Is Now Part of

ON Semiconductor

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FXMA2104
Dual-Supply, 4-Bit Voltage Translator / Buffer / Repeater / Isolator for Open-Drain Applications

Features
- Bi-Directional Interface between Any Two Levels: 1.65V to 5.5V
- Direction Control not Needed
- System GPIO Resources Not Required when OE Tied to VCCA
- I2C 400pF Buffer / Repeater
- I2C-Bus® Isolation
- A/B Port VOL = 175mV (Typical), VIL = 150mV, IOL = 6mA
- Open-Drain Inputs / Outputs
- Accommodates Standard-Mode and Fast-Mode I2C-Bus Devices
- Supports I2C Clock Stretching & Multi-Master
- Fully Configurable: Inputs and Outputs Track VCC
- Non-Preferential Power-Up; Either VCC May Be Powered-Up First
- Outputs Switch to 3-State if Either VCC is at GND
- Tolerant Output Enable: 5V
- Packaged in 12-Lead Ultrathin MLP (1.8mm x 1.8mm)
- ESD Protection Exceeds: - 5kV HBM ESD (per JESD22-A114) - 2kV CDM (per JESD22-C101)

Description
The FXMA2104 is a 4-bit high-performance, configurable dual-voltage supply, open-drain translator for bi-directional voltage translation over a wide range of input and output voltages levels.

Intended for use as a voltage translator in applications using the I2C-Bus® interface, the input and output voltage levels are compatible with I2C device specification voltage levels. External pull-up resistors are required.

The device is designed so that the A port tracks the VCCA level and the B port tracks the VCCB level. This allows for bi-directional A/B port voltage translation between any two levels from 1.65V to 5.5V. VCCA can equal VCCB from 1.65V to 5.5V.

Non-preferential power-up means either VCC can be powered-up first. Internal power-down control circuits place the device in 3-state if either VCC is removed.

The two ports of the device have automatic direction-sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXMA2104UMX</td>
<td>-40 to +85°C</td>
<td>BX</td>
<td>12-Lead, Ultrathin, MLP, 1.8mm x 1.8mm</td>
<td>5000 Units on Tape and Reel</td>
</tr>
</tbody>
</table>
Block Diagram

Figure 1. Block Diagram, 1 of 4 Channels
Pin Configuration

![Pin Configuration Diagram]

Figure 2. UMLP (Top-Through View)

Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{CCB}</td>
<td>B-Side Power Supply</td>
</tr>
<tr>
<td>2</td>
<td>V_{CCA}</td>
<td>A-Side Power Supply</td>
</tr>
<tr>
<td>3, 4, 5, 6</td>
<td>A₀, A₁, A₂, A₃</td>
<td>A-Side Inputs or 3-State Outputs</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>OE</td>
<td>Output Enable Input</td>
</tr>
<tr>
<td>9, 10, 11, 12</td>
<td>B₃, B₂, B₁, B₀</td>
<td>B-Side Inputs or 3-State Outputs</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>Control</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE LOW Logic Level</td>
<td>3-State</td>
</tr>
<tr>
<td>OE HIGH Logic Level</td>
<td>Normal Operation</td>
</tr>
</tbody>
</table>

Note:
1. If the OE pin is driven LOW, the FXMA2104 is disabled and the A₀, A₁, A₂, A₃, B₀, B₁, B₂ and B₃ pins (including dynamic drivers) are forced into 3-state.
Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCA, VCCB</td>
<td>Supply Voltage</td>
<td>-0.5</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>DC Input Voltage</td>
<td>A Port</td>
<td>-0.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Port</td>
<td>-0.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input (OE)</td>
<td>-0.5</td>
<td>7.0</td>
</tr>
<tr>
<td>VO</td>
<td>Output Voltage(2)</td>
<td>An Outputs 3-State</td>
<td>-0.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bn Outputs 3-State</td>
<td>-0.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An Outputs Active</td>
<td>-0.5</td>
<td>VCCA + 0.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bn Outputs Active</td>
<td>-0.5</td>
<td>VCCB + 0.5V</td>
</tr>
<tr>
<td>IIN</td>
<td>DC Input Diode Current</td>
<td>At VIN < 0V</td>
<td>-50 mA</td>
<td></td>
</tr>
<tr>
<td>IOK</td>
<td>DC Output Diode Current</td>
<td>At VO < 0V</td>
<td>-50 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At VO > VCC</td>
<td>+50 mA</td>
<td></td>
</tr>
<tr>
<td>IOH / IOL</td>
<td>DC Output Source/Sink Current</td>
<td>-50 mA</td>
<td>+50 mA</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>DC VCC or Ground Current per Supply Pin</td>
<td>±100 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation</td>
<td>At 400KHz</td>
<td>0.129 mW</td>
<td></td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge Capability</td>
<td>Human Body Model, JESD22-A114</td>
<td>5 kV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charged Device Mode, JESD22-C101</td>
<td>2 kV</td>
<td></td>
</tr>
</tbody>
</table>

