LB8503V

DC Fan Motor Speed Control IC

Overview

The LB8503V is an improved functionality version of the LB8500 and LB8502 products that features the added functions listed below. The LB8503V supports both single-phase and three-phase applications.

Added Functions

- Supports Origin Shifting in the Speed Control Function
- Adds a Dedicated Pin for Setting the Soft Start Time: This allows a longer start time to be set without reducing the response time when changing speed.
- FG Output Pin Added

Functions and Features

- Achieves Linear Speed Control: Applications can set the slope of the change in motor speed with change in the input duty.
- Minimized Speed Fluctuations in the Presence of Line or Load Variations
- Allows a Minimum Speed to be Set
- Soft Start Function
- Settings Using External Capacitors and Resistors (to Support Easier Mass Production of End Products)
- Supports both PWM Duty and Analog Voltage Control Inputs

MARKING DIAGRAM

- **LB8503** = Specific Device Code
- **Y** = Year of Production
- **M** = Assembly Operation Month
- **WL** = Wafer Lot Number

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB8503V−TLM−E</td>
<td>SSOP16</td>
<td>2,000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb-Free)</td>
<td></td>
</tr>
<tr>
<td>LB8503V−W−AH</td>
<td>SSOP16</td>
<td>2,000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb-Free/ Halogen Free)</td>
<td></td>
</tr>
</tbody>
</table>

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_CC max</td>
<td>V_CC pin</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_O max</td>
<td>E0 pin</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td>FG Output Pin Output Voltage</td>
<td>V_FG max</td>
<td>FGOUT pin</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>FG Output Pin Output Current</td>
<td>I_FG max</td>
<td>FGOUT pin</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Allowable Power Dissipation</td>
<td>P_d max</td>
<td>When mounted on a circuit board</td>
<td>0.8</td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_upr</td>
<td></td>
<td>−30 to +95</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td></td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Specified circuit board: 114.3 x 76.1 x 1.6mm³, glass epoxy.

RECOMMENDED OPERATING RANGE (T_A = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range 1</td>
<td>V_CC1</td>
<td>V_CC pin</td>
<td>7.5 to 17</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage Range 2</td>
<td>V_CC2</td>
<td>V_CC pin, with V_CC shorted to 6 VREG</td>
<td>5.5 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_O</td>
<td>E0 pin</td>
<td>2.5</td>
<td>mA</td>
</tr>
<tr>
<td>6 V Constant Voltage Output Current</td>
<td>I_REG</td>
<td></td>
<td>−5</td>
<td>mA</td>
</tr>
<tr>
<td>CTL Pin Voltage</td>
<td>V_CTL</td>
<td></td>
<td>0 to 6 VREG</td>
<td>V</td>
</tr>
<tr>
<td>LIM Pin Voltage</td>
<td>V_LIM</td>
<td></td>
<td>0 to 6 VREG</td>
<td>V</td>
</tr>
<tr>
<td>VC1 Pin Voltage</td>
<td>V_CI</td>
<td></td>
<td>0 to 6 VREG</td>
<td>V</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_CC = 12 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>I_CC</td>
<td></td>
<td>5.5</td>
<td>6.5</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

6 V CONSTANT VOLTAGE OUTPUT (VREG PIN)

- **Output Voltage**
 - VREG
 - VREG = LB8503−TLM−E
 - VREG = LB8503−W−AH
- **Line Regulation**
 - ΔVREG1
 - V_CC = 8 to 17 V
- **Load Regulation**
 - ΔVREG2
 - I_O = −5 to 5 mA
- **Temperature Coefficient**
 - ΔVREG3
 - Design target (Note 2)

INTEGRATING AMPLIFIER BLOCK (E01)

- **Common-mode Input Voltage Range**
 - VICM
 - 2.0
- **High-level Output Voltage**
 - V_OH(E01)
 - IEO1 = −0.2 mA
 - VREG − 1.2
 - VREG − 0.8
- **Low-level Output Voltage**
 - V_OH(E01)
 - IEO1 = 0.2 mA
 - 0.8
 - 1.0

INTEGRATING AMPLIFIER BLOCK (E03)

