ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Charge and LED Control Board Guidance Note

Overview

LEDHLGEVB is an evaluation board for bicycle LED light systems. It uses a Lithium-ion battery to power the high-power LEDs that are used in bicycle headlights. The board's integrated DC/DC charging system can charge high power Lithium-ion batteries quickly and efficiently. Device supports the battery charging up to 2000 mA and MCU can be programmed to meet the customer's further charging requirements. Device boost operation is activated while battery is discharging to power-up the external LEDs. LEDHLGEVB supports charge/discharge and battery safety for 1-cell Lithium-ion / Polymer (Li+) batteries.

This guidance note is intended for users designing 1-cell Lithium-ion battery-based charge/discharge systems for a bicycle LED light.

Features

- DC/DC charging control from DC 5 V (USB-C) within a range of 25 mA to 2000 mA
- The LED brightness remains constant even if the battery voltage continuously degrades with long use
- Supports various modes of LED operation, such as: High mode, Medium mode, Low mode, and Flash mode
- Boost output (DC 4.2 V) control from 1-cell Lithium-ion/Polymer (Li+) battery

Top Layer

52 mm x 13 mm

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

- Supports pass-through charge topology, DC 5 V output directly powered to LED via USB when wall power is connected
- MCU with on-chip thermistor for providing safety to LED and device
- Ultra-low standby current consumption (including LIB protection IC)

Application

• Charge/discharge, safety and overall control function for bicycle LED light systems

Proposed Applications

- Charge/discharge control for bicycle rear light, smart home lighting systems and IoT controlled LEDs
- Charge/discharge control for LED lanterns

Bottom Layer

Lib-protection IC

Figure 1. LEDHLGEVB Configuration

1

LEDHLGEVB SCHEMATICS

Schematics

(Please refer BOM List for Resistor and capacitor value)

Figure 2.

BOM List

Table 1. BILL OF MATERIALS FOR THE LEDHLGEVB EVALUATION BOARD (20191211 VERSION)