Note:
2. Iᵦ absolute maximum rating must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCA, VCCB</td>
<td>Power Supply Operating</td>
<td>1.65</td>
<td>5.50</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>A Port</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Port</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input (OE)</td>
<td>0</td>
<td>VCCA</td>
</tr>
<tr>
<td>ΘJA</td>
<td>Thermal Resistance</td>
<td>301.5</td>
<td>C°/W</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Free Air Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note:
3. All unused inputs and I/O pins must be held at VCCI or GND, VCCI is the VCC associated with the input side.
Functional Description

Power-Up/Power-Down Sequencing

FXM translators offer an advantage in that either \(V_{CC} \) may be powered up first. This benefit derives from the chip design. When either \(V_{CC} \) is at 0V, outputs are in a high-impedance state. The control input (OE) is designed to track the \(V_{CCA} \) supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin.

The recommended power-up sequence is:
1. Apply power to the first \(V_{CC} \).
2. Apply power to the second \(V_{CC} \).
3. Drive the OE input HIGH to enable the device.

The recommended power-down sequence is:
1. Drive OE input LOW to disable the device.
2. Remove power from either \(V_{CC} \).
3. Remove power from other \(V_{CC} \).

Note:
4. Alternatively, the OE pin can be hardwired to \(V_{CCA} \) to save GPIO pins. If OE is hardwired to \(V_{CCA} \), either \(V_{CC} \) can be powered up or down first.

Application Circuit

![Application Circuit Diagram]

Figure 3. Application Circuit
Application Information

The FXMA2104 has open-drain I/Os and requires external pull-up resistors on the eight data I/O pins, as shown in Figure 3. If a pair of data I/O pins \(A_n/B_n\) is not used, both pins should be tied to GND (or both to \(V_{CC}\)). In this case, pull-down or pull-up resistors are not required. The recommended values for the pull-up resistors (RPUs) are \(1\,\text{k}\Omega\) to \(10\,\text{k}\), depending on the total bus capacitance, the user is free to vary the pull-up resistor value to meet the maximum \(I^2C\) edge rate per the \(I^2C\) specification (UM10204 rev. 03, June 19, 2007). For example, the maximum edge rate (30% - 70%) during Fast Mode (400kbit/s) is 300ns. If bus capacitance is approaching the maximum 400pF, lower the RPU value to keep the rise time below 300ns (Fast Mode). Section 7.1 of the \(I^2C\) specification provides an excellent guideline for pull-up resistor sizing.

Theory of Operation

The FXMA2104 is designed for high-performance level shifting and buffer / repeating in an \(I^2C\) application. Figure 1 shows that each bi-directional channel contains two series-Npassgates and two dynamic drivers. This hybrid architecture is highly beneficial in an \(I^2C\) application where auto-direction is a necessity. For example, during the following three \(I^2C\) protocol events:

- Clock Stretching
- Slave’s ACK Bit (9\(^{th}\) bit = 0) following a Master’s Write Bit (8\(^{th}\) bit = 0)
- Clock Synchronization and Multi Master Arbitration

the bus direction needs to change from master-to-slave to slave-to-master without the occurrence of an edge. If there is an \(I^2C\) translator between the master and slave in these examples, the \(I^2C\) translator must change direction when both A and B ports are LOW. The Npassgates can accomplish this task very efficiently because, when both A and B ports are LOW, the Npassgates act as a low resistive short between the two (A and B) ports.

Due to \(I^2C\)’s open-drain topology, \(I^2C\) masters and slaves are not push-pull drivers. Logic LOWs are “pulled down” \((\text{I}_{\text{sink}})\), while logic HIGHs are “let go” (3-state). For example, when the master lets go of SCL (SCL always comes from the master), the rise time of SCL is largely determined by the RC time constant, where \(R = R_{PU}\) and \(C = \text{the bus capacitance}\). If the FXMA2104 is attached to the master [on the A port] and there is a slave on the B port, the Npassgates act as a low resistive short between the ports until either of the port’s \(V_{CC}/2\) thresholds are reached. After the RC time constant has reached the \(V_{CC}/2\) threshold of either port, the port’s edge detector triggers both dynamic drivers to drive their respective ports in the LOW-to-HIGH (LH) direction, accelerating the rising edge. The resulting rise time resembles the scope shot in Figure 4. Effectively, two distinct slew rates appear in rise time. The first slew rate (slower) is the RC time constant of the bus. The second slew rate (much faster) is the dynamic driver accelerating the edge.

