

Page 2 FPGA-to-ASIC Conversion Reference Manual

HBD872

1.0	 Purpose . 3

2.0	 How to Maximize Cost Savings in FPGA Conversions . . 3

2.1	 Packaging Considerations 3

2.2	 JTAG - Match FPGA or Optimize for ASIC 4

2.3	 Core Power Supply Voltage 4

2.4	 Other Savings: Power Reduction, Configuration
	 EPROM, Board Space 4

2.5	 Converting Multiple FPGAs 4

3.0	 How to Reduce Time-to-Market 5

3.1	 FPGA Prototype to ASIC Production 5

3.2	 Parallel Design Flow 6

3.3	 Design Documentation 6

3.4	 System Timing Budgets and I/O Timing
	 Constraints . 6

3.5	 Internal Timing Constraints 8

3.6	 Design Organization and Hierarchy 8

3.7	 RTL and Netlist Handoff Considerations 8

4.0	 How to Avoid Getting Locked into IP 9

4.1	 Proprietary IP . 9

4.2	 Engage with the Silicon Vendor Early in the
	 Design Cycle . 9

4.3	 Use Soft IP Cores Whenever Possible 9

4.4	 Embedded IP . 10

4.5	 Back Porting ASIC IP into FPGA Designs 10

4.6	 IP Quality . 10

5.0	 FPGA-to-ASIC Conversion Verification 11

5.1	 Verification Strategies 11

5.2	 Formal Verification 11

5.3	 Static Timing Analysis 11

5.4	 Test Vectors . 13

5.5	 Power Simulations 13

5.6	 Design for Test 14

6.0	 Good and Bad Design Practices Specific to FPGA
	 Conversions . 14

6.1	 FPGA Configuration Dependencies and
	 Emulation . 14

6.2	 Resets . 15

6.3	 Memory Initialization 15

6.4	 Synchronous vs. Asynchronous Memory 15

6.5	 I/O Standards and Matching FPGA I/O
	 Characteristics 16

6.6	 Operating Conditions16

6.7	 ESD, Latchup, Hot-Socketing 16

6.8	 Simultaneously Switching Outputs, Input Noise . . 16

6.9	 I/O Voltage Banks 17

6.10	 On-Chip Terminations Using Digital
	 Controlled Impedance 17

6.11	 Double Data-Rate Registers 17

7.0	 General List of Good and Bad Design Practices18

7.1	 Synchronous Design 18

7.2	 Input Synchronization (Metastability) 18

7.3	 Multiple Clock Domains 18

7.4	 Gated Clocks . 19

7.5	 Finite State Machines 19

7.6	 Latches . 20

7.7	 Internal Tri-States 20

7.8	 Time Delay . 20

7.9	 Pulse Generators 21

7.10	 Direct Action I/Os 21

8.0	 Conversion Checklist 21

Table of Contents

Page 3ON Semiconductor

HBD872

1.0	 Purpose

A fundamental decision a designer must make for any
new design is which hardware platform makes the most
sense for the application. For engineers the technological
issues of performance, power, quality, etc. are usually the
first things considered. However, the business issues of
cost and time-to-market (TTM) are just as critical. You can
design the fastest product but if a competitor beats you to
market then gaining market share will be more difficult even
if your product is superior. That is why cost and TTM issues
usually drive technological decisions, and why prototyping
with FPGAs and converting to ASIC for production can
often make sense.

This guide will help the designer create technology-
independent portable designs specifically for the purpose
of converting FPGA designs into ASIC designs with the
best possible TTM and cost reduction solution. This guide
is also useful for creating portable ASIC designs. ASIC
houses often obsolete manufacturing processes after just
a few years, making it necessary to port the design to
another vendor.

The portability issues covered by this guide include
documentation, packaging, IP, verification, synchronous
design, and other issues that directly affect FPGA-to-ASIC
and ASIC-to-ASIC migrations.

2.0	How to Maximize Cost Savings in FPGA
Conversions

FPGA products focus heavily on a time-to-market value
proposition. The field programmable nature of FPGA
technology facilitates extremely fast design/debug iterations
that lead to faster TTM. Even though FPGA technology
can never match the performance and capacity inherent
with cell-based technology, the latest high-end FPGA
technologies offer enough of both for most applications.
However, the per unit cost of high-end FPGAs is prohibitive
for all but the lowest volume applications (less than a few
thousand units per year).

ASIC technology offers the greatest technological benefit
in terms of performance, power and capacity. However,
technical advancements in shrinking geometries have
exponentially increased reticle costs required for every new
design. This increase in reticle cost translates to excessive
non-recurring engineering (NRE) costs, making deep
sub-micron cell-based ASICs too expensive for all but the
highest volume applications. Additionally, the development
span and risk associated with this technology makes it
difficult to compete in terms of TTM.

The two extremes of cell-based NRE and FPGA per unit
cost have left a significant gap in the mid-volume market.
This gap has led to the emergence of structured ASIC
products. Structured ASIC technology overcomes the two
extremes by offering designers a solution with the capacity
and performance required for modern applications but
without the high NRE of cell-based ASIC technology and
high per unit cost of FPGA technology.

Designing an application in an FPGA through the prototype
stage and then converting that design into either a cell-
based ASIC or structured ASIC, depending on volume, will
provide the most cost effective solution for your application.
Figure 1 illustrates tradeoffs between these platforms.

In addition to choosing the appropriate ASIC platform there
are other considerations that can increase cost savings
during conversion from an FPGA.

2.1	 Packaging Considerations

The primary reason ASICs are less expensive than FPGAs
is that ASICs use less silicon area to implement a given
function. However, packaging can be a significant part of
the total cost. For prototyping, many designers select the
largest FPGA device in the largest package just to avoid
running out of gates or pins. This approach can lead to
an expensive ASIC solution if converted directly. Because
package costs are directly related to the number of pins,
designers should be on the lookout for ways to reduce
package pin count.

If there are many unused I/Os, then converting an FPGA
into a smaller ASIC package can enhance cost savings
significantly. In order to reduce the size of the package,
the board has to either be redesigned to support the
smaller ASIC package or designed to support two package

Figure 1. Design Platform Tradeoffs

FPGA

NRE, TTM

Unit Cost, Power

Cell-Based
ASIC

Structured
ASIC

FPGA

NRE, TTM

Unit Cost, Power

Cell-Based
ASIC

Structured
ASIC

Page 4 FPGA-to-ASIC Conversion Reference Manual

HBD872

footprints, one for the FPGA and one for the ASIC. Figure
2 illustrates a package shrink approach using concentric
pad rings.

A similar strategy can be used with ball grid array packages
where the outer signal balls on the FPGA are not used,
making it possible to replace it with an ASIC having a
smaller body size with fewer rows of solder balls.

2.2	 JTAG - Match FPGA or Optimize for ASIC

Another area where significant cost savings can be
achieved is with partial JTAG implementation. Unused
or “no connect” pins can greatly increase die size when
FPGA compatibility is maintained. In the FPGA, all unused
I/O pins still have JTAG boundary scan support. Board
level testers may use those pins to test interconnect on
the board even though the pins are not used in normal
operation. In a 100 percent drop-in replacement device it is
necessary to retain these unused pins and associated I/O
cells, resulting in a larger than necessary die size.

If your design has a significant number of unused I/Os
you should work with the board level test group to avoid
this dependency. It is still feasible to support the boundary
scan register inside the ASIC to match register lengths, but
connections to the outside of the chip should be avoided.
For example, JTAG on all pins of a device with 30 percent
“no connect” pins will double the size of the ASIC die.
By using optimized JTAG on a reduced number of “no
connects” the die size can be greatly reduced, leading to
more per unit cost savings.

2.3	 Core Power Supply Voltage

The supply voltage used to power the FPGA core has a
limiting effect when selecting conversion technologies.
Generally 1.8 V calls for 0.18 mm ASIC technology, 1.5 V
calls for 0.15 mm, 1.2 V calls for 0.13 mm technology, etc.
As the voltage drops, finer feature size technologies are
required for good performance. This results in higher NRE
tooling costs and potentially higher piece prices.

If the core supply voltage can be changed during the
conversion, it is possible that a less expensive, older
process technology ASIC solution can be used. This
flexibility can be achieved by providing an independent
core supply regulator on the board for any FPGAs that
might be converted.

2.4	 Other Savings: Power Reduction,
Configuration EPROM, Board Space

There are numerous peripheral cost saving benefits at the
board level generated by conversion from FPGA- to-ASIC
technology. Since ASICs use considerably less power
than FPGAs, power supplies can often be modified to
reduce cost. Voltage regulators can be exchanged for less
expensive models that handle less current, unnecessary
heat sinks can be removed, etc. FPGA configuration
EPROMs can be removed, saving component cost. Any
removal of components or reduction in package size saves
board space. Of course, being able to reduce the board
size directly equates to additional cost savings.