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
IC1	1	Charge/Discharge controller	-	_	VCT24	ON Semiconductor	LC709301FRF-AUNH	No	Yes
IC2	1	Lib-Protection	-	-	WDFN6	ON Semiconductor	LC05111C13MTTTG	No	Yes
U3, U4	2	Pch MOSFET	-	-	MCPH6	ON Semiconductor	MCH6341	No	Yes
U1, U2	2	Nch MOSFET	-	-	MCPH6	ON Semiconductor	MCH6431	No	Yes
D1	1	Schottky Diode	-	-		ON Semiconductor	MBRA210ET3	No	Yes
D2	1	Schottky Diode	-	-		ON Semiconductor	MBR120ESFT1G	No	Yes
D3	1	Zenner Diode	-	-		ON Semiconductor	MM5Z5V6ST1G	No	Yes
D4	1	LED	Red	-	1608	Stanley	BR1111C	Yes	Yes
L1	1	Coil	10 µH	-		WE	744314101	Yes	Yes
C1 C7, C8	3	Chip Capacitor	0.1 μF	50 V, ±10%	CAP_1005	Murata	GRM155R71H104KE14D	Yes	Yes
C5	1	Chip Capacitor	0.1 μF	50 V, ±10%	CAP_1608	Murata	GRM188F11H104ZA01D	Yes	Yes
C2	1	Chip Capacitor	DNP		CAP_1005	Murata		Yes	Yes
C6	1	Chip Capacitor	1000 pF	50 V, ±10%	CAP_1005	Murata	GRM1552C1H102	Yes	Yes
C3, C4	2	Chip Capacitor	47 μF	16 V, ±10%	CAP_3225	Murata	GRM32ER61C476KE15L	Yes	Yes
C9	1	Chip Capacitor	10 μF	25 V, ±10%	CAP_3216	Murata	GRM31CB31E106KA75L	Yes	Yes
R1, R8–R10, R14, R17	6	Chip Resistor	100 kΩ	0.1 W, ±1%	RES_1005	Rohm	MCR01MZPJ104	Yes	Yes
R12, R16, R18, R19	4	Chip Resistor	30 kΩ	0.1 W, ±1%	RES_1005	KOA	RK73H1ETTP3002F	Yes	Yes
T2	1	Chip Resistor	47 m	1 W, ±1%	RES_3216	Panasonic	ERJ8BWFR047V	Yes	Yes
R4	1	Chip Resistor	DNP	1 W, ±1%	RES_6432	Panasonic	ERJ1TRQF2R2U	Yes	Yes
R3, R5, R6	3	Chip Resistor	2,2 Ω	1 W, ±1%	RES_6432	Panasonic	ERJ1TRQF2R2U	Yes	Yes
R7, R11, R13, R25, R26	5	Chip Resistor	10 kΩ	0.1 W, ±1%	RES_1005	Rohm	MCR01MRTJ103	Yes	Yes
R24	1	Chip Resistor	220 kΩ	0.1 W, ±1%	RES_1005	KOA	ERJ2RKD2203X	Yes	Yes
R21	1	Chip Resistor	680 Ω	0.125 W, ±5%	RES_1005	KOA	RK73B1ETTP681J	Yes	Yes
R20	1	Chip Resistor	1 kΩ	0.1 W, ±5%	RES_1005	Murata	MCR01MZPJ102	Yes	Yes
R22, R23	2	Chip Resistor	5.1 kΩ	0.1 W, ±5%	RES_1005	Rohm	RK73B1ETTP512J	Yes	Yes
R15	1	Chip Resistor	330 Ω	0.1 W, ±5%	RES_1005	Rohm	MCR01MRTF3300	Yes	Yes
R2	1	Chip Resistor	0 Ω		RES_1005	Rohm	MCR01MRTJ000	Yes	Yes
S1	1	TACT SWITCH	-	-	-	ALPS	SKRPACE010	Yes	Yes
T1	1	Thermistor	10 k	-	-	Murata	NXFT15XH103FA2B050	Yes	Yes
J1	1	3 pin Connector	-	-	-	JAE	IL-G-3P-S3T2-SA	Yes	Yes
J2	1	USB_TYPE-C	-	-	-	RoHs	DX07S024JJ2	Yes	Yes

Layout for PCB

Figure 3. Pattern Layer (Top Layer)

Figure 5. Pattern Layer (Inner Layer3)

Figure 7. Silk Layer (Top Layer)

Figure 9. Solder Layer (Top Layer)

Figure 4. Pattern Layer (Inner Layer2)

Figure 6. Pattern Layer (Bottom Layer)

Figure 8. Silk Layer (Bottom Layer)

Figure 10. Solder Layer (Bottom Layer)

CHARGE MODE

USB Connection

- Connect a USB-C (DC 5 V) supply to the USB socket, and charge operation will start automatically to charge the 1-cell Lithium-ion/Polymer (Li+) batteries with 1000 mA charging current
- During the pre-charge state, the device charges the battery with a low predefined current to provide safety
- If the battery voltage reaches over 3.25 V, the operating mode changes from pre-charge mode to CC (constant-current) mode. (The indicator LED blinks at an interval of 1 Hz during the charge operation)

Battery Full Indication

- When the battery voltage reach 4.18 V, the charge mode changes to CV (constant voltage) mode and the charge current is reduced to 50 mA
- Charge operation is stopped if the battery current becomes less than 50 mA
- The indicator LED goes off when the battery is fully charged

NOTE:

- When a new battery is connected the LIB protection IC activates to prevent the battery from discharging, connecting to a USB supply for a few seconds will disable the LIB protection IC
- After a successful battery connection, don't forgot to connect USB charger to the evaluation board to deactivate the LIB protection IC

Figure 11.

