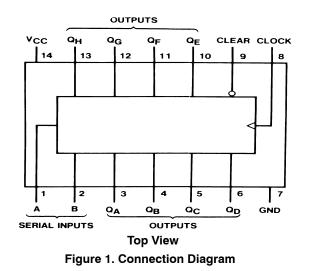
LVDS 1-Bit, High-Speed Differential Reciever

MM74HC164

Description


The MM74HC164 utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low consumption of standard CMOS integrated circuits. It also offers speeds comparable to low power Schottky devices.

This 8-bit shift register has gated serial inputs and CLEAR. Each register bit is a D-type master/slave flip- flop. Inputs A & B permit complete control over the incoming data. A LOW at either or both inputs inhibits entry of new data and resets the first flip-flop to the low level at the next clock pulse. A high level on one input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is HIGH or LOW, but only information meeting the setup and hold time requirements will be entered. Data is serially shifted in and out of the 8-bit register during the positive going transition of the clock pulse. Clear is independent of the clock and accomplished by a low level at the CLEAR input.

The 74HC logic family is functionally as well as pin–out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical Operating Frequency: 50 MHz
- Typical Propagation Delay: 19 ns (clock to Q)
- Wide Operating Supply Voltage Range: 2 V to 6 V
- Low Input Current: 1 µA maximum
- Low Quiescent Supply Current: 160 µA maximum (74HC Series)
- Fanout of 10 LS-TTL Loads

MARKING DIAGRAMS 14 AAAAAAA ¹⁴AA<u>AAAA</u> HC HC164A 164A AWLYWW ALYW= 88888 (SOIC-14, (TSSOP-14NB) SOIC-14NB) HC164A = Specific Device Code = Assembly Location Α L/WL = Wafer Lot Y/YY = Year W/WW = Work Week

TRUTH TABLE

= Pb-Free Package

	Inputs			Outputs			
Clear	Clock	Α	в	QA	Q _B Q _H		
L	Х	Х	Х	L	L L		
н	L	Х	Х	Q_{AO}	Q _{BO} Q _{HO}		
н	\uparrow	Н	Н	Н	Q _{An} Q _{Gn}		
Н	↑ (L	Х	L	Q _A Q _{Gn}		
Н	↑ (Х	L	L	$Q_{An} \dots Q_{Gn}$		

H = HIGH Level (steady state)

G

L = LOW Level (steady state)

X = Irrelevant (any input, including transitions)

 \uparrow = Transition from LOW-to-HIGH level.

 Q_{AO} , Q_{BO} , Q_{HO} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent = transition of the clock; indicated a one-bit shift.

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MM74HC164

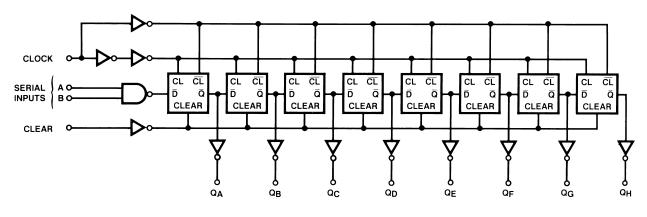


Figure 2. Logic Diagram

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Rating	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage	–0.5 to V _{CC} +0.5	V
I _{IK} , I _{OK}	Clamp Diode Current	±20	mA
I _{OUT}	DC Output Current, per pin	±25	mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
P _D	Power Dissipation S.O. Package only	500	mW
ΤL	Lead Temperature (Soldering 10 seconds)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Unless otherwise specified all voltages are referenced to ground.

RECOMMENDED OPERATING RANGES

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	2	6	V
V _{IN,} V _{OUT}	Input Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise or Fall Times $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	- - -	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HC164

DC ELECTRICAL CHARACTERISTICS (Note 2)

				T _A =	25°C	T _A = -40°C to 85°C	T _A = −55°C to 125°C	
Symbol	Parameter	V _{CC} (V)	Test Conditions	Тур.		Guaranteed L	.imits	Unit
V _{IH}	Minimum HIGH Level Input Voltage	2.0	-	-	1.5	1.5	1.5	V
		4.5		-	3.15	3.15	3.15	
		6.0		-	4.2	4.2	4.2	
VIL	Maximum LOW Level Input Voltage	2.0	-	-	0.5	0.5	0.5	V
		4.5		-	1.35	1.35	1.35	
		6.0		-	1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level Output Voltage	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$	2.0	1.9	1.9	1.9	V
V		4.5	I _{OUT} ≤ 20 μA	4.5	4.4	4.4	4.4	
		6.0		6.0	5.9	5.9	5.9	
		4.5	$\begin{aligned} V_{IN} = V_{IH} \text{ or } V_{IL}, \\ \left I_{OUT} \right \leq 4.0 \text{ mA} \end{aligned}$	4.2	3.98	3.84	3.7	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	5.7	5.48	5.34	5.2	5.2
V _{OL}	Maximum LOW Level Output	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$	0	0.1	0.1	0.1	V
	Voltage	4.5	I _{OUT} ≤ 20 μA	0	0.1	0.1	0.1	1
		6.0		0	0.1	0.1	0.1	
		4.5	$\begin{split} V_{IN} = V_{IH} \text{ or } V_{IL}, \\ \left I_{OUT} \right \leq 4.0 \text{ mA} \end{split}$	0.2	0.26	0.33	0.4	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	6.0	$V_{IN} = V_{CC} \text{ or } GND$	-	±0.1	±1.0	±1.0	μA
ICC	Maximum Quiescent Supply Cur- rent	6.0	$V_{IN} = V_{CC} \text{ or}$ GND, $I_{OUT} = 0 \ \mu A$	-	8.0	80	160	μA

