current	±50	mA
I_{CC} or I_{GND}	DC Supply Current per Supply Pin or Ground Pin	±50	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
ТJ	Junction Temperature Under Bias	+150	∕ ∘c
θ_{JA}	Thermal Resistance (Note 2) SC-88 MicroPak	377 154 - S	°C/W
PD	Power Dissipation in Still Air SC-88 MicroPak	332 812	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V_{ESD}	ESD Withstand Voltage (Note 3) Charged Device Model	501 2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. ATIVE

4. Tested to EIA/JÉSD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	0.9	3.6	V
V _{IN}	DC Input Voltage	0	3.6	V
Vout	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 5) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 3.6 3.6	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Transition Rise and Fall Time	0	No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Applicable to devices with outputs that may be tri-stated.

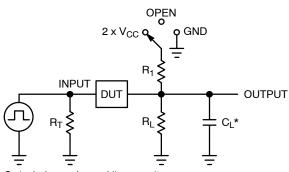
DC ELECTRICAL CHARACTERISTICS

					T _A = 25°C		T _A = -40°C	C to +85°C	2
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Мах	Min	Max	Unit
VP	Positive		0.9	-	0.62	-	-	-	V
	Threshold Voltage		1.1	-	-	1.0	-	1.0	
			1.4	-	-	1.25	-	1.25	
			1.65	-	-	1.5	-	1.5	
			2.3	_	_	1.8	_	1.8	1
			2.7	_	-	2.2	_	2.2	
V _N	Negative		0.9	_	0.34	-	-	-	V
	Threshold Voltage		1.1	0.15	_	_	0.15	-	1
			1.4	0.2	_	-	0.2	-	1
			1.65	0.25	-	-	0.25	-	1
			2.3	0.4	-	-	0.4	AD.	
			2.7	0.6	-	-	0.6	S	
V _H	Hysteresis		0.9	-	0.29	_		-	V
	Voltage		1.1	0.08	-	0.6	0.08	0.6	
			1.4	0.09		0.8	0.09	0.8	1
			1.65	0.15	-	1.0	0.15	1.0	
			2.3	0.25		1.1	0.25	1.1	1
			2.7	0.6	<u> </u>	1.2	0.6	1.2	1
V _{OH}	High-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$			2.2				V
	Output Voltage	I _{OH} = -100 μA	0.9	AF	$V_{CC} = 0.1$	OC.	_	-	1
			1.1 to 1.3	V _{CC} – 0.1	$N_{I_{I_{I}}}$	-	$V_{CC} - 0.1$	-	1
			1.4 to 1.6	V _{CC} – 0.1	R-11	-	$V_{CC} - 0.1$	-	
			1.65 to 1.95	V _{CC} - 0.2)`_	-	V _{CC} - 0.2	-	
		NO.	2.3 to <2.7	V _{CC} – 0.2	-	-	$V_{CC}-0.2$	-	1
		SSS	2.7 to 3.6	V _{CC} – 0.2	-	-	$V_{CC} - 0.2$	-	
		$I_{OH} = -2 \text{ mA}$	1.1 o 1.3	$0.75 \times V_{CC}$	-	-	0.75 x V _{CC}	-	
		I _{OH} = -4 mA	1.4 to 1.6	$0.75 \times V_{CC}$	-	-	0.75 x V _{CC}	-	
	DE.	$I_{OH} = -6 \text{ mA}$	1.65 to 1.95	1.25	_	-	1.25	-	1
	. 11S *	REI	2.3 to <2.7	2.0	-	-	2.0	-	1
-	HISDE	I _{OH} = -12 mA	2.3 to <2.7	1.8	-	-	1.8	_	
			2.7 to 3.6	2.2	_	_	2.2	-]
		I _{OH} = -18 mA	2.3 to <2.7	1.7	-	-	1.7	-	
			2.7 to 3.6	2.4	-	-	2.4	-]
		I _{OH} = -24 mA	2.7 to 3.6	2.2	-	-	2.2	-	

DC ELECTRICAL CHARACTERISTICS (continued)