- **High-level Output Voltage**
 - V_OH(E03)
 - IEO1 = −0.2 mA
 - VREG − 1.2
 - VREG − 0.8
- **Low-level Output Voltage**
 - V_OH(E03)
 - IEO1 = 0.2 mA
 - 0.8
 - 1.0

www.onsemi.com
ELECTRICAL CHARACTERISTICS
(T_A = 25°C, V_{CC} = 12 V) (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGIN PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level Input Voltage</td>
<td>VFGH</td>
<td></td>
<td>3.0</td>
<td></td>
<td>VREG</td>
<td>V</td>
</tr>
<tr>
<td>Low-level Input Voltage</td>
<td>VFGL</td>
<td></td>
<td>0</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Open Voltage</td>
<td>VFGO</td>
<td>VREG − 0.5</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>VFGS</td>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>High-level Input Current</td>
<td>IFGH</td>
<td>VFGIN = 6 VREG</td>
<td>−10</td>
<td></td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Low-level Input Current</td>
<td>IFGL</td>
<td>VFGIN = 0 V</td>
<td>−140</td>
<td>−110</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>FGOUT PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Saturation Voltage</td>
<td>VFG</td>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>IFGL</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>RC PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level Output Voltage</td>
<td>VOH(RC)</td>
<td></td>
<td>3.2</td>
<td>3.45</td>
<td>3.7</td>
<td>V</td>
</tr>
<tr>
<td>Low-level Output Voltage</td>
<td>VOL(RC)</td>
<td></td>
<td>0.8</td>
<td>0.95</td>
<td>1.05</td>
<td>V</td>
</tr>
<tr>
<td>Clamp Voltage</td>
<td>VCLP(RC)</td>
<td></td>
<td>1.5</td>
<td>1.65</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>CTL PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level Input Voltage</td>
<td>VCTH</td>
<td></td>
<td>2.0</td>
<td></td>
<td>VREG</td>
<td>V</td>
</tr>
<tr>
<td>Low-level Input Voltage</td>
<td>VCTL</td>
<td></td>
<td>0</td>
<td>1.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Open Voltage</td>
<td>VCTO</td>
<td>VREG − 0.5</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High-level Input Current</td>
<td>ICTL</td>
<td>VFGIN = 6 VREG</td>
<td>−10</td>
<td></td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Low-level Input Current</td>
<td>ICTL</td>
<td>VFGIN = 0 V</td>
<td>−140</td>
<td>−110</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>C PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level Input Voltage</td>
<td>VOH(C)</td>
<td>VREG − 0.3</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>Low-level Input Voltage</td>
<td>VOL(C)</td>
<td>VREG − 0.1</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>LIM PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IB(LIM)</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Common-mode Input Voltage Range</td>
<td>VILIM</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SOFT PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Current</td>
<td>IC(SOFT)</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Operation Voltage Range</td>
<td>VI(SOFT)</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCI PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IB(VCI)</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Common-mode Input Voltage Range</td>
<td>VIVCI</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCO PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level Output Voltage</td>
<td>VOH(VCO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Low-level Output Voltage</td>
<td>VOL(VCO)</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>V</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. The design specification items are design guarantees and are not measured.
Figure 1. P_d max vs. T_A (°C)

PIN ASSIGNMENT

PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>1</td>
<td>One-shot multivibrator pulse width setting. Connect a resistor between this pin and VREG, and a capacitor between this pin and ground.</td>
</tr>
<tr>
<td>SOFT</td>
<td>2</td>
<td>Soft start time setting. Connect a capacitor between this pin and VREG.</td>
</tr>
<tr>
<td>VREG</td>
<td>3</td>
<td>6 V regulator output. Connect a capacitor between this pin and ground for stabilization.</td>
</tr>
<tr>
<td>VCC</td>
<td>4</td>
<td>Power supply. Connect a capacitor between this pin and ground for stabilization.</td>
</tr>
<tr>
<td>CVI</td>
<td>5</td>
<td>Control voltage input</td>
</tr>
<tr>
<td>CVO</td>
<td>6</td>
<td>Duty pulse signal smoothed voltage output</td>
</tr>
<tr>
<td>CTL</td>
<td>7</td>
<td>Duty pulse signal input. The speed is controlled by the duty of this pulse signal.</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>Duty pulse signal smoothing. Connect a capacitor between this pin and VREG.</td>
</tr>
<tr>
<td>LIM</td>
<td>9</td>
<td>Minimum speed setting. Normally, the 6V regulator level is resistor divided to set this pin's input level.</td>
</tr>
<tr>
<td>FGIN</td>
<td>10</td>
<td>FG pulse input</td>
</tr>
<tr>
<td>FGOUT</td>
<td>11</td>
<td>FG pulse output</td>
</tr>
<tr>
<td>GND</td>
<td>12</td>
<td>Ground pin</td>
</tr>
<tr>
<td>NC</td>
<td>13</td>
<td>NC pin</td>
</tr>
<tr>
<td>EI</td>
<td>14</td>
<td>One-shot multivibrator output and integrating amplifier input. A capacitor must be connected between this pin and E0 for this integration.</td>
</tr>
<tr>
<td>EO1</td>
<td>15</td>
<td>Integrating amplifier output. (For use with an accelerating driver IC if the command voltage becomes low (single-phase systems).)</td>
</tr>
<tr>
<td>EO3</td>
<td>16</td>
<td>Integrating amplifier inverting output. (For use with an accelerating driver IC if the command voltage becomes high (three-phase systems).)</td>
</tr>
</tbody>
</table>
Combination with an accelerating driver IC when the command voltage goes low (single-phase systems).