2. For a power supply of 5 V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5 V, T_A = 25 °C, C_L = 15 pF, t_r = t_f = 6 ns)

Symbol	Parameter	Тур.	Guaranteed Limit	Unit
f _{MAX}	Maximum Operating Frequency	-	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Output	19	30	ns
t _{PHL}	Maximum Propagation Delay, Clear to Output	23	35	ns
t _{REM}	Minimum Removal Time, Clear to Clock	-2	0	ns
t _S	Minimum Setup Time, Data to Clock	12	20	ns
t _H	Minimum Hold Time, Clock to Data	1	5	ns
tW	Minimum Pulse Width, Clear or Clock	10	16	ns

MM74HC164

	Parameter			T _A = 25°C		T _A = −40°C to 85°C	T _A = −55°C to 125°C	Unit
Symbol		V _{CC} (V)	Test Conditions	Тур.		Guaranteed L	imits	
f _{MAX}	Maximum Operating Frequency	2.0		-	5	4	3	MHz
		4.5		-	27	21	18	
		6.0		-	31	24	20	
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock	2.0	-	115	175	218	254	ns
	to Output	4.5		13	35	44	51	
		6.0		20	30	38	44	
t _{PHL}	Maximum Propagation Delay, Clear	2.0	-	140	205	256	297	ns
	to Output	4.5		28	41	51	59	
		6.0		24	35	44	51	
t _{REM}	Minimum Removal Time, Clear to Clock	2.0	-	-7	0	0	0	ns
		4.5	-	-3	0	0	0	
		6.0	-	-2	0	0	0	
t _S	Minimum Setup Time, Data to Clock	2.0	-	25	100	125	150	ns
		4.5		14	20	25	30	
		6.0		12	17	21	25	
t _H	Minimum Hold Time, Clock to Data	2.0	-	-2	5	5	5	ns
		4.5		0	5	5	5	
		6.0		1	5	5	5	
t _W	Minimum Pulse Width Clear or	2.0	-	22	80	100	120	ns
	Clock	4.5		11	16	20	24	
		6.0		10	14	18	20	
t _{THL} , t _{TLH}	Maximum Output Rise and Fall	2.0	-	-	75	95	110	ns
	Time	4.5		-	15	19	22	
		6.0		-	13	16	19	
t _r , t _f	Maximum Input Rise and Fall Time	2.0	-	-	1000	1000	1000	ns
		4.5		-	500	500	500	
		6.0		-	400	400	400	
C _{PD}	Power Dissipation Capacitance (Note 4)	5.0	(per package)	150	-	-	-	pF
CIN	Maximum Input Capacitance	_		5	10	10	10	pF

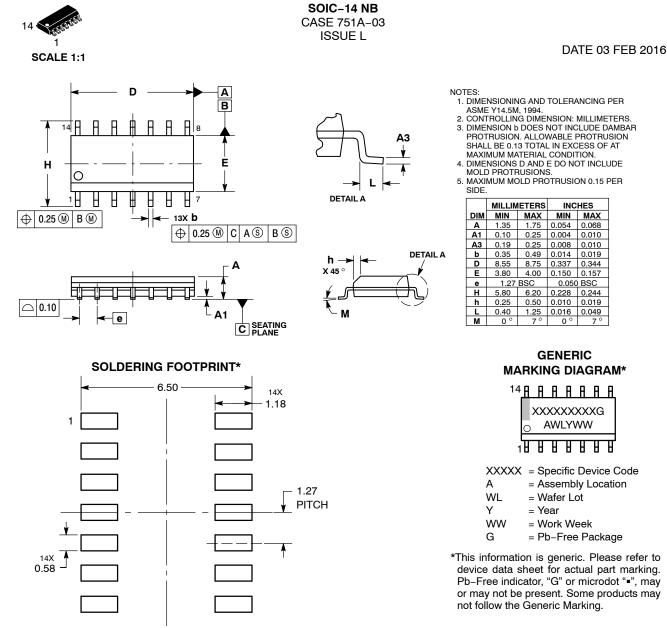
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, $t_r = t_f = 6$ ns unless otherwise specified)

3. C_{PD} determines the no load dynamic power consumption, PD = $C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

ORDERING INFORMATION

Product Number	Package	Shipping [†]
MM74HC164M	SOIC-14 NB (Pb-Free)	55 Units / Tube
MM74HC164MTCX	TSSOP-14 WB (Pb-Free)	2500 / Tape and Reel
MM74HC164MX	SOIC-14 (Pb-Free)	2500 / Tape and Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.


DUSEM

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-14 NB					

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 8.50 Α 0.65 7.62 14 8 14 8 В 4.00 6.00 5.60 3.80 Ħ 1.70 7 **PIN #1** 1,27 7 0.51 **IDENT.** 1.270.35 (0.33) \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 С 0.19 0.10 С 1.50 0.25 0.10 1.25 SIDE VIEW **FRONT VIEW** NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS LAND PATTERN STANDARD: R0.10 GAGE D. SOIC127P600X145-14M PLANE R0.10 E. CONFORMS TO ASME Y14.5M, 2009 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)DETAIL A SCALE 16 : 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13739G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC14 PAGE 1 OF 1

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>