					T _A = 25°C T _A =			C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{OL}	Low-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							V
	Output Voltage	I _{OL} = 100 μA	0.9	-	0.1	-	-	-	
			1.1 to 1.3	-	-	0.1	-	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	-	0.2	-	0.2	
			2.3 to < 2.7	-	-	0.2	-	0.2	
			2.7 to 3.6	-	-	0.2	-	0.2	
		I _{OL} = 2 mA	1.1 o 1.3	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	
		I _{OL} = 4 mA	1.4 to 1.6	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	
		I _{OL} = 6 mA	1.65 to 1.95	-	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.3 to <2.7	-	-	0.4	- <	0.4	
			2.7 to 3.6	-	-	0.4		0.4	
		I _{OL} = 18 mA	2.3 to <2.7	-	-	0.6	7	0.6	
			2.7 to 3.6			0,4	-	0.4	
		I _{OL} = 24 mA	2.7 to 3.6	-		0.55	1-1	0.55	
I _{IN}	Input Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V$	0.9 to 3.6	-	EDF	±0.12	<u> </u>	±0.5	μA
I _{OFF}	Power Off Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V \text{ or}$ $V_{OUT} = 0 V \text{ to } 3.6 V$	0	EN	NJR	0,5	-	0.5	μA
ICC	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	MIZ	N N	0.9	-	0.9	μA

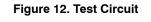
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

					T _A = 25°C	;	T _A = -40°C	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,		$R_L = 1 M\Omega$, $C_L = 15 pF$	0.9	-	22.2	-	-	-	ns
t _{PHL}	(I0 or I1 or I2) to Y (Figures 12 and 13)	$R_L = 2 k\Omega$, $C_L = 15 pF$	1.10 to 1.30	-	7.1	16.5	-	31.0	
	THISL	IS DEF	1.40 to 1.60	-	4.4	10.0	-	12.0	
-		R_L = 500 Ω, C_L = 30 pF	1.65 to 1.95	-	3.7	9.1	-	10.0	
	*		2.3 to 2.7	-	2.9	6.2	-	6.7	1
			3.0 to 3.6	-	2.4	5.4	-	6.1	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	V _{CC} = 0 V	8.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	12	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	f = 10 MHz, V_{CC} = 0.9 to 3.6 V, V_{IN} = 0 V or V_{CC}	10	pF


6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	2 x V _{CC}
t _{PHZ} / t _{PZH}	GND

 $\begin{array}{l} C_L \text{ includes probe and jig capacitance} \\ R_T \text{ is } Z_{OUT} \text{ of pulse generator (typically 50 } \Omega) \end{array}$

f = 1 MHz

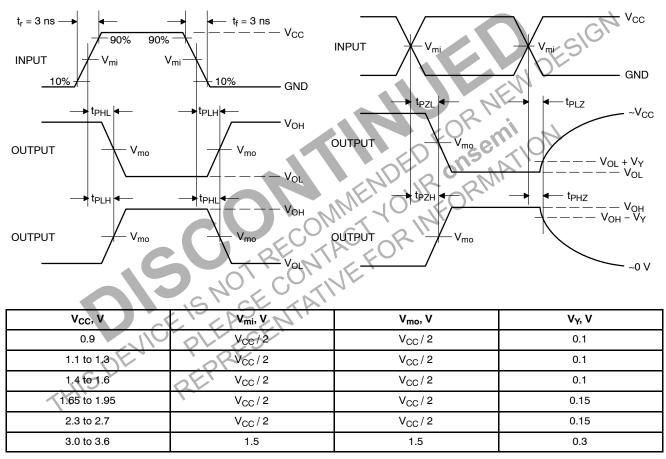
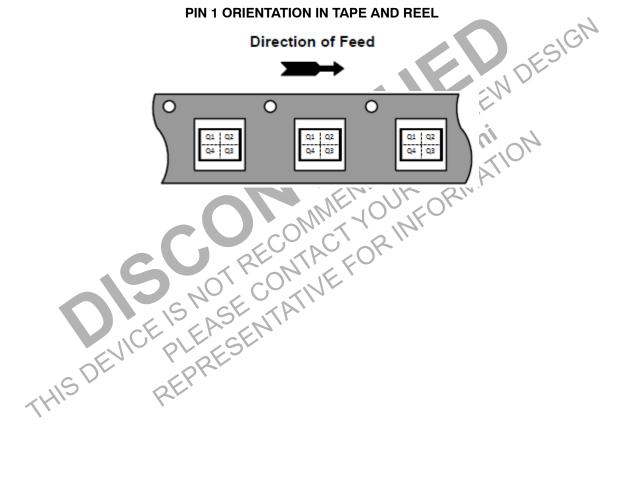
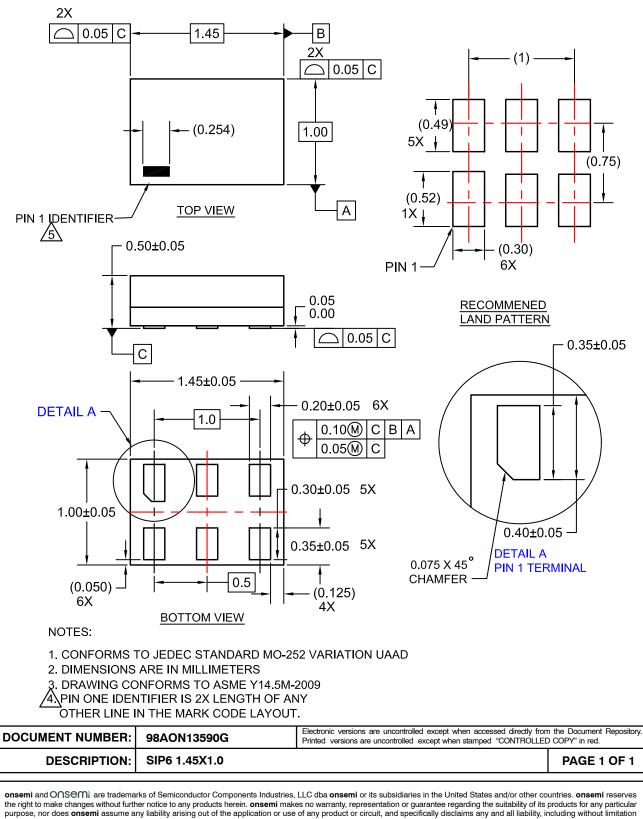