If both the A and B ports of the translator are HIGH, a high-impedance path exists between the A and B ports because both the Npassgates are turned off. If a master or slave device decides to pull SCL or SDA LOW, that device’s driver pulls down \((\text{I}_{\text{sink}})\) SCL or SDA until the edge reaches the A or B port \(V_{CC}/2\) threshold. When either the A or B port threshold is reached, the port’s edge detector triggers both dynamic drivers to drive their respective ports in the HIGH-to-LOW (HL) direction, accelerating the falling edge.
Buffer / Repeater Performance

The FXMA2104 dynamic drivers have enough current-sourcing capability to drive a 400pF capacitive bus. This is beneficial when an I²C buffer / repeater is required. The I²C specification stipulates a maximum bus capacitance of 400pF. If an I²C segment exceeds 400pF, an I²C buffer / repeater is required to split the segment into two segments, each of which is less than 400pF. Figure 4 is a scope shot of an FXMA2104 driving a lumped load of 600pF. Notice the (30% - 70%) rise time is only 112ns (total \(R_{PU} = 2.2\, \Omega \)). This is well below the maximum edge rate of 300ns. Not only does the FXMA2104 drive 400pF, it also provides excellent headroom below the I²C specification maximum edge rate of 300ns.

\[V_{OL} vs. I_{OL} \]

The I²C specification mandates a maximum \(V_{IL} \) (IOL of 3mA) of \(V_{CC} \times 0.3 \) and a maximum \(V_{OL} \) of 0.4V. If there is a master on the A port of an I²C translator with a \(V_{CC} \) of 1.65V and a slave on the I²C translator B port with a \(V_{CC} \) of 3.3V, the maximum \(V_{IL} \) of the master is \((1.65V \times 0.3) \) 495mV. The slave could legally transmit a valid logic LOW of 0.4V to the master.

If the I²C translator's channel resistance is too high, the voltage drop across the translator could present a \(V_{IL} \) to the master greater than 495mV. To complicate matters, the I²C specification states that 6mA of IOL is recommended for bus capacitances approaching 400pF. More IOL increases the voltage drop across the I²C translator. The I²C application benefits when I²C translators exhibit low \(V_{OL} \) performance. Figure 5 depicts typical FXMA2104 \(V_{OL} \) performance vs. a competitor, given a 0.4V \(V_{IL} \).

![Graph showing \(V_{OL} \) vs. IOL comparison between FXMA2104 and a competitor device, with \(V_{IL} = 0.4V \) at various IOL values.](image)
I²C Bus Isolation

The FXMA2104 supports I²C-Bus® isolation for the following conditions:

- Bus isolation if bus clear
- Bus isolation if either VCC goes to ground

Bus Clear

Because the I²C specification defines the minimum SCL frequency of DC, the SCL signal can be held LOW forever; however, this condition shuts down the I²C bus. The I²C specification refers to this condition as Bus Clear. In Figure 6, if slave #2 holds down SCL forever, the master and slave #1 are not able to communicate because the FXMA2104 passes the SCL stuck-LOW condition from slave #2 to slave #1 as well as the master. However, if the OE pin is pulled LOW (disabled), both ports (A and B) are 3-stated. This results in the FXMA2104 isolating slave #2 from the master and slave #1, allowing full communication between the master and slave #1.

Either VCC to GND

If slave #2 is a camera that is suddenly removed from the I²C bus, resulting in VCCB transitioning from a valid VCC (1.65V – 5.5V) to 0V; the FXMA2104 automatically forces all I/Os on both its A and B ports into 3-state. Once VCCB has reached 0V, full I²C communication between the master and slave #1 remains undisturbed.

