LV5747NTT — 1-channel Step-down Switching Regulator

Overview
The LV5747NTT is a 1-channel step-down switching regulator.

Functions
- 1 channel step-down switching regulator controller.
- Frequency decrease function at pendent.
- Load-independent soft start circuit.
- ON/OFF function.
- Built-in pulse-by-pulse OCP circuit. It is detected by using ON resistance of an external MOS.

Specifications

Absolute Maximum Ratings at Ta = 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{IN} max</td>
<td></td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>HDRV, CBOOT</td>
<td></td>
<td></td>
<td>52</td>
<td>V</td>
</tr>
<tr>
<td>LDRV</td>
<td></td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Between CBOOT to SW</td>
<td></td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Between CBOOT to HDRV</td>
<td></td>
<td></td>
<td>V_{IN} \times 0.3</td>
<td>V</td>
</tr>
<tr>
<td>EN, ILIM</td>
<td></td>
<td></td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>VDD</td>
<td></td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>SS, FB, COMP</td>
<td></td>
<td></td>
<td>V_{DD} \times 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Allowable Power dissipation</td>
<td>Pd max</td>
<td>Mounted on a specified board. *</td>
<td>0.75</td>
<td>W</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td></td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td></td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Specified board : 35mm × 32mm × 1.6mm, glass epoxy 2-layer board.

Any and all SANYO Semiconductor Co., Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer’s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer’s products or equipment.
LV5747NTT

Recommended Operating Range at \(Ta = 25^\circ C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>(V_{IN})</td>
<td></td>
<td>8.0 to 42 V</td>
<td>V</td>
</tr>
<tr>
<td>Error amplifier input voltage</td>
<td>(V_{FB})</td>
<td></td>
<td>0 to 1.6 V</td>
<td>V</td>
</tr>
</tbody>
</table>

Electrical Characteristics at \(Ta = 25^\circ C, V_{IN} = 24V \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference voltage block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal reference voltage</td>
<td>(V_{ref})</td>
<td>Including offset of E/A</td>
<td>0.698</td>
<td>V</td>
</tr>
<tr>
<td>5V power supply</td>
<td>(V_{DD})</td>
<td>(I_{OUT} = 0) to 5mA</td>
<td>4.7</td>
<td>V</td>
</tr>
<tr>
<td>Triangular waveform oscillator block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillation frequency</td>
<td>(F_{OSC})</td>
<td>(V_{IN} = 8) to 42V</td>
<td>260</td>
<td>kHz</td>
</tr>
<tr>
<td>Frequency variation</td>
<td>(F_{OSC DV})</td>
<td>(V_{IN} = 8) to 42V</td>
<td>300</td>
<td>%</td>
</tr>
<tr>
<td>Oscillation frequency fold back detection voltage</td>
<td>(F_{OSC FB})</td>
<td>FB voltage detection after SS ends</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Oscillation frequency after fold back</td>
<td>(F_{OSC FB})</td>
<td>(V_{FB} = 0V)</td>
<td>25</td>
<td>kHz</td>
</tr>
<tr>
<td>ON/OFF circuit block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC start-up EN voltage</td>
<td>(V_{EN on})</td>
<td>(V_{IN} = 8) to 42V</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>IC off EN voltage</td>
<td>(V_{EN off})</td>
<td></td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>Soft start circuit block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft start source current</td>
<td>(I_{SS SC})</td>
<td>EN > 4.3V</td>
<td>4</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Soft start sink current</td>
<td>(I_{SS SK})</td>
<td>EN < 1V, (V_{DD} = 5) V</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Soft start end voltage</td>
<td>(V_{SS END})</td>
<td></td>
<td>0.9</td>
<td>V</td>
</tr>
<tr>
<td>UVLO circuit block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO lock release voltage</td>
<td>(V_{UVLO})</td>
<td></td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>UVLO hysteresis</td>
<td>(V_{UVLO H})</td>
<td></td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Error amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>(I_{EA IN})</td>
<td></td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Error amplifier gain</td>
<td>(G_{EA})</td>
<td></td>
<td>1000</td>
<td>1400</td>
</tr>
<tr>
<td>Common mode input range</td>
<td>(V_{EA R})</td>
<td>(V_{IN} = 8) to 42V</td>
<td>0.0</td>
<td>V</td>
</tr>
<tr>
<td>Sink output current</td>
<td>(I_{EA OSK})</td>
<td>FB = 1.0V</td>
<td>-100</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Source output current</td>
<td>(I_{EA OSC})</td>
<td>FB = 0V</td>
<td>100</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Current detection amplifier gain</td>
<td>(G_{ISNS})</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>over current limiter circuit block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference current</td>
<td>(I_{LIM})</td>
<td>-10%</td>
<td>20</td>
<td>+10%</td>
</tr>
<tr>
<td>Over current detection comparator</td>
<td>(V_{LIM OFS})</td>
<td>offset voltage</td>
<td>-5</td>
<td>+5</td>
</tr>
<tr>
<td>Over current detection comparator</td>
<td>(V_{IN-0.45})</td>
<td>common mode input range</td>
<td>(V_{IN} = 0.45)</td>
<td></td>
</tr>
<tr>
<td>PWM comparator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input threshold voltage</td>
<td>(V_{t max})</td>
<td>Duty cycle = DMAX, (SW = V_{IN})</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>(V_{DD})</td>
<td></td>
<td>Duty cycle = 0%, (SW = V_{IN})</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Maximum ON duty</td>
<td></td>
<td></td>
<td>DMAX</td>
<td>92</td>
</tr>
<tr>
<td>Output block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output stage ON resistance (the upper side)</td>
<td>(R_{ONH})</td>
<td></td>
<td>5</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output stage ON resistance (the under side)</td>
<td>(R_{ONL})</td>
<td></td>
<td>5</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output stage ON current (the upper side)</td>
<td>(I_{ONH})</td>
<td></td>
<td>240</td>
<td>mA</td>
</tr>
<tr>
<td>Output stage ON current (the under side)</td>
<td>(I_{ONL})</td>
<td></td>
<td>240</td>
<td>mA</td>
</tr>
<tr>
<td>The whole device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>(I_{CCS})</td>
<td>EN < 1V</td>
<td>60</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Mean consumption current</td>
<td>(I_{CCA})</td>
<td>EN > 4.3V</td>
<td>3.3</td>
<td>mA</td>
</tr>
</tbody>
</table>
LV5747NTT