2.5	 Converting Multiple FPGAs

In addition to the savings possible through single FPGA-to-
ASIC conversions, even greater savings can be achieved
by either translating multiple FPGAs into a single ASIC for
one product or translating multiple disjoint FPGAs into a
single ASIC for use in multiple products. The single product
multiple-to-one conversion benefits are fairly obvious.
The more programmable devices combined into a single
ASIC, the greater the cost reduction for that product in
terms of both direct component cost and board real estate.
The downside of a multiple-to-one conversion is the
engineering resources required by both the ASIC supplier
and the customer to implement the design. Multiple-to-
one conversions require an in-depth understanding of the
timing and interaction between all devices being integrated.
Additionally, some design changes are inevitable. External
tri-state busses will need to be converted to uni-directional
busses. A top-level design architecture stitching together
all of the devices being integrated will have to be created
and fully verified.

ASICASIC

FPGA

Figure 2. Package Shrink and Concentric Pad Rings

Page 5ON Semiconductor

HBD872

Combining multiple disjoint FPGAs into a single ASIC is
possible, due to greater capacities of ASIC technology,
and can lead to conversion cost savings across multiple
product lines. Disjoint FPGAs are a number of FPGAs that
all have different functions. The FPGAs can be located on
the same board or can be designed into several different
boards. Combining these types of FPGAs into a single ASIC
requires up front coordination (same footprint, different I/O,
etc.) but can lead to volume cost savings.

Due to the engineering effort required, multiple-to-one
conversions may not make sense for every application but
should be considered due to the significant cost savings
potential.

3.0	 How to Reduce Time-to-Market

Time-to-market is a very important issue that has to be
taken into account when starting any new project. TTM
is not only critical in beating competitors to market but
also impacts the profitability of the product. The longer it
takes to get a product to market the greater the impact on
market share. If TTM is the biggest factor for a particular
application, then no other digital logic platform can match
the TTM benefits of FPGAs, offering very short spans from
design completion to prototypes. However, if the product
ships more than a few thousand units per year then FPGAs
quickly become too expensive.

Designs that are targeted directly to ASIC technology allow
significant cost savings in volume but often require design
cycles up to 24 months, primarily due to the verification

effort. Even with the increased verification effort, full
ASIC designs induce much greater risk than FPGA
implementations.

Reducing TTM is one of the most important factors driving
the structured ASIC industry. TTM is optimized by reducing
design and manufacturing cycles. Providing pre-designed,
built-in features and functions minimizes the design cycle.
Pre-designed functions can include configurable IO, power
grids, block RAM, timing generators, and other embedded
IP. Structured ASICs reduce manufacturing cycle time as
there are fewer layers to be processed.

Prototyping in an FPGA and then converting to either a
structured or cell-based ASIC provides a path that reduces
TTM to manageable levels while at the same time offering a
cost effective solution for mid- to high- volume applications.
This design methodology also provides minimal risk of
silicon re-spins since the function of the design is first
proven in a programmable platform.

3.1	 FPGA Prototype to ASIC Production

By using the FPGA-to-ASIC conversion flow, it is possible
to get the TTM benefits of FPGA technology and still
achieve significant cost savings as volume increases. To
accomplish this, designers first prototype and go into limited
production using FPGA technology. Then, while production
is ramping-up, the FPGA design is transferred into an
ASIC using the FPGA-to-ASIC conversion methodology,
as shown in Figure 3. Using this methodology the product
is ready for the market as soon as the system design is
finalized.

Figure 3. FPGA-to-ASIC Conversion Methodology

System
Specification

Hardware
Design

Hardware
Verification

Software
Design & Debug

FPGA(s)
Silicon

(Prototype)

HW/SW
Integration &
Verification

FPGA(s) to
ASIC

Conversion

ASIC
Silicon

(Production)

Page 6 FPGA-to-ASIC Conversion Reference Manual

HBD872

The FPGA-to-ASIC conversion methodology shown above
enables short FPGA verification cycles while at the same
time providing the cost effectiveness of an ASIC solution
during production. Even multi-million gate designs can be
prototyped on a board using multiple FPGAs, and then
later be translated into a single ASIC.

The designer can plan ahead to ensure a smooth
conversion from FPGA to ASIC by targeting an FPGA-to-
ASIC conversion methodology flow at the beginning of a
design cycle.

3.2	 Parallel Design Flow

The more advanced parallel design flow shown in Figure
4 is for designers with previous conversion experience
that desire to compress their FPGA prototype and ASIC
development schedules. Designers work with an ASIC
vendor to develop a flow for co-designing or designing
the FPGA and ASIC in parallel such that once the
FPGA prototypes are approved, the ASIC design can be
immediately released into fabrication.

This approach requires a common compatible FPGA
and ASIC tool set, requires both implementations to be
developed in parallel and requires rigorous maintenance
of changes to the RTL code and automatic recompiles.
However, the total design cycle time savings to the final
production ASIC can be significant.

3.3	 Design Documentation

Good documentation reduces TTM by eliminating
ambiguity and reducing the need to communicate with
the designer. A solid design specification is important for
system design and will help the FPGA-to-ASIC conversion
flow. Documentation should be updated as the design
progresses and is valuable both for the designer and
anyone who may need to support the product in the future.

Documentation checklist:

•	 Naming conventions

•	 Design tricks

•	 Use of special FPGA features

•	 Operating conditions

•	 Chip-level/system timing budgets

•	 Asynchronous timing

•	 Timing margins

•	 Verification suites

•	 Synthesis scripts

•	 I/O characteristics

•	 Spare pins for testability

•	 IP blocks

Any unusual features of the FPGA that are used and any
special design tricks should be documented. Chip- level
timing, which documents set-up and hold requirements and
clock-to-output performance, is very useful. Asynchronous
portions of the design should be very carefully documented.
You may not have thought about it this way, but simulation
test benches provide a form of documentation by showing
how outputs are affected by inputs. Synthesis scripts will
be important if the design is to be re-synthesized. Be very
careful to document the desired I/O characteristics of each
pin, for example: LVTTL/LVCMOS, 4 mA/12 mA, slew rate,
etc. Also make sure to document any unused pins which
may be used for test modes or future enhancements.

 Any third party IP blocks used in the design need to be
identified in the documentation. Most IP used for the FPGA
design will either need to be re-licensed for the ASIC
implementation or converted to a compatible solution.
Therefore, a brief definition of the IP block plus enough
information to fully identify the block needs to be recorded.
This should include the IP vendor’s name, vendor part
number, IP revision number, and any data sheets provided
with the core.

3.4	 System Timing Budgets and I/O Timing
Constraints

Understanding how the device interacts with the rest of the
system is one of the most common issues that delays the
conversion process. System timing and especially system
timing margin need to be clearly understood and well
documented.

If the ASIC is going to be a drop-in replacement for the
FPGA, the elements in the system timing budget must
be maintained even though the ASIC I/O timing may be
slightly different. Without knowing the ASIC timing, leave

FPGA
Physical
Layout

Prototype

Formal
Verification

Static Timing
Analysis

SimulationFPGA
Synthesis

ASIC
Physical
Layout

ASIC
Synthesis

RRL
TechLibs

IP

Production

optimize sdf

Changes, features, fixes

fin
is

he
d

Figure 4. Parallel Design Flow

Page 7ON Semiconductor

HBD872

some margin for the system timing budget since the ASIC
I/O does not necessarily behave in the same manner as
the FPGA I/O. Figure 5 illustrates the typical system timing
involving two devices in a synchronous design. Figure 6
computes the system timing margin. The total of all the
delays must be less than the clock period. The difference
between the total delay and the clock period is the margin.

Parameter
System Timing

Budget

T_clk-to-out 2.5 ns

T_fly 2.0 ns

T_setup 2.0 ns

T_jitter 0.1 ns

T_noise 0.2 ns

Total time 6.8 ns

Clock period 8.0 ns

Margin 1.2 ns

Figure 6. System Timing Budget

Extra margin is useful to know about when converting
FPGAs to ASICs. For example, extra margin may make it
possible to utilize an even less expensive ASIC technology.
Many systems designers include 20 to 30 percent of the
clock period as margin.

The definitions of setup time and clock-to-out time are
illustrated in Figure 7. For FPGA-to-ASIC conversion,
document any programmable delays used in the FPGA I/O
cells as this information does not appear in the netlist.

Fly time is the time budgeted for signals to propagate across
the circuit board and is normally a function of the permitted
trace length. Jitter from PLLs and DLLs must be accounted
for and may be different between the FPGA and ASIC.
Noise comes from multiple sources such as simultaneous
switching outputs (SSO), coupling and crosstalk.