Charging Specifications for LEDHLGEVB

- If the battery voltage is below 3.25 V, pre-charge mode is activated
- During pre-charge mode, 70 mA current is supplied as the charge IDD current to the battery
- The input supply voltage via USB must be in the range of 4.0 V to 5.5 V, if the input voltage is out of range, charge operation is disabled to keep the device safe
- It is not recommended to use batteries that are 4.3 V or above in applications
- If the LIB protection IC activates, the charge functions is stopped, to re-start the charge operation detach the USB cable from the USB socket and attach it again
- With the conditions below, charge operation is stopped and the indicator LED goes off
 - i) Voltage level from the USB power is below the battery voltage
 - ii) Temperature of the battery exceeds 58°C

DISCHARGE MODE

Push SW (S1) to Turn ON the LED, DC 4.2 V Power is Provide on the A Terminal

On/Off Switch (S1) (Modes: High, Medium, Low, Flash1, Flash2)

Figure 13.

Specifications for Discharge Operation

- 1. LED lighting operations
 - High mode: A terminal is 4.2 V (LED Current is 1500 mA)
 - Medium mode: A terminal is 4.2 V (LED Current is 600 mA)
 - Low mode: A terminal is at battery voltage (LED Current is 100 mA)
 - Flash1 mode: A terminal is at battery voltage (LED blinks at 10 Hz and current is 600 mA)
 - Flash2 mode: A terminal is at battery voltage (LED blinks at 0.5 Hz and Current is 100 mA)
- 2. Battery discharge operation is stopped to keep the system safe at 3.0 V

- 3. On pushing the SW during the lighting operation, device lighting modes changes from High mode to Flash2 mode respectively
- 4. The switching frequency for boost operation is about 150 kHz
- 5. With the conditions below, the discharge function is stopped, and the LED goes off
 - Battery voltage is under 3.0 V
 - IDD current from battery exceeds 3000 mA
 - The temperature of the battery exceeds 58°C
 - VOUT voltage goes over 6.2 V (on boost operation)

PASS-THROUGH CHARGE TOPOLOGY

If the USB (DC 5 V) is connected to the device keeping the LED ON, the system will automatically activate the Pass-through mode and the LED is powered from the 5 V USB wall charger. USB power is provided directly to the LED and battery in the pass-through charge topology. It is recommended to use a wall charger with a current rating of 2.5 A or above in pass-through.

Figure 14.

LIB-PROTECTION IC

LEDHLGEVB includes a mounted Lib-protection IC: LC05111C20MTTTG, the specifications are given below

Table 2.

Device	Vov [V]	Vovr [V]	Vuv [V]	Vuvr [V]	Vuvr2 [V]	AWUP	loc [A]	loch [A]	loc2 [A]	0 V Charge
LC05111C20MTTTG	4.31	4.11	2.5	2.5	2.9	enable	3.0	2.0	15.0	enable

For details, please refer to the LC05111C20MTTTG datasheet LC05111CMT/D.

FLOW CHART

Flowchart for LED Light

Figure 15.

Flowchart for Buck Charge and Passthrough Mode

STATE MODE TRANSITION

LED Light Mode Transition Diagram with Passthrough (Simple Version)

2019.12.13

Figure 19.

INDICATOR LED

Stand-by, Sleep : LED indicator is lights out.

All OFF

ON OF<u>F</u>

Buck Charge : LED indicator blinks ON and OFF every 500ms during Buck Charge operation..

ON 500ms OFF 500ms OFF 500ms ON	
LED Light ON : LED indicator blinks depends on RSOC.	
RSOC = 100% to 11% ON All OFF OFF	
RSOC = 10% to 1%	
RSOC = 0% 100ms OFF	
	Л

Temperature error, VBUS error : LED blinks 100ms ON and 1900ms OFF during error condition.

ON OFF	1900ms OFF			
100ms ON		_	_	_

Figure 20.