Figure 13. Switching Waveforms

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NC7SV57P6X	SC-88	V57	Q4	3000 / Tape & Reel
NC7SV57L6X	MicroPak	H3	Q4	5000 / Tape & Reel
NC7SV57FHX	MicroPak2	H3	Q4	5000 / Tape & Reel
NC7SV57FHX-L22780	MicroPak2	H3	Q4	5000 / Tape & Reel
NC7SV58P6X	SC-88	V58	Q4	3000 / Tape & Reel
NC7SV58L6X	MicroPak	H4	Q4	5000 / Tape & Reel
NC7SV58FHX	MicroPak2	H4	Q4	5000 / Tape & Reel

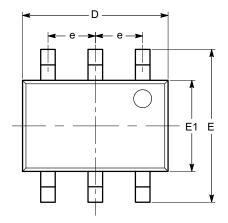
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PIN 1 ORIENTATION IN TAPE AND REEL

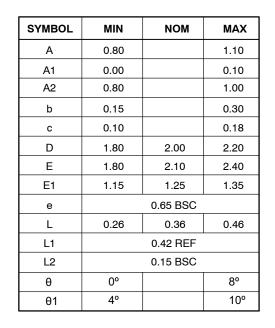
MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

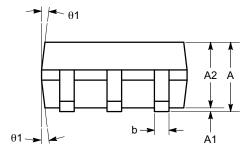
SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016

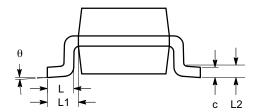

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi




SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A

DATE 07 JUL 2010



SIDE VIEW

Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-203.

END VIEW

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2 PAGE 1 C					
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular			

UDFN6 1.0X1.0, 0.35P CASE 517DP ISSUE O DATE 31 AUG 2016 0.89 -ン|0.05|C в 1.00±0.050 А 0.35 2X 5X 0.40 PIN 1 MIN 250uM 0.66 1.00±0.050 1X 0.45 □ 0.05 C TOP VIEW - 6X 0.19 2X **RECOMMENDED LAND PATTERN** FOR SPACE CONSTRAINED PCB 0.05 C 0.90 -0.35 0.50±0.05 С 5X 0.52 SIDE VIEW 6X 0.14±0.05 (0.08) 4X — 0.73 2 DETAIL A 1 3 1X 0.57 – 0.20 6X ALTERNATIVE LAND PATTERN FOR UNIVERSAL APPLICATION - (0.05) 6X 5X 0.30±0.05 0.60 4 0.10(M) C B A 0.35 (0.08) .05 C 4X 0.35±0.050 BOTTOM VIEW NOTES: A. COMPLIES TO JEDEC MO-252 STANDARD **B. DIMENSIONS ARE IN MILLIMETERS.** C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009 0.075X45° DETAIL A CHAMFER PIN 1 LEAD SCALE: 2X

DOCUMENT NUMBER:	98AON13593G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6 1.0X1.0, 0.35P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>