Package Dimensions
unit: mm (typ)
3375

![Package Dimensions Diagram]

Pd max – Ta

![Pd max – Ta Graph]

Specified board: 35 x 32 x 1.6mm³
glass epoxy 2-layer board.

Pin Assignment

![Pin Assignment Diagram]

SANYO: MSOP12(150mil)
Pin Function

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FB</td>
<td>Error amplifier reverse input pin. By operating the converter, the voltage of this pin becomes 0.708V. The voltage in which the output voltage is divided by an external resistance is applied to this pin. Moreover, when this pin voltage becomes 0.5V or less after a soft start ends, the frequency fold back function operations, and the oscillating frequency is falling with the FB voltage.</td>
</tr>
<tr>
<td>2</td>
<td>COMP</td>
<td>Error amplifier output pin. Connect a phase compensation circuit between this pin and FB.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>ON/OFF pin.</td>
</tr>
<tr>
<td>4</td>
<td>SW</td>
<td>Pin to connect with switching node. The source of NchMOSFET connects to this pin.</td>
</tr>
<tr>
<td>5</td>
<td>CBOOT</td>
<td>Bootstrap capacity connection pin. This pin becomes a GATE drive power supply of an external NchMOSFET. Connect a bypath capacitor between CBOOT and SW.</td>
</tr>
<tr>
<td>6</td>
<td>HDRV</td>
<td>An external the upper MOSFET gate drive pin.</td>
</tr>
<tr>
<td>7</td>
<td>LDRV</td>
<td>An external the lower MOSFET gate drive pin.</td>
</tr>
<tr>
<td>8</td>
<td>VDD</td>
<td>Power supply pin for an external the lower MOS-FET gate drive.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground pin. Each reference voltage is based on the voltage of the ground pin.</td>
</tr>
<tr>
<td>10</td>
<td>VIN</td>
<td>Power supply pin. This pin is monitored by UVLO function. When the voltage of this pin becomes 7.8V or more by UVLO function, The IC starts and the soft start function operates.</td>
</tr>
<tr>
<td>11</td>
<td>ILIM</td>
<td>Reference current pin for current detection. The sink current of about 20μA flows to this pin. When a resistance is connected between this pin and VIN outside and the voltage applied to the SW pin is lower than the voltage of the terminal side of the resistance, the upper NchMOSFET is off by operating the current limiter comparator. This operation is reset with respect to each PWM pulse.</td>
</tr>
<tr>
<td>12</td>
<td>SS</td>
<td>Pin to connect a capacitor for soft start. A capacitor for soft start is charged by using the voltage of about 5μA. This pin ends the soft start period by using the voltage of about 1.1V and the frequency fold back function becomes active.</td>
</tr>
</tbody>
</table>
LV5747NTT

Sample Application Circuit

SANYO Semiconductor Co., Ltd. assumes no responsibility for equipment failures that result from using products other than those described or contained herein. If products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein.

SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all SANYO Semiconductor Co., Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co., Ltd.

Any and all information described or contained herein are subject to change without notice due to new product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co., Ltd. product that you intend to use.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co., Ltd. or any third party. SANYO Semiconductor Co., Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2010. Specifications and information herein are subject to change without notice.