PIN ASSIGNMENT

Table 3. PIN ASSIGNMENT

		. .							Ini	tial	Sle	ер	Stan	d-by	Buck	Charge	LED Li	ght ON
Pin No.	Name	Option	I/O	Function	Port Name	Summary	Active	PullUp	DDR	Latch	DDR	Latch	DDR	Latch	DDR	Latch	DDR	Latch
1	P05/T1PWML/ CK0	Nch	Out	P05	VREF_CNT	VREF Discharge	Low		In	Low	In	Low	In	Low	In	Low	In	Low
2	P06/T1PWMH	Nch	Out	P06	LED	LED Indicator Output	Low		Out	High	Out	High	Out	High	Out	High /Low	Out	High /Low
3	OWP0	-	-	OWP	OWP0	Debugger	-		-	-	-	-	-	-	-	-	-	-
4	P24/AN14/ VCPWM0	Nch	Out	AN14	VBAT_CNT	Divide Battery Voltage	Low		In	Low	In	Low	In /Out	Low	In /Out	Low	In /Out	Low
5	P70/INT0/ T0LCP/AN9	(Nch)	In	INT0 /AN9	VBUS	USB Voltage Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
6	RES	-	In		RES	Reset	Low		-	-	-	-	1	-	-	-	-	-
7	VSS1	-	-		VSS1	GND	-		-	-	-	-	1	-	-	-	-	-
8	CF1/XT1	(Nch)	Out	CF1/XT1	VOUT_CNT	Divide VOUT Voltage	Low		In	Low	In	Low	In/ Out	Low	In/ Out	Low	In/ Out	Low
9	VDD1	-	-		VDD1	VDD / VDD Voltage Input	-		-	-	-	-	I	-	-	-	-	-
10	P10/SO1	Nch	In	P10	P10	NC	-		Out	Low	Out	Low	Out	Low	Out	Low	Out	Low
11	P11/SI1/SB1	Nch	Out	SB1	P11	I2C Slave SDA	-		Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low
12	P12/SCK1	Nch	Out	SCK1	P12	I2C Slave SCL	-		Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low	Out (I2C)	Low
13	P13/INT4/ T1IN/AN7	Nch	In	P13/ INT4	KEY	Key Input	High		In	Low	In	Low	In	Low	In	Low	In	Low
14	P14/INT4/T1I N/AN6	Nch	In	AN6	VBAT	Battery Voltage Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
15	P15/INT3/ T0IN/AN5	Nch	In	AN5	VOUT	LED Light Voltage Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
16	P16/INT2/ T0IN/CPOUT/ HPWM2	CMOS	Out	HPWM2	PWM0	LED Light ON PWM (Q2)	High		Out	Low	Out	Low	Out	Low	Out	Low	Out	PWM
17	P17/BUZ/ INT1/T0HCP/ HPWM2	CMOS	Out	HPWM2	PWM1	Buck Charge PWM (Q4)	Low		Out	High	Out	High	Out	High	Out	PWM	Out	High
18	VSS2	-	-		VSS2	GND	-		-	-	-	-	-	-	-	-	-	-
19	VREF	-	Out	VREF	VREF	Ref Voltage	-		-	VDD	-	GND	-	VDD	-	VDD	-	VDD
20	P00/APIM	Nch	In	APIM	SENB-	Battery Current – Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
21	P01/APIP	Nch	In	APIP	SENB+	Battery Current + Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
22	P02/AN2/ CPIM	Nch	In	AN2	TSENSE	Thermistor Voltage Input	-		In	Low	In	Low	In	Low	In	Low	In	Low
23	P03/AN3/ VCPWM0	CMOS	Out	P03/ VCPWM0	GATE2	Gate2(Q3) Control	High		Out	Low	In	Low	Out	Low	Out	Low	Out	High/ PWM
24	P04/AN4/ VCPWM1	Nch	Out	P04	GATE1	Gate1(Q1) Control	Low		In	Low	In	Low	In	Low	Out	Low	In	Low

SOFTWARE DIAGRAM

BLOCK DIAGRAM

Figure 22.

WAVEFORMS SHOWING EFFICIENCY, STANDBY CURRENT AND CHARGE CHARACTERISTICS

(Lib-protection IC Included)

BUCK CHARGE WAVEFORMS

Figure 26.