Figure 3.
Combination with an accelerating driver IC when the command voltage goes high (three-phase systems).

Figure 4.
Speed Control Diagrams

The slope is determined by the external constant connected to the RC pin.

For a smaller RC time constant

For a larger RC time constant

The slope is determined by the external constant connected to the RC pin.

Set minimum speed Variable speed Full speed

Low on duty High on duty

CTL pin

6 VREG

EO pin

0 V

LIM voltage

EO1 voltage

Minimum speed

Determined by the LIM pin voltage

Determined by the LIM pin voltage

Figure 5.

Startup Timing (Soft Start)

The slope can be changed with the capacitor connected to the C pin (A larger capacitor increases the slope.)

Soft start

Stop

VCC pin

CTL pin

SOFT pin

Stop

Full speed

Full speed

Figure 6.
Supplementary Operational Descriptions

The LB8503V accepts a duty pulse input and an FG signal from the driver IC, and generates the driver IC control voltage so that the FG period (motor speed) becomes proportional to the control voltage.

As shown in the figure below, the LB8503V generates a pulse signal from edges on the FG signal and then generates a pulse width waveform determined by the RC time constant in a one-shot multivibrator. The LB8503V then integrates that pulse waveform to create the output driver IC control voltage (a DC voltage).

It is also possible to change the slope of the VCTL/speed relationship as shown in the speed control diagram in the previous section by changing the pulse width with the RC time constant. Note, however, that since pulses determined by this RC time constant are used, variation in the RC components will appear as speed control errors.
Pin Setting Procedures
(Provided for Reference Purposes)

[RC Pin]
The slope in the speed control diagram is determined by
the RC pin time constant.

![Figure 9.](image)

1. Determine the FG signal frequency \(f_{FG} \) (Hz) at
the motor’s highest speed.
(When 2 FG pulses are created on each motor
revolution.)

\[
f_{FG} = \frac{2 \text{ rpm}}{60} \quad (\text{eq. 1})
\]

2. Determine the time constant for the RC pin.
(Let DUTY be the control duty at the highest
motor speed. For example, 100% = 1.0,
60% = 0.6)

\[
R \times C = \frac{\text{DUTY}}{3 \times 0.85 \times f_{FG}} \quad (\text{eq. 2})
\]

3. Determine the resistor and capacitor values.
The range of capacitors that can be used is from
0.01 to 0.015 \(\mu \text{F} \) due to the charge capabilities of
the RC pin circuit.
Therefore, an appropriate resistor value can be
determined from either (eq. 3) or (eq. 4) below
from the result obtained in step above.

\[
R = \frac{R \times C}{0.01 \mu \text{F}} \quad (\text{eq. 3})
\]

\[
R = \frac{R \times C}{0.015 \mu \text{F}} \quad (\text{eq. 4})
\]

Note that the temperature characteristics of the
curve are determined by the temperature
characteristics of the capacitor connected to the
RC pin.
A capacitor with excellent temperature
characteristics must be used to minimize motor
speed variation with temperature.
[CVO and CVI Pins]
These pins determine the origin of the slope. (To set the origin to 0% at 0 rpm, short CVO to CVI.)

1. **X axis shift** (Resistor dividing the CVO to ground potential).

 ![Figure 10](image1)

 Figure 10.

 To shift the characteristics from a 0% = 0 rpm origin to a situation where the speed at a duty of 30% is shifted to 0%:

 First, determine the required CVI pin input voltage at 0%.

 \[
 \text{CVI} = 6 - (4 \times \text{DUTY}) = 6 - (4 \times 0.3)
 \]

 \[
 = 6 - 1.2 = 4.8 \text{ V}
 \]

 (eq. 5)

 Next, when CVO is 6 V, determine the resistor values for the resistor divider between CVO and ground such that the midpoint becomes 4.8 V.

 \[
 \frac{\text{CVO - CVI}}{\text{CVI - ground}} = \frac{1.2 \text{ V}}{4.8 \text{ V}} = \text{a ratio of 1:4}
 \]

 (eq. 6)

 From the above, the desired resistor values will be 20 kΩ between CVO and CVI and 80 kΩ between CVI and ground.

 Note that the slope will change. (In this case, since the resistor ratio is 1:4, the result will be 4/5 of (or 0.8 times) the original slope.)

 If required, the RC pin resistor value must be changed to correct the slope.

 ![Figure 11](image2)

 Figure 11.
2. Y axis shift
(Resistor dividing the CVO to \(V_{CC}\) potential)

\[
\text{(RPM)}
\]

Motor
Full Speed

Figure 12.

To shift the characteristics from a 0\% = 0 rpm origin to a situation where the speed is 0 rpm at a duty of 30\%:
First, determine the required CVO pin input voltage at 0\%.
\[
CVO = 6 - (4 \times \text{DUTY}) = 6 - (4 \times 0.25) \quad \text{(eq. 7)}
\]
\[
= 6 - 1 = 5 \text{ V}
\]

Determine the resistor values such that at \(CVO = 5 \text{ V}\), CVI becomes 6 V.
\[
\frac{CVO - CVI}{CVI - V_{CC}} = \frac{1 \text{ V}}{6 \text{ V}} = \text{a ratio of 1:6} \quad \text{(eq. 8)}
\]

From the above, the desired resistor values will be 20 k\(\Omega\) between CVO and CVI and 80 k\(\Omega\) between CVI and ground.
(Due to the current capability of the CVO pin, the total resistor value must exceed 100 k\(\Omega\).)
Note that the slope will change. (In this case, since the resistor ratio is 1:6, the result will be \(6/7\) of (or 0.86 times) the original slope.)
If required, the RC pin resistor value must be changed to correct the slope.

Figure 13.
[LIM Pin]
The minimum speed is determined by the LIM pin voltage.

1. Determine the ratio of the required minimum speed and the maximum speed.
 \[R_a = \frac{\text{minimum speed}}{\text{maximum speed}} \]
 (eq. 9)
 In the example in the figure above:
 \[R_a = \frac{3000}{10000} = 0.3 \]
 (eq. 10)

2. Determine the product of the duty that produces the maximum speed and the value from Equation 9.
 \[C_a = \text{maximum speed duty} \times R_a \]
 (eq. 11)
 For example:
 \[C_a = 0.9 \times 0.3 = 0.24 \]
 (eq. 12)

3. Determine the required LIM pin voltage:
 \[\text{LIM} = 6 - (4 \times C_a) \]
 (eq. 13)
 For example:
 \[\text{LIM} = 6 - (4 \times 0.24) = 5 \text{ V} \]
 (eq. 14)

4. Generate the LIM voltage by resistor dividing the 6 V regulator voltage.
 For example, the resistor ratio to create a 5 V level will be 1:5.
 Thus the resistor values will be 10 kΩ between 6 VREG and LIM and 51 kΩ between LIM and ground.
[C Pin]
Since a capacitor that can smooth the pin voltage is connected to the C pin, if the CTL pin input signal frequency is f (Hz), then the capacitor must meet the following condition. (Here, R is the IC internal resistance of 180 Ω (typical).)

\[\frac{1}{f} = t < RC \]
(eq. 15)

Note that the larger the capacitor, the slower its response to changes in the input signal will be.

Figure 16.
APPLICATION EXAMPLE 2

[Setting the Minimum Speed for an Origin of 0% = 0 rpm]

Figure 17.

When the speed control diagram origin is 0% = 0 rpm, the CVO pin is connected to the CVI pin.

If the minimum speed is not set, connect the LIM pin to the 6 VREG pin.

Figure 18.
When the speed control diagram origin is set so the motor turns at 0%, the CVO pin to ground potential difference is resistor divided and the midpoint is input to the CVI pin.

The speed at 0% can be changed with the resistor ratio.
When the origin in the speed control diagram is set so that the motor starts turning when the duty is above 0%, the potential difference between the CVO pin and \(V_{CC} \) is resistor divided, and that divided level is input to the CVI pin.

The duty at which rotation starts can be changed by changing the resistor ratio.

Note that the total value of the resistors R4 and R5 must exceed 100 kΩ.
When the motor speed is controlled by a DC voltage, the voltage must be in the range from 2 V to 6 VREG. Note that the motor stops when the control voltage is at 6 VREG, and the motor speed increases as the voltage falls.
With this circuit, the motor speed remains constant even if there are fluctuations in the supply voltage or static voltage. It is also possible to input a fixed-duty signal to the CTL pin signal input as an input signal for which soft start is enabled at startup.
APPLICATION EXAMPLE 7

Figure 27.

In this circuit, the dynamic range of the LB8503V EO pin (the range from the amplifier block output high to output low levels) must be wider than the dynamic range (from the high to low levels of the PWM signal) of VTH pin of driver IC with which this IC is combined.

However, since the LB11660FV PWM low-level voltage is lower than the LB8503V amplifier output low-level voltage, it must be resistor divided.
SSOP16 (225mil) CASE 565AM ISSUE A

DATE 23 OCT 2013

SOLDERING FOOTPRINT *

NOTE: The measurements are not to guarantee but for reference only.

*This information is generic. Please refer to device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “/C0071", may or may not be present.

GENERIC MARKING DIAGRAM *

XXXXXX = Specific Device Code
Y = Year
M = Month
DDD = Additional Traceability Data

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.