Pad
Logic
Cloud D QPadLogic

Cloud

Pad

D Q

Clock-to-Out Delay Setup DelayFly Time

PLLPLLPad

Device BDevice A

Pad
Logic
Cloud D QPadLogic

Cloud

Pad

D Q

Clock-to-Out Delay Setup DelayFly Time

PLLPLLPad

Device BDevice A

[-]

[+]

Figure 5. System Timing Diagram

Input
Buffer

Input
Buffer

Output
Buffer

Input
Buffer

Programmable
Delay

&
Combinational

Logic

DATAIN

CLOCK

T_setup

CLOCK

T_clk-to-out

Programmable
Delay

&
Combinational

Logic

D Q

D Q
Input
Buffer
Input
Buffer

Input
Buffer
Input
Buffer

Output
Buffer
Output
Buffer

Input
Buffer
Input
Buffer

Programmable
Delay

&
Combinational

Logic

DATAIN

CLOCK

T_setup

CLOCK

T_clk-to-out

Programmable
Delay

&
Combinational

Logic

D Q

D Q

Figure 7. Definitions of Setup and Clock-to-Out Time

Page 8 FPGA-to-ASIC Conversion Reference Manual

HBD872

3.5	 Internal Timing Constraints

Information needed to reach timing closure within the
device is another area that must be well documented.
The following characteristics need to be defined and
documented for successful timing closure:

•	 Identify all clock domains (external or internally
generated)

•	 Specify clock period and duty cycle for each domain

•	 Expected clock latency (worst case)

•	 Expected clock skew (worst case)

•	 Cross-clock domain definition

•	 Critical signals

•	 Multi-cycle paths

•	 Zero-cycle paths

•	 False paths

•	 Other design exceptions

Identifying and specifying all clock domains within the
device, both system generated and device generated, is
critical for successful timing closure. System clocks are
generated externally and are brought into the chip through
an input pad. Timing budget information is required for
all system clocks. Internal or derived clocks are clocks
generated internal to the device from one of the external
system clocks or from another derived clock. An internal
PLL, DLL or custom logic block may be used to create
internal clocks. Gated clocks should be avoided whenever
possible.

The clock period, duty cycle, latency, and skew must be
defined for each clock domain within the device. Worst
case clock latency is the delay from the clock origination
point through the longest path to the register clock pin. The
expected clock latency for all external system clocks in the
design must be defined and documented. Clock latency
for all internally generated clocks will be automatically
computed during static timing analysis. Clock skew is the
difference in arrival time of the clock signal to different
registers in the clock domain or between different clock
domains. Worst case clock skew must be defined and
documented for all clock domains within the design.

The design method used to cross clock domains within the
design must be reviewed at the beginning of the conversion
cycle to ensure the integrity of the data is maintained across
worst case corners. Section 7.3 Multiple Clock Domains,
discusses reliable methods for passing data between clock
domains.

All critical signals within the device need to be identified
in the design documentation. Critical signals should
include all high-speed, jitter sensitive networks, as well
as all other time critical signals. All critical signals receive
special attention from front-end design engineers when
implementing static timing analysis (STA) and by back-end
design engineers when performing layout of the device.

All design exceptions must be defined and documented.
Design exceptions include multi-cycle paths, zero- cycle
paths and false paths. All design exceptions are clearly
explained in Section 5.3 Static Timing Analysis.

3.6	 Design Organization and Hierarchy

It is good design practice to use hierarchy to manage
design complexity. Hierarchy is also useful for managing
critical timing path optimizations and computer run time.

The design problem is greatly simplified if all module
outputs are registered; that is, they go through flip-flops.
This effectively groups all combinational logic paths into
a module and makes area and timing optimization more
efficient. Each module should use a single common clock
and a single common set/reset signal.

It is a good idea to place all chip-level I/O functions at the
top of the hierarchy, making the core logic a sub- module.

3.7	 RTL and Netlist Handoff Considerations

Register transfer level (RTL) is a high-level of abstraction
used to define digital hardware structures. The two high-
level languages used for RTL definition are Verilog and
VHDL. The synthesis tool takes the RTL and provides a
gate level netlist ready for place and route.

RTL handoff is a resynthesis methodology complete with
supporting tools. RTL handoff allows the silicon vendor to
accept RTL designs from their customers. RTL handoff
has many advantages over netlist handoff:

•	 Allows more flexibility in addressing timing related
issues

•	 Easier integration of soft IP

•	 Easier implementation of designs with high gate
counts

The biggest disadvantage of using the RTL handoff
methodology is that it may require more interaction from
the customer at the beginning of the conversion process. If
the principles set forth in this guide are followed then this
disadvantage can be mitigated.

Page 9ON Semiconductor

HBD872

The deliverables that the customer is responsible for
providing include the golden RTL code, FPGA synthesis
scripts, timing constraints, and the identification of any
embedded soft or hard IP.

Even with all of the advantages of the RTL handoff flow, the
netlist handoff flow is still required for many applications.
For example, if the application is an older design that is
going through a cost reduction flow, the golden RTL may
not be available, and in some cases the netlist may not be
in sync with the RTL. Another example is when the RTL is
restricted due to security reasons. Whatever the reason,
if RTL is not available then the design can be converted
using a netlist handoff flow.

Like the RTL handoff flow, the netlist handoff flow is a set of
tools and methodologies that enable the silicon vendor to
accept netlists for conversion to an ASIC. The deliverables
the customer is responsible for providing include the
golden Verilog or VHDL netlist, timing constraints and the
identification of any embedded soft or hard IP.

4.0	How to Avoid Getting Locked into IP

IP portability is an area where the designer needs to
be careful. IP selected for the application needs to be
supported for both the FPGA and the ASIC devices. There
are numerous cores offered by FPGA vendors that are
proprietary to the vendor’s technology. However, most ASIC
vendors who specialize in FPGA-to-ASIC conversions
offer IP solutions that are functionally equivalent to the
more popular proprietary FPGA cores. Usually the best
solution is to select a third party IP vendor who licenses a
RTL version of the core, then use the IP core for both the
FPGA and ASIC.

4.1	 Proprietary IP

Even if synthesizable IP is selected for all of the application’s
functions there is still the legal issue to consider. FPGA
vendors produce their own IP that they will not license
for conversion to ASIC technology. Proprietary FPGA
IP, even though it may be free, may block any true cost
reduction operation, making the free IP very expensive
indeed. At the very least, the use of proprietary IP will
increase the complexity and cost of the ASIC conversion.
This will equate to substantially higher NRE and a longer
development span. Therefore, proprietary IP should be
avoided whenever possible.

4.2	 Engage with the Silicon Vendor Early in the
Design Cycle

Using third party IP for both the FPGA and ASIC
implementations requires some due diligence early in
the design cycle but will payoff in the long run during cost
reduction. The earlier in the design cycle the silicon provider
is engaged, the better. Silicon vendors can help identify
all of the hurdles associated with IP and can recommend
third party solutions that can be used for both FPGA and
ASIC implementations. Early engagement will also help to
ensure there is time to deal with any IP modifications that
might be needed for your specific application.

4.3	 Use Soft IP Cores Whenever Possible

IP cores can be characterized as either soft, firm, or hard.
This refers to the degree to which the core has been
targeted toward a particular fabrication process.

Soft cores are in synthesizable HDL, and are more flexible
than firm or hard cores. They have the disadvantage of not
being as predictable in terms of performance (i.e. timing,
area, power). They are also harder to protect because RTL
source code is more portable and readable than either a
netlist or physical layout data.

Firm cores are soft cores that have been pre-placed and
routed as a block, having been optimized for performance
and area using the target technology cell library. Firm cores
offer a compromise between soft and hard. Firm cores are
more flexible and portable than hard cores, yet their area
and performance are known. They are easier to protect
than soft cores.

Hard cores have been optimized for power, size, or
performance and mapped to a specific technology.
Examples include embedded cores such as block memory,
timing generators and high-speed interfaces. Since hard
cores are process specific, they are much more predictable,
but consequently less flexible and portable due to process
dependencies. Hard cores are difficult to reverse engineer
and provide the best IP protection.

For most applications using a soft IP core over a hard
embedded core is optimal. Only applications that require
bleeding edge performance, are very area/power sensitive
or include some analog functionality should target a hard
macro. Using soft IP for your application will break down all
technical barriers in using that IP in both FPGA and ASIC
technologies.

Page 10 FPGA-to-ASIC Conversion Reference Manual

HBD872

4.4	 Embedded IP

Any IP block that is part of the base architecture of a device
is referred to as embedded IP. Advanced FPGA products
come with numerous hard embedded IP cores. These
cores have the pros and cons noted earlier in this section
and include:

• Memories

• Timing generators (DLL/DCMs and PLLs)

• High-speed I/Os

• Processors

• SerDes transceivers

Embedded cores can present a hurdle for FPGA-to-ASIC
conversion. However, most conversion products have
equivalent IP, either in the form of hard or soft blocks. The
advantage to using soft IP blocks in the ASIC is they only
consume resources if your design uses them. In other
words you are not paying for unused IP.

If the application calls for a processor then a third party soft
processor core should be utilized versus the embedded
core in the FPGA. A proprietary soft processor core should
be avoided as well.

High-speed SerDes transceivers require the use of a hard
embedded core due to the performance requirements.
For programmable silicon vendors, embedded SerDes
transceivers are still immature. Once the embedded
technology matures, the cost reduction potential will
increase significantly. Until then, for stability of design and
long-term reliability, the best solution for current system
designs is to utilize an off-chip ASSP solution.

One of the hidden problems with FPGAs containing
embedded IP is that engineers may not initially plan on
using the IP, but during the development process they
may find it useful for solving a problem. This makes the
conversion process much more complex.

4.5	 Back Porting ASIC IP into FPGA Designs

In addition to recommending third party solutions, silicon
vendors often maintain their own library of IP that can be
deployed in the FPGA device early in the design cycle. This
allows the designer to work with the same IP in the FPGA
and ASIC resulting in a seamless ASIC conversion.

While soft IP is generally capable of being implemented
in an FPGA, there are a few design issues to be aware
of when implementing ASIC IP in an FPGA design. ASIC
IP may not be as fast when implemented in an FPGA as

compared to highly tuned FPGA IP. This means you may
need to prototype the function at reduced speed in the
FPGA, and then increase the speed to the desired level in
the ASIC implementation. When implemented in an FPGA
the ASIC IP may have a larger gate count than a similar
function designed specifically for FPGAs. This may require
a larger FPGA than originally planned, but as the FPGA is
only used for prototyping and limited production the overall
impact to the project cost is low.

4.6	 IP Quality

One challenge in selecting and using IP in an application is
determining which core offers the highest quality and, thus,
the lowest risk. Poor quality IP is a leading cause of ASIC
silicon re-spins. For most applications there is IP available
from a third party IP vendor that is recommended by both
the FPGA vendor and the ASIC silicon vendor. This usually
means both the FPGA and ASIC vendor have certified that
particular core for use in their technology, reducing the risk.
In the absence of commonality, the best course of action is
to utilize the IP recommended by the ASIC vendor.

Using the following IP selection guidelines can help to
minimize risk:

•	 Evaluate the maturity of the IP. How often has it
been used in real world applications? How many
bug fixes were there in the past 12 months? What
types of applications have utilized the IP?

•	 Evaluate the IP vendor. How big is the company?
How long has it been in the IP business? Does the
company have a reputation for quality IP? How
many staff members are focused on IP design and
verification? Does the company develop its own IP or
act purely as a marketing firm for other IP developers?

•	 Evaluate the level of verification. Is the verification
environment regressive, self-checking, portable,
and well documented? What level of code coverage
was achieved? What level of functional coverage
was achieved by the verification environment? How
was timing verified? Was the IP core verified by any
industry standard or independent source? If so, is
the report available? Is the vendor willing to improve
or modify the level of verification if requested?

•	 Evaluate the IP vendor’s quality of service. Ask
for and verify references of other companies
who have implemented the IP core. How fast
does the IP vendor respond to issues with the
core? Is the vendor willing to make modifications
to the core if needed by the application?

Page 11ON Semiconductor

HBD872

Silicon vendors, both FPGA and ASIC, not only work to
answer all the questions noted above but also work to
independently verify IP that they recommend for use in their
silicon. That extra verification effort helps to minimize risk
and is the added value silicon vendors provide when acting
as the middleman in the licensing of IP. Lower licensing
fees are another benefit of obtaining the IP through the
silicon vendor. These vendors generally license IP in bulk
for multiple applications, thus getting a lower price from the
IP vendor than possible for a single application.

5.0	FPGA-to-ASIC Conversion Verification

One of the primary strengths of the FPGA-to-ASIC
conversion methodology is the reduced risk associated
with FPGA prototyping. The design can be functionally
proven in simulation, in the lab, as well as in beta systems
under real world conditions prior to being converted to an
ASIC, avoiding the majority of the functional risk associated
with the pure ASIC flow.

5.1	 Verification Strategies

This guide briefly discusses the verification methodologies
used in the conversion process and provides some tips on
how to make the verification complete and successful.

The designer’s job is to make sure the product meets its
marketing specifications. This can be verified by building
FPGA prototypes and by developing test benches and
simulating the design. Formal test benches work well
because they allow the designer to establish regression
tests to make sure the whole design works correctly after
fixes or feature enhancements are incorporated.

The conversion engineer wants to make sure the design
functions correctly after conversion from FPGA to ASIC.
This can be done by using the designer’s regression
test bench to verify the results are the same across
the conversion. Formal verification (logic equivalency
checking) and static timing analysis (STA) can be used to
“prove” the design is ported correctly from functional and
timing perspectives.

The manufacturing engineer wants to make sure that
manufactured parts with silicon defects are rejected. This
can be done by inserting design for test (DFT) structures
in the converted ASIC design to make it easily testable on
automatic test equipment (ATE). DFT insertion is typically
performed during the conversion process and should not
alter the results of simulation regression tests or formal

verification and STA. The DFT process also creates special
high-fault coverage ATE vectors.

5.2	 Formal Verification

Functional simulations are an essential part of verifying the
design meets the product specification. During conversion,
formal verification proves the converted logic has the same
functionality as the original design source. The timing is not
verified - just the functionality. Logic equivalence checks
(LECs) are preferred to simulation because they are an
exhaustive analysis of all logical possibilities. Unfortunately
simulation is only as thorough as the test bench. Hand
written test benches often overlook important functions.
LEC checks are performed between the original RTL
and synthesized netlist or between the original netlist and
converted netlist.

Formal verification tools have limitations. For this reason it
is good design practice to isolate memories, tri-state logic
and IP blocks into separate modules. Be aware that flip-
flops are key correspondence points used by LEC tools.
In some cases, FPGA optimization tools will replicate flip-
flops to isolate loads and this can cause compare problems.
One solution is to code the RTL with the replicated flip-
flops, as they will add little expense to the ASIC and are
already present in the FPGA.

5.3	 Static Timing Analysis

Static timing analysis is the primary tool used to verify
timing closure on the ASIC during the conversion process.
STA measures the register-to-register delay across the
complete design and flags any errors or warnings based
on a set of conditions defined by the library elements and
in a script that is written based on the timing information
provided in the design documentation. By default, STA
assumes single-cycle timing for all paths in the design.
Single-cycle timing means the data is expected to arrive at
its destination within one clock cycle, as shown in Figures
8 and 9.

Logic
CloudD Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2Logic
CloudD Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2

Figure 8. Single-Cycle Path

Page 12 FPGA-to-ASIC Conversion Reference Manual

HBD872

For some designs there will be situations where single-
cycle timing will not be achievable and a design exception
will exist. Design exceptions include multi-cycle paths,
zero-cycle paths, and false paths.

In multi-cycle timing paths the data is expected to take
more than one clock cycle to arrive at its destination. A
multi-cycle path is illustrated in Figure 10. Assuming the
clock period is 2 ns and the delay through the logic cloud is
3.2 ns, the data will arrive at the destination register at clock
edge 2 of CLK2 as shown in Figure 11. All multi-cycle paths
in the design must be well understood and documented to
include the instance name of the register where the path
begins, the instance name of the register where the path
ends and the number of clock cycles required for the data
to propagate through the path.

In zero-cycle timing paths the data is expected to arrive
at the destination register in the same clock cycle that it
is launched. A zero-cycle path is illustrated in Figure 12.
Assuming the clock period is 2 ns and the delay through
the clock buffer is larger than the clock to “q” delay through
the launching register, the data will arrive at the destination
register at clock edge 0 of CLK2 as shown in Figure 13.
This is the same clock edge used to launch the data. All
zero-cycle paths in the design must be well understood
and documented to include the instance name of the
register where the path begins and the instance name of
the register where the path ends.

False paths are logic paths that exist but cannot be or are
not intended to be analyzed. An example of a false path that
cannot be analyzed is an asynchronous interface between
unrelated clock domains. All false paths in the design
must be well understood and documented to include the
instance name of the register where the path begins, the
instance name of the register where the path ends, and the
reason for the denoted path to be false.

During the exhaustive analysis done by STA, the following
timing checks are performed:

•	 Data setup: The setup time for each logic state at
each sequential device’s data pin is checked. The
setup time is defined in relation to the rising or
falling edge of the corresponding sequential device
clock signal. Setup time is defined as the amount of

Figure 9. Single-Cycle Timing

Figure 11. Multi-Cycle Timing

Figure 13. Zero-Cycle Timing

0 1 2

0 1 2

D1

CLK1

D2

CLK2

0 1 2

0 1 2

D1

CLK1

D2

CLK2

0 1 2

0 1 2

D1

CLK1

D2

CLK2

0 1 2

0 1 2

D1

CLK1

D2

CLK2

0 1 2

0 1 2

D1

CLK1

D2

CLK2

0 1 2

0 1 2

D1

CLK1

D2

CLK2

Massive
Logic
Cloud

D Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2
Massive

Logic
Cloud

D Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2

D Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2D Q D Q

Clock Buffer(s)

CLK1

D1

CLK2

D2

Figure 10. Multi-Cycle Path

Figure 12. Zero-Cycle Path

Page 13ON Semiconductor

HBD872

time the data must be stable prior to the assertion
of an active clock edge in a sequential device.

•	 Data hold: The hold time for each logic state at
each sequential device’s data pin is checked.
The hold time is defined in relation to the rising or
falling edge of the corresponding sequential device
clock signal. Hold time is defined as the amount
of time the data must be stable after the assertion
of an active clock edge in a sequential device.

•	 Set/reset recovery: The recovery check is similar to
the setup check and represents the minimum time
the asynchronous set or reset pin must be stable
after being de-asserted and prior to the assertion
of an active clock edge in a sequential device.

•	 Set/reset removal: The removal check is similar to
the hold check and represents the minimum time
the asynchronous set or reset pin must be stable
after being de-asserted and after the assertion
of an active clock edge in a sequential device.

•	 Minimum pulse width: The minimum pulse width is
checked for each sequential device’s clock pin.

5.4	 Test Vectors

Test vectors are generated from the simulation environment
and can be used for power analysis during the conversion
process and in manufacturing test. Test vectors are simply
text files containing columns of ones and zeros that include
the stimulus going to and coming from the chip I/O during
functional simulations. Test vectors can be captured in
either print-on-change or cycle-based format. In print-on-
change format the I/O stimulus is captured every time any
of the I/O change state. Obviously, print-on-change vector
files can become huge for large designs in a relatively
short amount of simulation time. In cycle-based format the
I/O stimulus is captured every time the designated clock
edge is asserted. The disadvantage of capturing cycle-
based vectors is that asynchronous transition times will not
be captured in the vector set.

Both methodologies for capturing vectors have their
strengths and weaknesses. At the beginning of the
conversion process the need (if any), amount, and type of
test vectors for that application will be determined.

So what makes a test bench portable? If the intention is to
use the test bench on ATE, it must only access the top level
pins of the chip, as ATE is not capable of “probing” inside
the design. Through the conversion process, internal node
probing may not work well because of net name changes
and logic optimizations. It is generally a good idea for test
benches to only access top level pins.

Simulations should use full timing accuracy when capturing
output data. To make a useful regression test, the input
stimulus and output results should be captured in the
output file, along with I/O control signals.

A good test bench will demonstrate the basic functionality
of the design by presenting normal input to the device and
capturing and checking the output. A good test bench
should also test any special tricks in the design, and most
importantly, any asynchronous timing.

Delay Path
Zero
Delay

Unit
Delay

Assignable
Delay

DATA g D 0 3 U 3 ns

CLOCK g C 0 1 U 8 ns

Figure 15. Results for Different Simulator Delay Models

An area of confusion with logic simulators centers
around delay models. Some simulators permit gates to
be modeled with unit delay or the actual gate delay. Unit
delay simulations run faster in the computer, but are not as
accurate.

For simulations to be meaningful, especially with
asynchronous circuits, be sure to turn on the assignable
or actual gate delay mode. For best results, use post-place
and route back-annotated timing.

Figure 14 illustrates a simple circuit with several buffers
having different delays. Figure 15 shows very different
behavior can be obtained depending on the delay model
used by the simulator.

5.5	 Power Simulations

Simple gate count estimates can be used to calculate the
amount of power dissipated by a design. However, power
simulations generate better estimates of power dissipation.
Power simulations are dynamic in nature and require a
simulation pattern (test vectors) to execute. The closer
the simulation pattern mimics real world conditions the
better the power estimate. A simulation pattern that mimics
real world conditions is referred to as a representative
simulation pattern.

Figure 14. Simulator Delay Circuit

DATA

CLOCK

1 ns 1 ns 1 ns

8 ns

D Q

Page 14 FPGA-to-ASIC Conversion Reference Manual

HBD872

Not only is a representative pattern required for an
accurate power estimate but the netlist also needs to be
close to completion in the conversion process. In order to
get the most accurate estimate of the power dissipated by
the design, power simulations need to be executed using
a representative simulation pattern against the final netlist.

5.6	 Design for Test

All ASIC vendors have test coverage requirements that
must be met for each ASIC produced. Design for test (DFT)
is a methodology and toolset that enables the ASIC vendor
to meet those requirements. The DFT techniques utilized
by the ASIC vendor include SCAN and BIST insertion,
IDDQ testing and at-speed testing.

Adding DFT to a design is easier if some simple rules are
followed. Many of these issues cause other problems as
well, so if you are using good design practices to begin with
the impact should be minimal.

•	 Avoid latches. Latches don’t work well in shift
register scan chains and must be converted to
flip- flops in test mode. It is much easier to use
a flip-flop instead of a latch in the first place.

• 	Avoid combinational feedback
loops. They act like latches.

•	 Don’t use scan flip-flop library elements. Flip-
flops in the design will be replaced by scan-
flops and if that is already done, then extra
muxes will need to be added anyway.

•	 Use synchronous design. It makes controlling
the shift register much easier.

•	 Use a single external reset. It makes
controlling the reset very easy, especially
when the scan chain is shifting data.

•	 Include a test signal to turn off all DC biased
circuits. This includes memory sense amps,
I/O bias generators, I/O pull-up and pull-
down circuits, etc. A special test signal
that does this simplifies IDDQ testing.

6.0	Good and Bad Design Practices Specific
to FPGA Conversions

This section discusses issues that are very specific to
conversion from FPGA to ASIC.

6.1	 FPGA Configuration Dependencies and
Emulation

During configuration an FPGA loads in data that
personalizes it to perform the mission mode function. If
the configuration process is not completed the part will
not become operational. When power is applied to an
ASIC it comes on instantly since it does not need to be
programmed. An ASIC can be designed to emulate the
FPGA configuration sequence, but implementation of this
feature in an ASIC increases gate count and implementation
effort and should be avoided if possible.

There are some cases where it is important for the ASIC to
emulate the FPGA in terms of following the power up and
configuration sequence. In a multi-FPGA chain, devices are
normally programmed in a serial or daisy- chained fashion
as shown in Figure 16. If one of the FPGAs is converted
into an ASIC, then the ASIC might need to emulate an
FPGA and it must pass the programming data through to
the next FPGA in a correct manner.

Various configuration control signals might not be required
when implementing the configuration logic in an ASIC. It
is critical to understand the function of all control signals
required during the FPGA configuration and the role of
those signals, if any, in the design phase of an ASIC. This
ensures that the functionality can be implemented correctly
when converting an FPGA to an ASIC.

Configuration emulation can be implemented using various
strategies. Some designers, concerned about whether the
FPGA is correctly programmed, build checking into their
system. This usually involves having a microprocessor
monitor various FPGA configuration signals, such as the
DONE pin. In some cases, they just wait for DONE to
assert. This can be emulated by having the DONE signal
tied high on power up. In other cases, designers make
sure DONE asserts after exactly the right number of clock
cycles. This can be emulated by counting the number of
bits, and in case of a daisy chain operation, passing the
data for the next FPGA in the chain once configuration is
completed.

Generally in supervised systems, the effort required
to change software is deemed greater than adding
configuration emulation logic to the ASIC. However, if

PROM

MASTER
FPGA

SLAVE
FPGA

CLOCK

DONE

DATA
IN

DATA
OUT

CLOCK
DONE

DATA
IN

DATA
OUTDATA

CLOCK

Figure 16. Daisy Chain FPGA Configuration

Page 15ON Semiconductor

HBD872

a software change is possible it is a better solution than
implementing the configuration logic in the ASIC design.
Better yet, design the system and software to sense if the
device is an FPGA or an ASIC and do the appropriate
checking.

6.2	 Resets

FPGAs contain a power on reset (POR) function that initiates
configuration each time power is cycled. The configuration
process loads all registers with the appropriate initialization
values to make it appear as though a reset was applied. POR
signals and the initial reset are generally not represented in
the RTL code or the FPGA design netlist. They appear in
simulation models as global signals, usually permanently
de-asserted.

In the ASIC conversion, initial state values are implemented
as a special initialization reset. In most cases this is the
same as a system wide reset. Ideally an explicit reset signal
is implemented in the FPGA. This reset signal should be
brought out to a pin.

Use of system wide resets is good design practice because
it establishes initial state. This makes logic simulation
significantly easier and avoids FSM latch-up (dead) states.
Every flip-flop in a design should have a reset, unless it
needs to be initialized to ‘1’ in which case a set makes sense.
Resets may be either asynchronous or synchronous.

Global asynchronous resets are a good idea, but what
happens if the reset is de-asserted right on the clock
edge? Slow slew-rate reset signals further exacerbate the
problem.

Figure 17 shows a circuit to address this issue. This circuit
causes an immediate asynchronous reset, but also ensures
a synchronized recovery occurs. A reset circuit is required
for each clock in multiple clock domain circuits and extra

care is required to design them to interact properly.

Use of asynchronous set-reset flip-flops is discouraged
because of ambiguity when both set and reset are asserted
at the same time. While designers can usually predict what
will happen in this case, unpredictable behavior will result
if both signals are de-asserted at the same time. Designs
that depend on specific behavior when both set and
reset are asserted are not portable to other technologies,
which may have different behavior for this condition. HDL
coding priority issues can cause behavioral simulations to
mismatch with gate- level structural simulations.

PORs should not be included in a chip design. While the
function seems simple, they are an analog circuit with
critical electrical characteristics, such as voltage threshold
and turn-on time. When there is more than one chip in a
system with POR you cannot ensure they will all complete
their resets at the same time. Generally it is best to have
one master POR generator driving all the chips in the
system.

6.3	 Memory Initialization

FPGAs provide a means to define the content of RAMs via
configuration. Initialization patterns are usually passed as
parameters to RAM instances in the FPGA netlist. By default
these parameters are all zero. The FPGA configuration
circuitry writes data into the memories during configuration,
such as all zeros, or any desired memory pattern. Some
FPGAs offer memories that are not initializeable and power
up to an unknown state.

ASIC RAMs generally power up in an unknown state.
Making them power up in a known state requires more
logic or a special RAM. Either an on-board ROM must
be copied into the RAM at configuration time, or register
file RAMs with appropriate sets and resets must be used.
Either solution can be expensive. In addition, the memory
used in an ASIC cannot be easily re-programmed as is the
case when using FPGAs.

Some ASIC vendors offer memory solutions to match
the features offered by various FPGA vendors. These
memories are completely initializeable and can be used as
a one for one replacement for memories found in typical
FPGA designs.

6.4	 Synchronous vs. Asynchronous Memory

Synchronous memories are safe and easy to use because
data, address, and write enable are registered, making the
timing relationship between these signals simple.

Figure 17. Synchronized Reset Circuit

RSTN

VDD

Clock

Resetn

•

•

•

D Q

R

D Q

R

D Q

R

Page 16 FPGA-to-ASIC Conversion Reference Manual

HBD872

Asynchronous memories are less portable than
synchronous memories and should be avoided. Reliable
operation is dependent on the design and timing of
peripheral support circuitry. The timing and quality of
the write enable pulse is critical and it is difficult to meet
timing with simultaneously switching inputs. It is essential
the address does not change while the write enable is
asserted or the entire memory content may be corrupted.
In addition, STA becomes a very complex task.

Most memories have synchronous write and read
capabilities, and some have asynchronous read. As
memories get bigger and performance demands increase,
most FPGA vendors have moved away from supporting
large asynchronous read memories.

6.5	 I/O Standards and Matching FPGA I/O
Characteristics

Before starting the FPGA design, check the ASIC vendor’s
I/O library against the I/O standards that will be used in
FPGA design. Not all I/O standards supported by FPGA
are popular, so ASIC vendors often only support the more
common I/O standards. Most likely, the ASIC vendor
supports the same I/O standards as the FPGA vendor
but their electrical characteristics are not exactly the
same. Items to check are DC current, edge rates, and
propagation delay. There are also options for the same
I/O standards. Whether an I/O has pull up, pull down, or
bus hold, and whether an I/O is 3 V tolerant or has input
hysteresis (Schmitt trigger), is the type of information
that needs investigation and should be documented for a
smooth conversion.

Most companies specializing in FPGA-to-ASIC conversions
can provide I/O characterization reports. These reports
provide a comparison between the FPGA I/O used in a
design to the I/O provided by the ASIC vendor.

It is a good practice to review this information before
selecting the ASIC vendor. Assessing the high speed I/O or
critical clock lines may take more effort. The signal integrity
team should simulate with I/O models provided by the ASIC
vendor to ensure the ASIC I/O performs at an acceptable
level compared to the FPGA I/O.

6.6	 Operating Conditions

While it is normally not an issue, it is a good idea to double-
check the expected operating conditions for the FPGA and
ASIC. Specifically check the junction temperature range
and limit. An ASIC typically draws five times less power
than the FPGA it replaces, so junction temperature is not

normally an issue unless there is an upgrade to military
temperature requirements. Also check the tolerance of all
power supplies for ±5%, ±10%, etc. Finally, check the input
over-voltage capability.

6.7	 ESD, Latchup, Hot-Socketing

FPGA-to-ASIC conversion users can assume an ASIC will
have the same ESD, latchup and hot-socketing capability
as an FPGA. Nevertheless, always ask for the quality
report to avoid any surprises later on.

Depending on test methods, ESD can be categorized as
human body model (HBM), machine model (MM), and
charged device model (CDM). Failures found in HBM
and MM testing are typically in the diffusion regions of
the protection circuits. Failures found in CDM testing are
usually gate oxide damage. The industry standard for HBM
testing is 2K V. The typical testing voltages for MM and
CDM are 200 V and 500 V, respectively.

6.8	 Simultaneously Switching Outputs, Input
Noise

Simultaneously switching outputs (SSO) create noise on
the power and ground supplies. If the supplies bounce
enough, the output timing is changed and the input noise
margin is reduced. FPGAs and ASICs normally have SSO
guidelines. Before locking the FPGA I/O pinout, it is a good
idea to check the ASIC guidelines.

Some tips for reducing SSO effects:

•	 Isolate output and core/input pad supply pins

•	 Spread out high-drive output pins

•	 Interleave the I/O pads with more power/ground pins

•	 Use controlled slew rate drivers

•	 Stagger output signal transitions (~5 ns skew)

•	 Use lower inductance package

•	 Reduce capacitive loading/driver size

•	 Use differential outputs

•	 Move high-drive buffers off-chip

Some tips to reduce input noise:

•	 Isolate input and output pads, as shown in Figure 18

•	 Use differential inputs

•	 Keep away from high-drive outputs

•	 Stay close to power/ground pins

•	 Use Schmitt trigger input buffers for the
most sensitive inputs (clock and reset)

•	 Skew the output transitions away
from the input transitions

Page 17ON Semiconductor

HBD872

6.9	 I/O Voltage Banks

The ASIC vendor will match the FPGA’s I/O voltage banks.
For both FPGA and ASIC design, it is a good practice
to assign pinout such that the adjacent I/O banks share
the same voltages. Not only does it cut the number of
power supplies on the board, but also it improves the ESD
protection by having more I/Os tied to the same power
supplies. For ASICs with built-in on-die decoupling caps,
two adjacent I/O banks sharing the same voltage double
the benefit of decoupling.

6.10	 On-Chip Terminations Using Digital
Controlled Impedance

On-chip termination saves board space and alleviates
routing congestion. The latest FPGA and ASIC devices offer
this feature by adjusting the I/O impedance in reference
to external precision resistors. Figure 19 shows different

termination modes: series termination, parallel termination,
split parallel termination, and differential termination.

Because the transistor impedance is nonlinear, the on-
chip termination can only approximately match the target
impedance. Therefore, for termination requiring very high
precision you should use external termination resistors
despite the board space penalty. Judging when to use or
not use on-chip termination is best determined by signal
integrity analysis.

6.11	 Double Data-Rate Registers

 The latest FPGA and ASIC devices embed double data rate
(DDR) registers in the I/O pad cells. As illustrated in Figure
20, there are typically six registers - two for input DDR, two
for output DDR, and two for output enable DDR. These
registers are not just for DDR applications but can also be
used in any applications that register the inputs or outputs.
For those non-DDR cases, use one of the two registers in
the pair either for input, output, or output enable. Because
these registers reside in the pad cell, they offer the shortest
clock-to-out time due to their short connections to the I/O
buffers. More importantly, they offer consistent clock-to-
out timing among I/Os in the same group.

VDD

VSS

VDD

VDD

VSS

VDD

Bad Good

Figure 18. Group the Input Pads and the Output Pads
 and Isolate them with Pwr/Gnd

Figure 19. On-Chip Digital Controlled Impedance

Figure 20. DDR Registers

R = Z0 or Z0/2

RON = Z0 or Z0/2

Series
Termination

R = Z0

VCC

R = Z0

Parallel
Termination

External Termination

VCC

R = Z0

VCC/2

R = 2Z0

R = 2Z0

Split Parallel
Termination

VCC

100 Ω

Differential
Termination

100 Ω

Input
Buffer

PAD

Output
Buffer

Register

Register

Register

Register

Register

Register

MUXOUT2_REG

OEN1_REG

DCI

SEL

OEN2_REG

OUT1_REG
OUT1

OUT1CLK1

OUT2

OUT1CLK2

IN1

INCLK1

IN2

INCLK2

OEN

1

0

OR

Input
Buffer
Input
Buffer

PAD

Output
Buffer
Output
Buffer

Register

Register

Register

Register

Register

Register

MUXOUT2_REG

OEN1_REG

DCI

SEL

OEN2_REG

OUT1_REG
OUT1

OUT1CLK1

OUT2

OUT1CLK2

IN1

INCLK1

IN2

INCLK2

OEN

1

0

OROR

Page 18 FPGA-to-ASIC Conversion Reference Manual

HBD872

7.0	 General List of Good and Bad Design
Practices

This section discusses a variety of good and bad design
practices. Alternative approaches to bad practices are also
discussed.

7.1	 Synchronous Design

Synchronous design is popular because it eliminates many
timing issues. However, the definition of synchronous is
ambiguous, so here’s a simple definition.

Synchronous designs have a single master clock and a
single master set/reset driving all sequential elements in
the design. Additionally, all input signals are synchronized
to the clock in such a fashion that they never violate setup
and hold time requirements. In Figure 21 the register
represents all the flip-flops, latches, and memory elements
of the design. The logic clouds may be complex logic cores
or they may be as simple as a wire. The master set/reset
signal may be asynchronous.

The benefit of this design style is that maximum clock
frequency, input setup and hold time, and clock to out
timing are the only timing issues.

7.2	 Input Synchronization (Metastability)

The circuit shown in Figure 22 works very well for
synchronizing input signals. This circuit offers a high
degree of metastability protection and should be used on
all asynchronous inputs. Metastability may occur when the
data-input changes at the same time as the clock.

In this case, the flip-flop may capture an intermediate
voltage level, often modeled as an “X” in logic simulation.
This intermediate voltage level will eventually become a 0
or a 1, but it takes some time for the flip-flop to resolve it.
This resolution time is usually several times longer than
the clock-to-out time of the flip- flop, but less than the clock
period.

By placing two flip-flops in series, designers can be sure
the second flip-flop is always capturing stable data even if
the first one is metastable for a time after the rising edge
of the clock.

If combinational logic is added between the two flip-flops,
the time available for stabilization would be reduced
accordingly.

Effectively this circuit creates an input data sampling
strategy, which avoids metastability problems and safely
brings data into a synchronous system.

7.3	 Multiple Clock Domains

Developing a design that is fully synchronous to one clock
domain is ideal but often not possible. Applications should
be designed as synchronously as possible with the fewest
number of clock domains feasible.

Special care must be taken whenever there are two or
more independent system clock domains and information
is exchanged between the domains. Figure 23 shows two
clock domains, A and B. It is assumed the data exported
from domain A will be asynchronously received by domain
B. In the general case, there is no way of knowing the
relationship between clock A and B. A may be faster or
slower than B. The relationship may even vary over time.

One reliable way to pass data back and forth is to use a
handshake protocol. In general there are two protocols.
The strobe method requires two edges on the hand shake
signal as shown in Figure 24. The toggle method only
requires an edge to be passed and is faster.

D Q

Clock

Input Logic
Cloud

Logic
Cloud

Reset

Output

Figure 21. Synchronous Design

Figure 23. Multiple Clock Domains

Figure 22. Input Synchronization Schematic

D Q

Clock

Input

Reset

Output
D Q

Handshake

Data

B kcolCA kcolC

Clock
Domain

A

Clock
Domain

B

Page 19ON Semiconductor

HBD872

The two protocols are independent of either clock
frequency and are guaranteed to work. Note for proper
input synchronization it is necessary to double-buffer the
receiver flip-flops for the handshake signals.

Another approach is to use a FIFO as shown in Figure
25. In this case the full and empty flags can be used as
handshake signals. Design of asynchronous FIFOs with
full arbitration is a difficult task so it is best to use a pre-
designed FIFO library element.

7.4	 Gated Clocks

Gated clocks are clock signals that include combinational
logic in the clock circuit as shown in Figure 26. If not timed
exactly right, gated clocks can lead to glitches in the logic
or clipping of the clock pulse as shown in Figure 27.

Designing gate logic into the data port of a flip-flop versus
gating the clock leads to a cleaner, more synchronous
design.

7.5	 Finite State Machines

Finite state machines (FSM) are normally designed in a
synchronous fashion using binary or one-hot encoding
styles. From a portability perspective, the most important
FSM design issues are dead (lock-up) states, initialization
for testability and synchronizing the FSM inputs to the
system clock.

The binary encoded state machine is the most common.
One problem with binary encoded FSMs is the possibility of
entering a “dead” state. A dead state is a state the machine
could enter and not be able to exit from. To avoid dead
states in a binary encoded FSM, a default state needs to be
defined in the RTL code. That way all undefined states will
be able to follow the exit strategy provided by the default
state.

For machines with a small number of states, one-hot state
machines are a very efficient approach. Essentially, there
is one flip-flop for each state. On reset, all flip-flops are
reset to “0” except for the initial state flip-flop, which is set
to “1”. From then on, only one flip-flop is “hot” at a time.
The hot flip-flop represents the state of the machine. Dead
states do not exist in one-hot state machines. One-hot state

Figure 24. Strobe and Toggle Waveforms

Figure 25. Passing Data Between Clock Domains
with a FIFO

Figure 26. Gated Clock Schematic

Figure 27. Gated Clock Timing

Figure 28. Clock-enabled Flip-flop Schematic

Figure 29. Clock-enabled Flip-flop Symbol

RDY RDY

ACK ACK

RDY RDY RDY

ACK ACK ACK

RDY RDY

ACK ACK

RDY RDY RDY

ACK ACK ACK

Clock BClock A

Din
D Q

Full Empty

Dout

Clock BClock A

Din
D Q

Full Empty

Dout

REG_OUTREG_IN

CLK

CE

D Q

R

RST

GCLK

REG_OUT

GCLK

CE

CLK
late

delayed

glitch

D Q

R

S

A

B
Q

CE

REG_IN

CLK

RST

REG_OUT
•

REG_OUTREG_IN

CE

CLK

RST

D Q

R

CE

Page 20 FPGA-to-ASIC Conversion Reference Manual

HBD872

machine outputs require no decoding and they are very
fast. The only potential problem is they do not suppress
multiple-ones unless a special recovery circuit is added.

7.6	 Latches

Latches should not be used unless absolutely necessary.
In most cases a flip-flop will work just as well. When
synthesizing designs, be especially careful to avoid
accidentally inferring a latch when one is not intended.
The problem with latches centers around the transparency
issue. In the circuit shown in Figure 30, if Gate A and Gate
B were to both go high we might have an oscillator.

Most EDA software tools have difficulty with latches. Static
timing analyzers typically make assumptions about latch
transparency. If one assumes the latch is transparent, then
the tool may find a false timing path through the input data
pin. If one assumes the latch is not transparent then the
tool may miss a critical path.

Due to the transparency issue, latches are difficult to test.
For scan testing they are often replaced by a latch- flip-flop
compatible with the scan-test shift-register. Under these
conditions a flip-flop would actually be less expensive than
a latch.

7.7	 Internal Tri-States

The use of internal tri-state buses is discouraged due to
testability issues. During an FPGA-to-ASIC conversion,
internal tri-states are usually converted to combinational
logic.

Problems with internal tri-states include the need to ensure
that only one driver is turned on. If more than one driver
is turned on, bus contention results and high currents can
flow. If no drivers are turned on, as shown in Figure 31, the
tri-stated signal can float to a metastable state and cause
the bus receiver to go into a high current mode. If nothing
else, these issues may cause good chips to be rejected by
the tester due to high current draw.

When using tri-state buses, be sure to put in a pull-up, pull-
down, or bus-latch cell on the tri-state bus to indicate what
should happen when the bus is undriven.