Figure 27. Connecting VBUS During Standby to Start the Buck Charge

Figure 28. Disconnecting VBUS During Buck Charge Changes the Device to Standby Mode

LED MODES WAVEFORMS

oped	19/12/15 09.	29.14	Ma	T.	E.	125kS/s
LED	Out	an a	Dia		4.2 v	100
# 			Hi	gh mode	e start (LE	ED ON)
[•] UP-	Con				No. 19 Julie	
P03	0	N				
SVV(s1)					
	i		20	OM2 : 62.5 k		50m
					-	
Ŧ						
<u>I</u>			WWW			
=			Telesa.			
+				MAADAAMAA		Nummun
					-	
÷						
CH1 INPUT	CH2 INPUT	DC Full	CH4 INPUT	No data		
5.00 V/div	5.00 V/div	5.00 V/div	5.00 V/div			

Figure 29. LED ON (High Power Mode) by Pressing Key During Standby

LED Out High mod	Main : 125 k	4.2 \	/ ^{100ms,}
UP-Con	Middl	e mode start	
P03	Adj	ust 600 mA F	PWM
$\frac{\prod_{12}^{11} SW(s1) - 112,0000}{-130,0000}$	ms		
1/⊿T55.5556 I	121 200M2 : 62.5 k		50ms/d
±			
=			
CH2 INPUT CH2 INPUT CH3 INPUT	CH4 INPUT MILLER	*****	

Figure 30. Switch to Middle Power Mode by Pressing Key During High Power Mode

3AWA 🔶 2019/12/ ped	13 09:34:50	ъ		Normal 125kS/s
LED Ou	t Mic	dle mode	Battery V	¹⁰⁰¹ oltage
UP-Cor	1			
			Low mode start	-
P03			Adjust 100 mA F	PWM
SW(s1)		-		
=				
		ZOOME	1 : 62.5 k	50m:
.				
L				
-				
	1			
+				
CH1 INPUT				
5.00 V/div 5.00	//div 5.00 V/d	iv 5.00 V/div	uata	

Table 4. TEST PARAMETERS

Indications	Test points on PCB
Up-Con	P16
Down-Con	P17
SW (S1)	AN7
LED Out	А
P03	P03
VBUS	VBUS
P04	P04

PASS-THROUGH MODE WAVEFORMS

UP-Con		UP-Con s	stop	
Down-Con ¹¹ ₁₂ VBUS	0.850000 s -1.75000 s -3.025000 s		arge stop VBUS	ou
1/⊿T	-330.579mHz	200M2 : 62.5 k		500
₽ N				
	j			

Figure 32. Pass-through Starts when VBUS is Inserted while LED is ON

GAWA 🔸 2019/12/1 oped	3 10:39:22		ъ	Normal 12.5kS/s
	VBU	S Volta	ge ^{zs k}	1s/d
.		ED On		VBUS Out
P03				LED Off
Down-C	on			Charge stop
SW(s1)		20	00M2 : 62 5 k	500ms/c
Ŧ				
-				
······································				
CH1 INPUT DC Full 5.00 V/div 5.00 V/div	IPUT CH3 INPUT II DC Full /div 5.00 V/div	CH4 INPUT DC Full 5.00 V/div	No data	

Figure 33. Initially LED is OFF and Battery is Charging. Pass-through Starts and the LED Turns ON when the Switch is Enabled

WAVEFORMS FOR VARIOUS LIGHTING MODES

Figure 34. Waveforms for High Mode (LED Current ~ 1500 mA)

Figure 36. Waveforms for Low Mode (LED Current ~ 100 mA)

Figure 38. Waveforms for Flash2 Mode (LED Current = 100 mA)

Figure 35. Waveforms for Medium Mode (LED Current ~600mA)

Figure 37. Waveforms for Flash1 Mode (LED Current ~ 600 mA)

Parameters

ON Semiconductor is licensed by the Philips Corporation to carry the $\ensuremath{\mathsf{I}}^2\ensuremath{\mathsf{C}}$ bus protocol.

LEDHLGEVB

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered "AS IS" and without warranty of any kind including, but not limited to, that the board is production-worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any For more information and documentation, please visit www.onsemi.com

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support:

ON Semiconductor Website: www.onsemi.com

Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative