Solutions for High Voltage Drives

Identifying proper Gate Drivers for Power Switching and Differentiating Isolation techniques

December 2020
Introduction

Powers Switches differences and why Gate Drivers are need it:
- Differences & Similarities between IGBT’s, MOSFET’s, SiC MOSFET’s & GaN MOSFET’s
- Gate Drive requirements for Power Switches needs

Gate Drivers tech features overview
- Top Key Parameters for Gate Drivers
- Gate Drivers selection process

Gate Drivers Categories/Types
- High Side, Low Side, Dual... etc...

Non-isolated Gate Drivers & relationship to Power Switches

Isolated Gate Driver and their Applications
- Types of Isolation and PROS/CONS of each
- Why Isolate, how to Isolate and Apps
- Isolation Standards
Gate drivers technologies have had certain evolutions during the last decade

- With the arrival of on-chip integrated isolation technologies, isolated driver ICs have been developed by main driver IC manufacturers.
- These digital isolators are replacing the OPTO-coupler technology little by little
- So far, microtransformers (coreless transformers) are the preferred digital isolation

In the next 5 years, evolving industry needs will have a considerable impact on gate drivers as well:

- The emerging market of 48V mild hybrid will require isolated half-bridge drivers. Until now, there was no need for isolation in such low voltages. The cost of microtransformers manufactured today will decrease considerably.
- SiC MOSFETs will also have an impact on the gate driver market in two ways:
 - Plug-and-Play market will enjoy a short term growth as some clients may choose to integrate SiC in their new generation converters. Customers encountering difficulties with the development of adequate drivers will prefer to purchase plug & play ones to accelerate the integration of SiC.
 - New safety and monitoring functions will be proposed by driver IC and gate driver board manufacturers in order to enhance the performance and the reliability of SiC switches.

Beyond 2025

- In a longer term perspective, high temperature (HT) driver ICs will see a much bigger market, being driven by integrations into high power modules. Currently, the aerospace industry is developing HT modules, and in the coming years it will be extended to wind turbines, rail traction, electric cars, inverters, etc.
- This integration trends will also appear on SiC IPMs, where the need to have the driver IC closer to the SiC MOSFETs will end up integrating them on the same package.
Driving Force in power management

- Highest efficiency
- Lowest noise
- Smaller size
- Lowest cost

Optimal Power Solution
Applications

For switched-mode power electronic applications involved in high-power and high-voltage conversion

Factory automation

Enterprise power & telecom

Automotive

Motor drive and control

Smart grid

Other industrials

Public Information
Gate Drivers Requirements for Power Switching Devices

- MOSFET and IGBT Tech - Diff and similarities
- Required Drive Power
- Overcoming Power Switch Gate Charge
- Maximum Drive Current requirement
- Variable Output Voltage Swing
- Maximum Switching Frequency
- Maximum Operating Temperature
- Isolation Requirements
Before proceed with Gate Drivers we need to understand the diff between MOSFET and IGBT

- Although both IGBT and MOSFET are voltage-controlled devices, IGBT has BJT-like conduction characteristics.

- Terminals of IGBT are known as Emitter, Collector and Gate, whereas MOSFET has Gate, Source and Drain.

- IGBTs are better in handling higher power than MOSFETs.

- IGBT has PN junctions. MOSFET does not have these.

- IGBT has lower forward voltage drop compared to MOSFET.

- MOSFETs have higher switching frequencies and hence these are preferred over IGBTs in power supplies like SMPS and small to Medium Motor Drivers
Selecting the best Power Switch *(IGBT vs. FET vs. Module)*

DISCLAIMER:
- IGBTs and HV MOSFETs are similar in many ways but differ from a performance and application perspective.
- A “one size fits all” approach does not work.
- The best device is the one that best meets the application needs in terms of size, efficiency and Amps/$ capability.

Power Switching Devices -
- When comparing MOSFET and IGBT structures look very similar.
- The difference is the addition of a P substrate beneath the N substrate.
- The IGBT technology is certainly best Switch to use where breakdown voltages above 1000 V.
- While the MOSFET is certainly the device of choice for breakdown voltages below 700 V.
‘Power Switch’ - Fundamental Component in Power Electronics

Ideal Switch
- Zero leakage in off-state
- Zero voltage in on-state
- Zero switching loss

Power Switches control flow of current in power electronic circuits by operating in 2 states (ON/OFF)

- GATE (G) terminal controls ON/OFF status of switch
- Modern Power Electronics dominated by Switch Mode Power conversion

Ideal switch:

- Blocking loss, \(P_{OFF} = V_{OFF} \times I_{OFF} = 0 \)
- Conduction loss, \(P_{ON} = V_{ON} \times I_{ON} = 0 \)

4 quadrant operation
The quick DIFF

MOSFET’s:

- Improved switching speeds.

- Improved dynamic performance that requires even less power from the driver.

- Lower gate-to-drain feedback capacitance

- Lower thermal impedance which, in turn, has enabled much better power dissipation

- Lower rise and fall times, which has allowed for operation at higher switching frequencies

IGBT’s:

- Improved production techniques, which has resulted in a lower cost

- Improved durability to overloads

- Improved parallel current sharing

- Faster and smoother turn-on/-off waveforms

- Lower on-state and switching losses

- Lower thermal impedance

- Lower input capacitance
IGBT vs. MOSFET

Conditions based

<table>
<thead>
<tr>
<th>IGBT Preferred</th>
<th>MOSFET Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Switching Frequency (<20kHz)</td>
<td>High Switching Frequency (>100kHz)</td>
</tr>
<tr>
<td>High Power levels (above say 3 kW)</td>
<td>Wide line and load conditions</td>
</tr>
<tr>
<td>High dv/dt needed to be handled by the diode</td>
<td>dv/dt on the diode is limited</td>
</tr>
<tr>
<td>High Efficiency is needed at Full load</td>
<td>High efficiency is needed in Light Load</td>
</tr>
</tbody>
</table>

Application based

<table>
<thead>
<tr>
<th>IGBT Preferred</th>
<th>MOSFET Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Drives (>250W)</td>
<td>Motor Drives (<250W)</td>
</tr>
<tr>
<td>UPS and Welding H Bridge inverters</td>
<td>Universal input AC-DC Flyback and forward converter power supplies</td>
</tr>
<tr>
<td>High power PFCs (>3kW)</td>
<td>Low to Mid power PFCs (75W to 3 kW)</td>
</tr>
<tr>
<td>High Power Solar/Wind Inverters (>5kW)</td>
<td>Solar Micro Inverters</td>
</tr>
</tbody>
</table>

Basically all power switches need a gate driver!

Gate Driver Functions:

- Turn ON/OFF power switch
- Amplify logic signals
- Level shifting
- Protection Functions
Power Switch Apps in a nutshell (Graph)

- **Silicon MOSFET**
 - Low to mid-power applications
 - Reached theoretical performance limit

- **IGBT - Insulated Gate Bipolar Transistor**
 - Scaled for High voltage, high power
 - Least expensive per watt at high power
 - Slower but perfect for motor control

- **SiC - Silicon Carbide (breakthrough)**
 - High voltage, high current, high temperature
 - Faster switching requires gate drivers that can tolerate high dV/dt

- **GaN - Gallium Nitride (breakthrough)**
 - Low(er) voltage, high current
 - Fastest switching (higher dV/dt)
 - Narrow gate drive voltage range
MOSFET and IGBT need for Gate Drive primer

- IGBT & MOSFET is a voltage-controlled device used as a switching element in Power Switching Circuits
- The **GATE** is the electrically isolated control terminal for each device
- To operate a MOSFET/IGBT, typically a voltage has to be applied to the gate
- The structure of an IGBT & MOSFET is such that the gate forms a nonlinear capacitor that can not change its Voltage instantaneously
- The minimum voltage when the gate capacitor is charged and the device can just about conduct is the threshold voltage (VTH)
- When Higher Power IGBT/MOSFET is used, the higher Current is required to Turn ON/OFF Power Switch
- Gate Drivers are used to apply voltage and provide drive current to the gate of the power device
- Gate Drivers have fundamental parameters, such as timing, drive strength, and isolation
How does GATE terminal of a Power Switch Work?

- **Let’s take example of a power MOSFET**

GATE terminal controls ON/OFF state of MOSFET

- $V_{GS} =$ Voltage Between Gate & Source
- **To turn ON:** Apply a positive voltage,
 - $V_{GS} >$ Threshold level
- **To turn OFF:** $V_{GS} <$ Threshold level
- GATE is a capacitive input, high-impedance terminal
- 2 parasitic capacitors inside MOSFET internal structure (C_{GS}, C_{GD})
Required Drive Power

- The **Gate Driver** serves to turn the power device on and off, respectively.
- In order to do so, the gate driver charges the gate of the power device up to its final turn-on voltage $V_{ge}(on)$, or the drive circuit discharges the gate down to its final turn-off voltage $V_{ge}(off)$.
- The transition between the two gate voltage levels requires a certain amount of power to be dissipated in the loop between gate driver, gate resistors and power device.
- Today, high-frequency converters for low and medium-power application are predominantly making use of the gate voltage-controlled device such as power metal-oxide-semiconductor field effect transistors (MOSFETs).
- For High Power Applications best devices in use today are Isolated Gate Bipolar Transistors (IGBT’s).
- Gate Drivers are not just for MOSFET’s and IGBT’s but also for fairly new and esoteric devise from Wide Band Gap group such as Silicon Carbide (SiC) FET’s and Gallium Nitride (GaN) FET’s as well.
What is a Gate Driver

- It is a power amplifier that accepts a low-power input from a controller IC and produces the appropriate high-current gate drive for a power MOSFET

- Gate Driver device applies voltage signal \(V_{GS} \) between Gate (G) & Source (S) of power MOSFET, while providing a high-current pulse
- To charge/discharge \(C_{GS}, C_{GD} \) QUICKLY
- To switch ON/OFF power MOSFET QUICKLY
Gate Drivers Markets + Application Topology

- **Single & ½ Bridge**
 - AirCon, White goods
 - Pump & Motor control
 - Lighting
 - Consumer electronics power conversion.

- **Full Bridge**
 - Low/mid voltage DC-AC power
 - Inverters
 - AC/AC & DC-DC converters,
 - Motor control applications.

- **3-Phase**
 - Small BLDC motors and AC motors
 - Fluid or Air Pumps
 - Uninterruptible power supply
 - Solar inverters and other inverters
Gate Drive Requirements and Considerations

- **Total Gate Charge (Qg)**
 Generally higher for HV MOSFETs (larger die compared to IGBT, for same current rating)

- **Turn on gate resistors**
 Generally higher values used for IGBT (lower input capacitance compared to HV MOSFETs)

- **CMTI – Common Mode Transient Immunity**
 Maximum tolerable rate of rise or fall of the common mode voltage applied between two isolated circuits. The unit is normally in kV/us or V/ns. High CMTI means that the two isolated circuits, both transmitter side and receiver side will function well within the Datasheet specs

- **Gate Drive Voltage**
 Higher (15 V) preferred for IGBT, 10 V is ok for HV MOSFETs

- **Negative Gate Drive Voltage**
 Generally not needed for HV MOSFETs, sometimes used for older process IGBTs and definite need for SiC and GaN

- **Gate Driver vs. IGBT/MOSFET consideration**
 Driver that can source/sink higher gate current for a longer time span produces lower switching time and, thus, lower switching power loss within the transistor it drives.
Gate Driver Selection Questions

- How many Inputs/Outputs required from the Gate Driver
- Required Voltage Rating
- Driver Current Rating
- Gate Charge
- Maximum Switching Frequency
- Variable Output Voltage Swing
- Maximum Operation Temp
- Special Functions
- Key External Component selection
- Isolation Requirement – Yes or No
Selection

- **How many Inputs/Outputs are provided for/by Gate Driver**
 - For the inputs, it depends on the choice of the MCU and the control algorithm chosen.
 - For 2 inputs, the choice is high side low side gate driver.
 - For 1 input, the choice is a half bridge driver.
 - Number of outputs depend on the number of half bridges that require driving.

- **Voltage Rating Selection (Rule of Thumb)**
 - A conservative rule is to pick a voltage rating 3 times the operating voltage, with 1.5 times being a recommended minimum. However, this depends purely on the system requirements.
 - Gate drivers always work with MOSFET/IGBT, best practice is to match the voltage rating of the chosen MOSFET/IGBT.
Gate Drive Current Need

How much drive current is required

- Information about the required gate charge to raise the gate voltage to the desired level is essential
- Gate charge information is provided by the MOSFET manufacturer in their datasheet, usually for a gate voltage of 10 V
- Now that we know the required gate charge, we choose the drive current rating depending on the rise and fall times we are targeting.
- The equation to use is $Q_g = I_{gate} \times \text{time}$

 - Example: $Q_g = 50\text{nc}$. Required $Tr = 50\text{ns}$ and $Tf = 25\text{ns}$.
 - I_{gate} (source) = $50/50 = 1\text{A}$ of source
 - I_{gate} (sink) = $50/25 = 2\text{A}$ of sink

- The above calculation provides us with a minimum figure. Often it is not easy to find a tailored gate driver. Best practice is to choose a gate driver with higher than the required rating and use series gate resistors to limit the source and sink currents
Gate Driver Special Functions

➢ Special Functions

✓ Some applications need special functions like
 ▪ inbuilt and/or adjustable dead time
 ▪ enable option
 ▪ shoot through prevention logic
 ▪ delay matching etc. to ensure the selected gate driver comes with the required optional features

➢ Key external component selection

✓ Boot-strap Capacitor Selection
✓ Gate Resistor Selection
✓ Layout Recommendations
External Devices Selection

Gate Resistor Selection
- A typical gate drive current control circuit needs Series Resistor with Device Gate and Optional Reverse biased Diode.
- By adjusting the Tonn and Toff resistors respectively, the rise and fall times can be controlled individually.
- Reverse Biased Diode will facilitate Toff if need be.

Capacitor Selection
- The capacitance of the bootstrap capacitor should be high enough to provide the charge required by the gate of the high side MOSFET. As a general guideline, it is recommended to make sure the charge stored by the bootstrap capacitor is about 50 times more than the required gate charge at operating V CC (usually about 10V to 12V).
- The formula to calculate the charge in C BS to provide sufficient gate charge as follows; \(Q = C \times V \), where \(Q \) is the gate charge required by the external MOSFET. \(C \) is the bootstrap capacitance and \(V \) is the bootstrap voltage Vbs.
Gate Driver Category Definition

<table>
<thead>
<tr>
<th>Non-isolated</th>
<th>Junction Isolated</th>
<th>Galvanic Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single - Channel</td>
<td>High - Side</td>
<td>1-Channel</td>
</tr>
<tr>
<td>Multiple - Channel</td>
<td>High/Low</td>
<td>2-Channel</td>
</tr>
<tr>
<td>High/Low</td>
<td>Half-Bridge</td>
<td></td>
</tr>
<tr>
<td>Three-Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Single or multiple channel</td>
<td>• High Side, High/Low and Half Bridge</td>
<td>• Normally needed in very high power/high voltage systems.</td>
</tr>
<tr>
<td>• Cheapest, simple solution for many applications where only a low-side driver is needed</td>
<td>• Floating HV well</td>
<td>• Three options: Optical, Inductive, Capacitive</td>
</tr>
<tr>
<td>• From LV to 1200V breakdown voltage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

- Automotive
- Industrial Systems
- Consumer Devices

- Appliances
- Consumer Devices & Power Tools
- Auxiliary Automotive & Motors Drives
- Offline Power

- Automotive traction inverters
- Industrial Drive
- Server Rack Power
- Solar and Energy Storage

Products

- FAN3100/11
- FAN3181
- FAN312x
- NCD5700/1/2/3

- FAN321x
- FAN322x

- FAN73611

- FAN8811
- FAN7392
- NCP51530
- FAN73912
- NCP5183

- FAN7382
- FAN7383
- NCP5106B

- FAN7382
- FAN7383
- NCP5106B

- NCD57000/1
- NCP5708x
- NCP51561

- NCD57252
Gate Driver Considerations

<table>
<thead>
<tr>
<th>PURPOSE</th>
<th>EFFECT</th>
<th>CONCERNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep PWR Switch in ON state</td>
<td>Minimize ON state Voltage and reduce conduction losses</td>
<td>Gate Voltage/Under Voltage Lockout</td>
</tr>
<tr>
<td>Keep PWR Switch in OFF state</td>
<td>Minimize leakage current and prevent spurious turn ON/OFF due to EXT or INT disturbances</td>
<td>Gate Voltage/Under Voltage Lockout</td>
</tr>
<tr>
<td>Drive SW from ON to OFF and OFF to ON</td>
<td>Minimize SW losses & improve EMI/EMC</td>
<td>Peak Source/Sink currents</td>
</tr>
<tr>
<td>Noise Immunity</td>
<td>Endure large GND loops & potential differences with high energy present</td>
<td>Separate Signal PWR GND/Reinforced</td>
</tr>
<tr>
<td>SW Protection</td>
<td>OCP, OTP, Shoot through, UVLO protection</td>
<td>Miller Capacitance Clamp/Soft Shutdown</td>
</tr>
</tbody>
</table>
Isolated Gate Drivers – Why, What and How Motivation in Power Management drivers to Isolation

- Rising concern for environmental issues and energy savings is driving growth in the use of dynamic power control and inverters throughout the industrial, power, and home appliance markets

- In the U.S., Asia and Europe, the use of general-purpose inverters, DC Motors and BLDC Motors and AC servos is expanding rapidly, especially in the up and coming markets

- Most important is there has also been steady growth in the use of these devices in power-related fields like wind and solar generation, two markets that are expected to grow well into the future

- Pricing on MCU has dropped dramatically and current use of such Devices to control almost everything has proliferated into every aspect of Life, even Power Management

- In order to separate High Voltage/Power from Logic Level Galvanic Isolation is a MUST HAVE and World Governments mandate so
Introduction to Isolation

Galvanic isolation is a principle of isolating functional sections of electrical systems to prevent current flow.

Reasons for Galvanic Isolation
- Safety of End User
- Protecting LV circuits from HV Circuits
- Filtering of Common-Mode Noise
- Eliminating Ground Loop Noise
- Level-Shift between Power Domains

Technologies used for Galvanic Isolation
- Optically Isolated Devices
- Digitally Isolated Devices
 - Insulation with on-chip capacitors
 - Insulation with on-chip inductors
 - Insulation with off-chip capacitors
Why isolate, Summary?

- To protect from and safely withstand high voltage surges that would damage equipment or harm humans

- To protect expensive controllers – intelligent systems

- To tolerate large ground potential differences and disruptive ground loops in circuits that have high energy or are separated by large distance

- To communicate reliably with high side components in high-voltage high performance solutions
When Isolation is necessary and How to Isolate

- Isolation is needed when there is more than one conductive path between two circuits creates a Ground-Loop.

- Multiple Ground Paths can lead to unintended compensation currents.

- Ground Loops can be broken by:
 - Disconnecting the Grounds
 - Common Mode Chokes
 - Frequency Selective Grounding (Modified Tank Circuits)
 - Differential Amplifiers
 - Galvanic Isolators

- **ONLY TRUE GALVANIC ISOLATION PROVIDES PROTECTION FOR VERY LARGE POTENTIAL DIFFERENCES**
Galvanic Isolation – Reason and Methods

- **ISOLATION** – Means of transporting data and Power between High Voltage and a Low Voltage Circuit while preventing
 - Hazardous DC, AC or
 - Uncontrolled Transient currents flowing between two circuits
- To protect from and safely withstand high voltage surges that would damage equipment or harm humans
- To protect expensive controllers – intelligent systems
- To tolerate large ground potential differences and disruptive ground loops in circuits that have high energy or are separated by large distance
- To communicate reliably with high side components in high-voltage high performance solutions
Isolation Market & Technologies

<table>
<thead>
<tr>
<th>Optocouplers</th>
<th>Digital Isolators (DI)</th>
<th>Digi-Max™ (DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology
- **Optical**: LED + Photodiode
- **Digital**: On-Chip
- **Unique to Digital**: Off-chip with Ceramic Insulator

Benefits
- **Optocouplers**: Lowest Cost, EMI / EMC Immunity, Isolation Reliability / Safety
- **Digital Isolators**: Low Cost, Stable over Temp & Time
- **Digi-Max**: EMI / EMC Immunity, Isolation Reliability / Safety, Stable over Temp & Time

Primary Markets
- **Power Supplies**
- **Industrial HP Drives**
- **Automotive (EV/HEV)**
- **Telecom**
- **Industrial HP Drives**

Lead Suppliers
- Broadcom
- Toshiba
- Texas Instruments
- Silicon Labs
- Analog Devices
- ON Semiconductor®
What is the Popular Isolation methods in gate driver?

A) **Optocoupler**
 - Signal transfer between two isolated circuits using light – LED + phototransistor, 1970s ~ (ON Semi, Avago, Toshiba and others)

B) **Transformer**
 - Integrated micro-transformer and electronic circuitry, 2001 and on…

C) **Capacitor**
 - Signal transmission through capacitive isolation with On- Off-Keying (OOK) modulation, 2007 and on…
Optical -> Optical transmission (fiber optics), optical coupling (optocoupler)
 - LED degradation over time/temperature
 - Slow (<25Mbit/s)
 - Not economical for high-channel count

Capacitive (on-chip/off-chip)
 - Thin insulation barrier (on-chip)
 - Insulating materials susceptible to damage from EOS/ESD (on-chip)
 - Higher power consumption (off-chip)
 - EMI/EMC challenges

Magnetic -> Coreless transformer, magneto resistive, hall effect
 - Magnetic interference
 - EMI susceptibility
 - Thin insulation barrier
THE importance of Integration of Driver + Isolation in single package

- **Adding isolation is becoming mandatory as part of regulatory compliance**
- System solutions becoming smaller in size
 - Telecom bay stations and RRUs – Higher data transactions
 - Datacenters – space limited – but more storage
- Higher efficiency
 - Switching to higher voltages
 - More intelligence to systems
 - More protection of controls
- Higher performance density
- Isolation robustness
- Availability of high voltage devices
 - Wide band gap devices – SiC, GaN
Levels of Isolation

- **Functional Isolation**
 - *Functional Isolation is necessary for the proper operation of a product. There is no need for protection against electric shock*

- **Basic Isolation**
 - *Basic Isolation is single level of isolation providing basic protection against electric shock*

- **Reinforced Isolation**
 - *A single insulation system that provide electrical shock protection equal to double insulation*

- **Supplementary Isolation**

- **Double Isolation**
Comparison of Isolation Techniques

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Opto-Coupler</th>
<th>On-chip Magnetic</th>
<th>On-chip Capacitive</th>
<th>Digi-Max™ Off-chip Capacitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation Materials</td>
<td>Epoxy/Silicone gel</td>
<td>Polyimide</td>
<td>SiO₂ or equivalent</td>
<td>Ceramic Substrate/ Epoxy</td>
</tr>
<tr>
<td>Signal Coupling</td>
<td>Optical (LED +diode)</td>
<td>Magnetic field</td>
<td>Electric field</td>
<td>Electric field</td>
</tr>
<tr>
<td>Performance Across Temp & Time</td>
<td>Varies</td>
<td>Consistent</td>
<td>Consistent</td>
<td>Consistent</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td>~10 Yrs</td>
<td>~ 20 Yrs</td>
<td>~ 20 Years</td>
<td>~20 Years</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Distance Through Insulation (DTI)</td>
<td>> 400 µm</td>
<td>~20 µm</td>
<td>~20 µm</td>
<td>> 500 µm</td>
</tr>
<tr>
<td>Meets EN60950 >0.4mm DTI</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Common Mode Transient Immunity (CMTI)</td>
<td>~25 kV/µs</td>
<td>> 100 kV/µs</td>
<td>> 100 kV/µs</td>
<td>> 100 kV/µs</td>
</tr>
<tr>
<td>EMI EMC Susceptibility</td>
<td>Non-issue – too slow</td>
<td>Design techniques</td>
<td>Signal level dependent</td>
<td>Signal level dependent</td>
</tr>
<tr>
<td>Radiation</td>
<td>Non-issue (light transmission)</td>
<td>Design techniques</td>
<td>Design techniques</td>
<td>Design techniques</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>Up to 125°C</td>
<td>Wide range (150 ºC)</td>
<td>Wide range (150 ºC)</td>
<td>Wide range (150 ºC)</td>
</tr>
<tr>
<td>Standards</td>
<td>UL1577 IEC60747-5-5</td>
<td>UL1577 VDE0884-11</td>
<td>UL1577 VDE0884-11</td>
<td>UL1577 VDE0884-11</td>
</tr>
<tr>
<td>Modulation Method for Internal Signal Xfer</td>
<td>No modulation required</td>
<td>On-Off Keying</td>
<td>On-Off Keying</td>
<td>On-Off Keying</td>
</tr>
<tr>
<td>AEC Qualified Portfolio</td>
<td>Limited</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Standards

- **UL1577**: VDE0884-11
Working Principles of Bi-Directional Ceramic Isolator

- Bi-Directional communication between two isolated circuits.
- Off-chip ceramic capacitors that serve both as the isolation barrier and as the medium of transmission for signal switching using on-off keying (OOK) technique,
- Tx, modulates the VIN input logic state with a high frequency carrier signal.
- Rx detects the barrier signal and demodulates it using an envelope detection technique.
Digi-Max™ Family of Hi-Speed Digital Logic-to-Logic Isolators

Available in Industrial (NCID) and Automotive Grade (NCIV)

NCIV9211
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**
- **Not Connected (NC)**

NCIV9200
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**
- **Not Connected (NC)**

NCIV9311
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**
- **Not Connected (NC)**

NCIV9410
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

NCIV9420
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

NCIV9600
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

NCIV9210
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**
- **Not Connected (NC)**

NCIV9310
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**
- **Not Connected (NC)**

NCIV9410
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

NCIV9510
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

NCIV9630
- **Input 1 (IN1)**
- **Input 2 (IN2)**
- **Input 3 (IN3)**
- **Input 4 (IN4)**
- **Output 1 (OUT1)**
- **Output 2 (OUT2)**
- **Output 3 (OUT3)**
- **Output 4 (OUT4)**

SO-16 WB Package

Released
- **2020**
- **2021**

Other Configurations Available
A digital isolator (also known as on-chip isolators) is used to get a digital signal across a galvanic isolation boundary.

They serve a similar purpose as optocouplers, except optocouplers are far too slow and error prone for high speed (>1MHz) digital signals.

Two principal technologies are being used for digital isolators: micro-transformers and capacitive coupling.

In both cases, an insulating material separates both the primary and secondary side, such material being a polyimide (PI) or a silicon dioxide (SiO2) layer.
Also called micro-transformers

- Coreless Transformers or Coreless Planar Transformers (CPT) were first developed as a solution for insulating the high voltage power circuit from the low voltage control circuit allowing integration on-chip.

- The coreless transformer technology has been chosen by main major driver IC manufacturers as the most adequate solution among on-chip isolation technologies.

 - This Tech has several design advantages:
 - While a discrete transformer needs a core to direct the magnetic flux, the coils in an IC can be placed close enough to save the core.
 - The design of these transformers gives the designer greater control in optimizing, such as precise winding spacing and orientation when compared to traditional wire-wound magnetics.
 - Greater stability over high temperatures. Pulse transformers suffer from magnetic property changes and accelerated aging.
 - The pulse response of a planar transformer is typically less than 2ns, while the propagation delay is about 20ns. For optocouplers, the propagation delay is around 500ns.

- For signal transfer, the input data is usually encoded before being transmitted to the primary data transformer. A decode is used at the secondary side to recover the signal.

- Isolation between the input and output is provided by the insulation layers between the primary coil and the secondary coil.
Isolation Technologies (Capacitive)

Advantages:
- Physical barrier utilizing dielectric insulating material
- No LED to wear out
- Total immunity to magnetic fields
- Used by Texas Instruments (developed by Burr Brown)

Disadvantages:
- Higher current consumption than transformer isolation
Honorable mention - Isolation Technologies (RF)

Advantages:
- Requires less input power than optoisolator technologies
- Lower propagation delay than optoisolators
- Total immunity to magnetic fields
- No LED to wear out

Disadvantages:
- Higher current consumption than magnetic isolation
- Carrier frequency limits pulse position accuracy

This RF ISO tech is used by Silicon Labs
• **Optocouplers** and **pulse transformers** have been the most used technologies to provide the galvanic isolation for gate drivers.

• **Fiber optic** remains a high-end solution, for high power applications, such as rail traction, wind turbines or the grid.

• But since a couple of years, *chip integrated isolation technologies*, such as **coreless transformers** are attacking the traditional optocoupler & pulse transformer markets.
Comparison between MOSFET and IGBT Isolated drivers

<table>
<thead>
<tr>
<th>Power Switch</th>
<th>MOSFET</th>
<th>IGBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequencies</td>
<td>High (>20 kHz)</td>
<td>Low to Medium (5-20kHz)</td>
</tr>
<tr>
<td># Channels</td>
<td>Single and Dual</td>
<td>Single</td>
</tr>
<tr>
<td>Protection</td>
<td>No</td>
<td>Yes – Desaturation, Miller Clamping</td>
</tr>
<tr>
<td>Max Vdd (power supply)</td>
<td>20V</td>
<td>30V</td>
</tr>
<tr>
<td>Vdd range</td>
<td>0-20V</td>
<td>-10 to 20V</td>
</tr>
<tr>
<td>Operating Vdd</td>
<td>10-12V</td>
<td>12-15V</td>
</tr>
<tr>
<td>UVLO</td>
<td>8V</td>
<td>12V</td>
</tr>
<tr>
<td>CMTI</td>
<td>50-100V/ns</td>
<td><50V/ns</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>Smaller the better (<50ns)</td>
<td>High (not critical)</td>
</tr>
<tr>
<td>Rail Voltage</td>
<td>Up to 650V</td>
<td>>650V</td>
</tr>
<tr>
<td>Typical Applications</td>
<td>Power supplies – Server, datacom, telecom, factory automation, onboard and offboard chargers, solar u-inverters and string inverters (<3kW), 400-12V DCDC -Auto</td>
<td>Moto drives (AC machines), UPS, Solar central and string power inverters (>3kW), Traction inverters for auto</td>
</tr>
</tbody>
</table>

Public Information
Comparison of SiC to MOSFET and IGBT iso drivers

<table>
<thead>
<tr>
<th>Power Switch</th>
<th>MOSFET</th>
<th>IGBT</th>
<th>SiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequencies</td>
<td>High (>20 kHz)</td>
<td>Low to Medium (5-20kHz)</td>
<td>High (>50 kHz)</td>
</tr>
<tr>
<td># Channels</td>
<td>Single and Dual</td>
<td>Single</td>
<td>Single and Dual</td>
</tr>
<tr>
<td>Protection</td>
<td>No</td>
<td>Yes – Desaturation, Miller Clamping</td>
<td>Yes – Current sense, Miller Clamping</td>
</tr>
<tr>
<td>Max Vdd (power supply)</td>
<td>20V</td>
<td>30V</td>
<td>30V</td>
</tr>
<tr>
<td>Vdd range</td>
<td>0-20V</td>
<td>-10 to 20V</td>
<td>-5 to 25V</td>
</tr>
<tr>
<td>Operating Vdd</td>
<td>10-12V</td>
<td>12-15V</td>
<td>15-18V</td>
</tr>
<tr>
<td>UVLO</td>
<td>8V</td>
<td>12V</td>
<td>12-15V</td>
</tr>
<tr>
<td>CMTI</td>
<td>50-100V/ns</td>
<td><50V/ns</td>
<td>>100V/ns</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>Smaller the better (<50ns)</td>
<td>High (not critical)</td>
<td>Smaller the better (<50ns)</td>
</tr>
<tr>
<td>Rail Voltage</td>
<td>Up to 650V</td>
<td>>650V</td>
<td>>650V</td>
</tr>
<tr>
<td>Typical Applications</td>
<td>Power supplies – Server, datacom, telecom, factory automation, onboard and offboard chargers, solar u-inverters and string inverters (<3kW), 400-12V DCDC - Auto</td>
<td>Moto drives (AC machines), UPS, Solar central and string power inverters (>3kW), Traction inverters for auto</td>
<td>PFC – Power supplies, Solar inverters, DCDC for EV/HEV and traction inverters for EV, Motor drives, Railways</td>
</tr>
</tbody>
</table>

Green font highlights similarities
A conceptual power drive system block diagram

Electronic devices and integrated circuits (ICs) used for isolation are called isolators
Power Supply application

There is high voltage involved on the primary side of DCDC

- **PFC Boost**
 - Reduces Harmonic Content, lowers peak current and makes load look Resistive

- **PWM**
 - PWM is main loop to regulate Vo, provides proper duty cycle

- **Local POL Regulators**
 - PWM is main loop to regulate Vo, provides proper duty cycle
Server / Telecom Power Supply example

AC 85~265V
EMI Filter

PFC
(Power Factor Correction)

PFC #1

PFC #2

400V_{DC}

DC-DC #1

DC-DC #m

DC-DC #n

48V

Batteries

Bus Converters

POLs

uProcessor, Memory, HDD...

All pictures are Used under Fair use, 2015

1. 1Ch/2Ch low side driver
2. High and low side driver

100V / 600V

Public Information

9.6V/12V

48V

48V

12V
Motor drive application

Gate driver options:
- 6 single channel iso drivers with no protection (8pin) and usually reinforced
- 6 single channel iso drivers with protection (DESAT, Miller clamp or split output) (16 pin)
- 3 single channel iso drivers for high side only (8 or 16 pin) along with 3 non isolated drivers
Solar micro (300W)/string (<3kW) inverter

Usually MOSFET single inverters needing isolated (basic or reinforced) drivers
Isolation – OPTO vs. Digital

<table>
<thead>
<tr>
<th>Key Article</th>
<th>Effect</th>
<th>Digital Isolators</th>
<th>Optocoupler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing performance</td>
<td>Enables higher throughput and efficiency for end product</td>
<td>Low propagation delay and skew, better part to part matching</td>
<td>High propagation delays and skew, worse part to part matching</td>
</tr>
<tr>
<td>Parasitic capacitive coupling</td>
<td>The lower the parasitics, the higher the CMTI</td>
<td>Less than half the parasitic coupling of optocouplers</td>
<td>High parasitic coupling with interdependent parameters</td>
</tr>
<tr>
<td>Reliability and high temperature operation</td>
<td>Longer product lifetimes</td>
<td>No wear out mechanisms, 60+ year operating lifetime at 125 °C at maximum VDD</td>
<td>Intrinsic wear-out mechanisms; 10x lower lifetime</td>
</tr>
<tr>
<td>Input current</td>
<td>High input current means higher power consumption</td>
<td>CMOS input buffers need very low input current</td>
<td>Requires higher input current to be competitive</td>
</tr>
<tr>
<td>Ease-of-use</td>
<td>Minimum external BOM needed to extract full functionality and performance</td>
<td>Fewer second order effects, minimum BOM required for full performance guarantee</td>
<td>Significant first and second order effects, temperature dependencies, imprecise current thresholds, CTR require external BOM to get stable performance</td>
</tr>
<tr>
<td>Electro-magnetic immunity and radiation</td>
<td>Immunity provides robustness and low radiation implies low noise generation</td>
<td>Capacitive-coupled devices are comparable to optos while magnetically coupled devices can be noisy and are susceptible to external EM noise</td>
<td>Opto are generally highly immune and have low radiation</td>
</tr>
<tr>
<td>Safety compliance</td>
<td>Ensures safety standards are tested and certified</td>
<td>General trend is new-generation isolators are on par with opto</td>
<td>Opto have traditionally been used for many years and are compliant</td>
</tr>
</tbody>
</table>
Active Standards Organizations: Keep Up-to-Date With Rapidly Evolving Requirements

IEC 60747-5-5
Optoelectronic devices
photo-couplers

VDE 0884-10 and 0881-11
Magnetic and capacitive couplers for safe isolation
Will be replaced by VDE 0884-17

IEC 60747-17
Magnetic and capacitive coupler for basic and reinforced isolation
Valid from ~ 2018 Target

VDE 0884-17
Magnetic and capacitive coupler for basic and reinforced isolation
Valid from ~ 2018 Target

Component level standards (component insulation capabilities)

IEC 60664-1
Insulation coordination for equipment within low-voltage systems - principles, requirements and tests

IEC 61800-5-1 new UL 61800-5-1
Adjustable speed electrical power drive systems – safety requirements

System level standards (isolation coordination)
Key requirements for an isolated driver

In addition to understanding the levels of isolation,... It is important to find out about the driver functionalities:

- Propagation delay
- Common Mode Transient Immunity (CMTI)
- Rise time/fall time
- Maximum driver side supply voltage
- UVLO
- Channel to channel delay
- Protection schemes
- Dead time control and overlap
- Enable/disable features
Gate Driver Topologies

<table>
<thead>
<tr>
<th>Non-isolated</th>
<th>Signal Isolated</th>
<th>Junction Isolated</th>
<th>Galvanic Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Non-isolated**
 - Very simple
 - Minimal features
 - Layout critical to prevent crosstalk and GND currents
 - May need extra Cap & Common Mode Choke to decouple noise
 - **APPS** – Low Power SMPS with Low Cost MCU; Low drive Power

- **Signal Isolated**
 - Not commonly used
 - Layout can be complex due to extra IC’s
 - Decoupling Caps extra cost
 - GND noise Common Mode choke could be required
 - **APPS** – Low to Med Power; Afterthought Isolation need it if long cables are used

- **Junction Isolated**
 - Low Cost
 - Easy layout
 - Need to select Boost Diode and Cap with care for speed/noise ratio
 - Possible Cap needed for cross-coupling reduction due to NO galvanic isolation
 - **APPS** – DC-DC; PFC; Small-Med Motor drivers; Consumer Appliances; Med Power UPS< 3KW

- **Galvanic Isolated**
 - IC is complex; all Integrated
 - Full protection features
 - Higher cost/Highest safety
 - Ease of Layout, no extra components
 - **APPS** – High Power AC/BLDC Motors; Industrial SMPS; Solar Inverters; High Power UPS > 3KW

20/01/2021
Isolation Tech: OPTO, Fiber-optic & Level Shift Pros – Cons

OPTO-Coupler

Pluses:
- Simple
- Been around longest
- High Iso Capacity up to 1 KV
- Drive Speed up to 1 MHz
- Offers good response at Lower Fsw
- Very inexpensive

Minuses:
- LED Degradation
- Power supply required
- Slow Prop Delay
- Slow Rise/Fall times
- Frequency Response is slow
- No energy Transmission

Fiber Optics

Pluses:
- Unlimited Isolation Voltage
- Fast Response time
- Distance between points is unlimited
- Great Communication between Points

Minuses:
- Expensive
- Power Supply required
- No Energy Transmission

Level Shift/Junction Isolation

Pluses:
- High Current Capability
- Precision Analog Circuitry
- Voltage levels of 1200 V/600 V/500V/200 V & 100 V
- Configuration of 3-Phase/Half Bridge/Single Channel & more
- Best Price/Performance ratio

Minuses:
- No Galvanic Isolation
- Power Supply required
- No Energy Transmission
Isolation Tech: Inductive Coupling and Capacitive Pros – Cons

Transformer, Iron Core

Pluses:
- Galvanically Isolated
- Reinforced Isolation for 1700V MIN
- Fast & Accurate, low jitter/low delay
- Flexible Form Factor
- Low coupling Capacitance
- Bi-Directional

Minuses:
- Expensive
- 10% Turn ON/OFF stability issues
- Single Source
- Limited Product Portfolio, yet

Planar Core

Pluses:
- Unlimited Isolation Voltage
- Fast Response time
- Distance between points is unlimited
- Great Communication between Points

Minuses:
- Expensive
- Power Supply required
- No Energy Transmission

Coreless IC

Pluses:
- High Current Capability
- Low Cost
- Very Fast
- Low coupling Capacitance

Minuses:
- Single Source
- Power Supply required
- No Energy Transmission

Capacitive Isolation

Pluses:
- Low Power Consumption
- 1700V MIN
- Fast & Accurate, low jitter/low delay
- Physical Barrier with Iso-Material

Minuses:
- Expensive
- High Current consumption
ISOLATION TECHNOLOGY COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>Isolation</th>
<th>Dv/dt immunity</th>
<th>Propagation delay</th>
<th>Integration level</th>
<th>Independent power supply needed at the secondary</th>
<th>Reliability (over time & harsh environment)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optocouplers</td>
<td>Few kV</td>
<td>>50kV/µs</td>
<td>>400ns</td>
<td>Medium</td>
<td>Yes</td>
<td>Aging issues</td>
<td>$</td>
</tr>
<tr>
<td>Fiber optic</td>
<td>Several 10’s kV</td>
<td>>100kV’s/µs</td>
<td>Negligible</td>
<td>Medium</td>
<td>Yes</td>
<td>Good reliability</td>
<td>$$$$</td>
</tr>
<tr>
<td>Monolithic level shifter</td>
<td>None</td>
<td>50kV/µs</td>
<td>-</td>
<td>Integrated on the IC</td>
<td>No</td>
<td>-</td>
<td>$</td>
</tr>
<tr>
<td>Pulse transformer</td>
<td>Several kV</td>
<td>>50kV/µs</td>
<td><100 ns</td>
<td>Bulky</td>
<td>No</td>
<td>Reliable</td>
<td>$</td>
</tr>
<tr>
<td>Digital isolation</td>
<td>Several kV</td>
<td>>100kV/µs</td>
<td>~20 ns</td>
<td>Integrated on-chip or driver IC package</td>
<td>Yes</td>
<td>Very reliable</td>
<td>$$</td>
</tr>
</tbody>
</table>
Comparison between Gate Drive Transformer & High & Low Side Driver with isolator

<table>
<thead>
<tr>
<th></th>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{Prop}</td>
<td>≈20ns</td>
<td>≈100ns</td>
</tr>
<tr>
<td>Bias Power</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>C_{IO}</td>
<td>≥10pF</td>
<td>≤1pF</td>
</tr>
<tr>
<td>Parasitics</td>
<td>Large (L_K)</td>
<td>Very small</td>
</tr>
<tr>
<td>Overshoot</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Size</td>
<td>Bulky</td>
<td>Small</td>
</tr>
</tbody>
</table>
Isolation Evolution and Key Reasons behind it

THE need for Gate Driver change

- Faster switching frequency
- Need for lower stray inductance
- Driver IC closer to gate
- Higher temp. inside the power module
- Need for on-chip integrated isolation
- Integration of driver ICs in transistor package

This cause-effect scenario is now principally applied by Wide Band Gap devices.
Construction of an isolated gate driver

Multichip module

Transmitter → Isolator → Receiver + Driver

Block Diagram

NCD57000 - Isolated Driver

App Schematic

Public Information

ON NCV57001

ON
Power Switch Impact on Gate Driver Evolution

Yet even **higher** working voltage
Faster DSAT detection
Higher CMTI
Enhanced safety features

Higher working voltage
Miller Clamp
DSAT detection

10 kW **IGBT Heat Sink**
10 kW **SiC Heat Sink**

Public Information
State-of-the-art Power Semiconductors (Wide Band Gap)

<table>
<thead>
<tr>
<th></th>
<th>Si-MOSFET</th>
<th>IGBT</th>
<th>SiC-MOSFET</th>
<th>GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Ratings</td>
<td>20~650V</td>
<td>≥650V</td>
<td>≥650V</td>
<td>≤650V</td>
</tr>
<tr>
<td>Optimal V_{GS}</td>
<td>0~15V</td>
<td>-10~15V</td>
<td>-5~20V</td>
<td>-5~10V</td>
</tr>
<tr>
<td>Max. Limit</td>
<td>(±20V)</td>
<td>(-10~20V)</td>
<td>(-5~25V)</td>
<td>(-10~18V)</td>
</tr>
</tbody>
</table>

- I-V curves are from datasheets of Infineon, CREE, EPC
Value of Silicon carbide in high voltage & high power applications

- High power density – 10x more than Silicon
 - High current density
- High breakdown voltage
- Drive higher current in a reduced footprint
- High thermal conductivity
- High mobility – ability to switch at high frequencies
Trending towards integration: Isolated gate driver

TYPE A

<table>
<thead>
<tr>
<th>Type A</th>
<th>W (mm)</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>Area (mm^2)</th>
<th>Vol (mm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN3224/NCP810 71</td>
<td>5</td>
<td>6.2</td>
<td>1.75</td>
<td>31</td>
<td>54.25</td>
</tr>
<tr>
<td>GA3550-BL</td>
<td>17.4</td>
<td>24.13</td>
<td>10</td>
<td>420</td>
<td>4200</td>
</tr>
</tbody>
</table>

SUM | 451 | 4254 |

TYPE B

<table>
<thead>
<tr>
<th>Type B</th>
<th>W (mm)</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>Area (mm^2)</th>
<th>Vol (mm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO7520C</td>
<td>10.5</td>
<td>10.6</td>
<td>2.65</td>
<td>111.3</td>
<td>295</td>
</tr>
<tr>
<td>UCC27714</td>
<td>8.75</td>
<td>6.2</td>
<td>1.75</td>
<td>54.25</td>
<td>95</td>
</tr>
<tr>
<td>MURS360</td>
<td>8.1</td>
<td>6.1</td>
<td>2.4</td>
<td>49.41</td>
<td>119</td>
</tr>
</tbody>
</table>

SUM | 215 | 509 |

TYPE C: ISO Driver (NCD57252 & NCP51561)

- CMTI > 100V/ns
- 5kVrms reinforced isolation
- T_{Prop}: 35ns Typ.
- Match./T_{PWD} < 5ns
- 110mm²

Public Information
Gate Driver Key attributes

- **Negative Input/Output Voltage Capability**: Negative Voltage result from parasitic inductances caused by switching transitions, leakage or even layout issues. Gate Driver ability to survive NEG Voltage is critical for robust, reliable solution. High Immunity to GND noise.

- **Propagation Delay**: Supports higher Frequencies, reduction in reverse recovery losses. FET needs quicker switching than IGBT and Fast Prop-Delay enables that, minimizing conduction losses in process.

- **Delay Matching**: IF FET’s used in parallel then it will support Drive with MIN delay differences. Reduces issues with paralleling FET’s and easily doubles Current drive output for large FET’s.

- **Wide VDD Range**: Capability of using the same Gate Driver when diff Voltages are present as well as diff Power Switches (MOSFET/IGBT). Also great in low-quality PS environment. Also support Split Rail system where POS and NEG voltage present; IGBT /SiC FET’s.

- **Operating Temp Range**: Very consistent performance and robustness under Extreme Temp conditions (-40 Deg C – 125 Deg C).
3-Phase Motor Control (Industrial Robotics / Etc...)

Industrial comms (position / speed / torque reference)

Position Loop

Speed Loop

Torque / current loop [FOC]

PWM unit

VC

VA

VB

VDC

I_A

I_B

I_C

ΣΔ Interface

Digital Isolator

NCV57252 x3

OpAmp

Speed Feedback

Isolation Boundary

Current Feedback

Position Feedback

Angle Sensor

Speed Sensor

Angle Feedback

Angle

Speed

Angle

Industrial comms (position / speed / torque reference)
3-Phase Motor Control (Auto / Industrial Robotics / Etc...)

Industrial comms (position / speed / torque reference)

Position Loop

Speed Loop

Torque / current loop [FOC]

PWM unit

Digital Isolator

Gate Driver

Current Feedback

Angle Sensor

OpAmp

Speed Feedback

Position Feedback

Angl...
Network Communications

- 1-Ch Optocoupler
- 2-Ch Optocoupler

Optocouplers and Digital Isolators are used in industrial communication systems, such as PLC (Programmable Logic Controls) and network communications. These components help in isolating digital signals, ensuring reliable data transmission and preventing signal interference.
Automotive Electrification – PTC Heaters

Digital Isolator

PTC Heaters

Isolated Gate Driver

Non-Isolated Gate Driver

Digital Isolator

PSU Monitor

CAN Transceiver

Temp Sensor

Temp Sensor

15V LDO

5V LDO

Optional Safety IGBT

400V Battery

GND

Micro

15V

+5V

-5V

15V

-5V

15V

5V

GND

GND

GND

GND

GND

Heat rod

Control unit

Electric Vehicle

Cabin

Blower

Air

Heated air

PTC Heater

Inlet air

Outlet air

Housing

73
Industrial Communication (PLC)

Industrial Washing Machine

Optocoupler
TRIAC

Isolated Gate Driver (Optical or Digital)

Public Information
Analog Input Modules
Power Supply

AC In → Input Bridge Rectifier → Power Factor Correction → Voltage Regulator → Output Rectifier / Sync Rectifier → Voltage Regulator → DC Out

Isolation Boundary

Optocoupler

Output Rectifier / Sync Rectifier
Thank you very much for your attention