7.8	 Time Delay

There is really no good way to build reliable and predictable
delays in silicon. Designers often attempt to build delays
by creating strings of heavily loaded gates, as shown in
Figure 32. Their performance is extremely unpredictable
and technology-dependent. In addition, they can be very
difficult to identify in a design, and even then, the designer’s
intent may not be very clear.

Silicon vendors often include delay elements in their cell
libraries, as shown in Figure 33. Just because they are
delay cells does not mean they are predictable. Their
primary purpose is to make it easier to see when and
where delays are used by the designer.

If delays must be used, a trick for building delay lines with
rise/fall symmetry is to use an even number of inverting
delay stages each with the same loading conditions, as
shown in Figure 34.

Figure 30. Latch Transparency

Figure 32. Logic Gates as Delays

Figure 33. Libray Delay Cell

Figure 34. Symmetrical Rise/Fall Delay Circuit

Figure 31. Floating Internal Tri-State Bus

B etaGA etaG

A B

D Q

G

D Q

G

Logic
Cloud

Logic
Cloud

B etaGA etaG

A B

D Q

G

D Q

G

D Q

G

D Q

G

Logic
Cloud

Logic
Cloud

0

0 Z

•
••

•
••

Delay

yaleDyaleD

Page 21ON Semiconductor

HBD872

7.9	 Pulse Generators

Asynchronous pulse generators, such as the one shown
in Figure 35, are difficult to build because of problems in
controlling the pulse width. The pulse may be too wide or
it may be too narrow and disappear completely as shown
in Figure 36. Pulse generators have all the problems
associated with delays, such as being unpredictable and
technology dependent.

Figure 37 shows a better way to make a pulse generator
using a synchronous circuit. It generates pulses one clock
cycle wide, as shown in Figure 38.

7.10	 Direct Action I/Os

Figure 39 shows a design similar to the glitching gated
clock design. This case is one of a direct action signal that
comes in through I/O ports. This represents an implicit
multiplexer and there is not a good way to make sure the
signal is glitch-free. This circuit is technology-dependent
and extremely difficult to test. Clock signals should have
their own dedicated input pin.

8.0	Conversion Checklist

Below is a short checklist of items to consider when
designing an FPGA for conversion:

1.	 Engage early with ASIC vendor

2.	 Plan ahead on packaging

3.	 Select a JTAG approach

4.	 Make the core supply voltage flexible

5.	 Consider converting multiple devices into an ASIC

6.	 Document, document, document

7.	 Include margin in the system timing budget

8.	 Don’t use proprietary IP

9.	 Use soft third party IP

10.	 Avoid FPGA configuration dependencies

11.	 Explicitly reset all sequential elements

12.	 Pay attention to differences in I/O characteristics

13.	 Check SSO rules

14.	 Use synchronous design

15.	 Design cross clock domain interfaces carefully

16.	 Avoid gated clocks

17.	 Avoid dead states in state-machines

18.	 Avoid latches

Figure 35. One-Shot Pulse Generator Circuit

Figure 39. Direct Action I/O Signals

Figure 37. Synchronous Pulse Generator Circuit

Figure 38. Synchronous Pulse Generator Timing

Figure 36. Pulse Generator Timing

IN
OUT

•

?

IN
OUT

OUT
IN

CLK •

D QD Q •

OUT
IN

CLK

ClklO

Enable

ClkOut

ClkIn

QD

•

HBD872/DPDF ONLY

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/
patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters
which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer
shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright
laws and is not for resale in any manner.

LITERATURE FULFILLMENT:
	 Literature Distribution Center for ON Semiconductor
	 P.O. Box 5163, Denver, Colorado 80217 USA
	 Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
	 Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
	 Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
	 USA/Canada.
Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910
Japan Customer Focus Center
 Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
 Order Literature: http://www.onsemi.com/orderlit
 For additional information, please contact your local
Sales Representative

PUBLICATION ORDERING INFORMATION

Sales and Design Assistance from ON Semiconductor

www.onsemi.com/salessupport

For a comprehensive listing of
ON Semiconductor Sales Offices, please visit:

AMERICAS REP FIRMS
Alabama Huntsville e-Components (256) 533-2444
Brazil Countrywide Ammon & Rizos (+55) 11-4688-1960
California Bay Area Electec (408) 496-0706

Southern California Tech Coast Sales (949) 305-6869
Canada Eastern Canada Astec (905) 607-1444
Connecticut Statewide Paragon Electronic Systems (603) 645-7630
Florida Statewide e-Components (888) 468-2444
Georgia Atlanta e-Components (888) 468-2444
Illinois Hoffman Estates Stan Clothier Company (847) 781-4010
Indiana Fishers Bear VAI (317) 570-0707
Kansas Overland Park Stan Clothier Company (913) 894-1675
Maine Statewide Paragon Electronic Systems (603) 645-7630
Maryland Columbia Third Wave Solutions (410) 290-5990
Massachusetts Statewide Paragon Electronic Systems (603) 645-7630
Mexico Countrywide Ammon & Rizos (+55) 11-4688-1960
Michigan St. Joseph Bear VAI (440) 526-1991
Minnesota Eden Prairie Stan Clothier Company (952) 944-3456
Missouri St. Charles Stan Clothier Company (636) 916-3777
New Hampshire Statewide Paragon Electronic Systems (603) 645-7630
New Jersey Statewide S.J. Metro (516) 942-3232
New York Binghamton TriTech - Full Line Rep (607) 722-3580

Jericho S.J. Metro (516) 942-3232
Rochester TriTech - Full Line Rep (585) 385-6500

North Carolina Raleigh e-Components (888) 468-2444
Ohio Brecksville Bear VAI Technology (440) 526-1991
Puerto Rico Countrywide e-Components (888) 468-2444
Rhode Island Statewide Paragon Electronic Systems (603) 645-7630
Vermont Statewide Paragon Electronic Systems (603) 645-7630
Wisconsin Evansville Stan Clothier Company (608) 882-0686

Oconomowoc Stan Clothier Company (608) 882-0686

ON Semiconductor Distribution Partners
Allied Electronics www.alliedelec.com (800) 433-5700
Arrow Electronics www.arrow.com (800) 777-2776
Avnet www.em.avnet.com (800) 332-8638
Chip One Stop, Inc. www.chip1stop.com/maker/on (81) 45 470 8771
Daiwa Distribution Ltd. www.daiwahk.com (852) 2341 3351
Digi-Key www.digikey.com (800) 344-4539
EBV Elektronik www.ebv.com/en/locations.html (49) 8121 774-0
Fuji Electronics Co., Ltd. www.fujiele.co.jp (81) 3 3814 1770
Future & FAI Electronics www.futureelectronics.com/contact 1-800-FUTURE1 (388-8731)
KH Electronics Inc. www.khelec.com/kor (82) 42 471 8521
Mitsui Electronics Inc. www.btel.co.jp (81) 3 6403 5900
Mouser Electronics www.mouser.com (800) 346-6873
Newark/Farnell www.farnell.com/onsemi (800) 4-NEWARK
OS Electronics Co., Ltd. www.oselec.jp Japanese: (81) 3 3255 5985

Other Languages: (81) 3 3255 6066
Promate Electronic Co. www.promate.com.tw (886) 2 2659 0303
RS Components KK jp.rs-online.com (81) 45 335 8550
Segyung Britestone Co. www.britestone.com (82) 2 3218 1511
Serial AMSC www.serialsystem.jp (81) 3 5302 1569
Serial Microelectronics, HK www.serialsys.com.hk (852) 2790 8220
Taewon Inc. www.taewon.net (82) 2 6679 9000
World Peace Industries Co. www.wpi-group.com (852) 2365 4860
WT Microelectronics Co. www.wtmec.com (852) 2950 0820
Yosun Electronics www.yosun.com.tw (886) 2 2659 8168

INTERNATIONAL
GREATER CHINA Beijing 86-10-8577-8200

Hong Kong 852-2689-0088
Shenzhen 86-755-8209-1128
Shanghai 86-21-5131-7168
Taipei, Taiwan 886-2-2377-9911

FRANCE Paris 33 (0)1 39-26-41-00
GERMANY Munich 49 (0) 89-93-0808-0
INDIA Bangalore 91-98-808-86706
ISRAEL Raanana 972 (0) 9-9609-111
ITALY Milan 39 02 9239311
JAPAN Tokyo 81-3-5817-1050
KOREA Seoul 82-2-2190-3500
MALAYSIA Penang 60-4-6463877
SINGAPORE Singapore 65-6484-8603
SLOVAKIA Piestany 421 33 790 2450
UNITED KINGDOM Slough 44 (0) 1753 70 1676

Nov-13