![Figure 6. Bus Isolation](image-url)
DC Electrical Characteristics

$T_A = \text{–40°C to +85°C}$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>V_{CCA} (V)</th>
<th>V_{CCB} (V)</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IHA}</td>
<td>High Level Input Voltage A</td>
<td>Data Inputs A_n</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>$V_{CCA} - 0.4$</td>
<td>V_{CCA}</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input OE</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>$0.7 \times V_{CCA}$</td>
<td>V_{CCA}</td>
<td>V</td>
</tr>
<tr>
<td>V_{IHB}</td>
<td>High Level Input Voltage B</td>
<td>Data Inputs B_n</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>$V_{CCB} - 0.4$</td>
<td>V_{CCB}</td>
<td>V</td>
</tr>
<tr>
<td>V_{ILA}</td>
<td>Low Level Input Voltage A</td>
<td>Data Inputs A_n</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>0.4</td>
<td>V_{CCA}</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input OE</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>0.3 $\times V_{CCA}$</td>
<td>V_{CCA}</td>
<td>V</td>
</tr>
<tr>
<td>V_{ILB}</td>
<td>Low Level Input Voltage B</td>
<td>Data Inputs B_n</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>0.4</td>
<td>V_{CCB}</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Level Output Voltage</td>
<td>$V_{IL} = 0.15V$</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>0.4</td>
<td>V_{CCB}</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OL} = 6mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Leakage Current</td>
<td>Control Input OE, $V_{IN} = V_{CCA}$ or GND</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>±1</td>
<td>V_{CCB}</td>
<td>μA</td>
</tr>
<tr>
<td>I_{OFF}</td>
<td>Power-Off Leakage Current</td>
<td>A_n</td>
<td>V_{IN} or $V_O = 0V$ to 5.5V</td>
<td>0</td>
<td>5.50</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_n</td>
<td>V_{IN} or $V_O = 0V$ to 5.5V</td>
<td>5.50</td>
<td>0</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>3-State Output Leakage(6)</td>
<td>A_n</td>
<td>$V_O = 0V$ to 5.5V, $OE = V_{IL}$</td>
<td>5.50</td>
<td>5.50</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_n</td>
<td>$V_O = 0V$ to 5.5V, $OE = Don't Care$</td>
<td>5.50</td>
<td>0</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_n</td>
<td>$V_O = 0V$ to 5.5V, $OE = Don't Care$</td>
<td>0</td>
<td>5.50</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_n</td>
<td>$V_O = 0V$ to 5.5V, $OE = Don't Care$</td>
<td>0</td>
<td>5.50</td>
<td>±2</td>
<td>V_{CCB}</td>
</tr>
<tr>
<td>$I_{CCA/B}$</td>
<td>Quiescent Supply Current(7,8)</td>
<td>$V_{IN} = V_{CCI}$ or GND, $I_O = 0$</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>5</td>
<td>V_{CCB}</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CCZ}</td>
<td>Quiescent Supply Current(7)</td>
<td>$V_{IN} = V_{CCI}$ or GND, $I_O = 0$, $OE = V_{IL}$</td>
<td>1.65–5.50</td>
<td>1.65–5.50</td>
<td>5</td>
<td>V_{CCB}</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Quiescent Supply Current(6)</td>
<td>$V_{IN} = 5.5V$ or GND, $I_O = 0$, $OE = Don't Care, B_n$ to A_n</td>
<td>1.65–5.50</td>
<td>0</td>
<td>2</td>
<td>V_{CCB}</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CCB}</td>
<td>Quiescent Supply Current(6)</td>
<td>$V_{IN} = 5.5V$ or GND, $I_O = 0$, $OE = Don't Care, A_n$ to B_n</td>
<td>1.65–5.50</td>
<td>0</td>
<td>2</td>
<td>V_{CCB}</td>
<td>μA</td>
</tr>
</tbody>
</table>

Notes:
5. This table contains the output voltage for static conditions. Dynamic drive specifications are given in Dynamic Output Electrical Characteristics.
6. "Don't Care" indicates any valid logic level.
7. V_{CCI} is the V_{CC} associated with the input side.
8. Reflects current per supply, V_{CCA} or V_{CCB}.
Dynamic Output Electrical Characteristics

Output Rise / Fall Time
Output load: $C_L = 50\,\text{pF}$, $R_{PU} = 2.2\,\text{k}\Omega$, push / pull driver, and $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCO}^{(10)}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5 to 5.5V 3.0 to 3.6V 2.3 to 2.7V 1.65 to 1.95V</td>
<td></td>
</tr>
<tr>
<td>t_{rise}</td>
<td>Output Rise Time; A Port, B Port$^{(11)}$</td>
<td>[3, 4, 5, 7] ns</td>
<td></td>
</tr>
<tr>
<td>t_{fall}</td>
<td>Output Fall Time; A Port, B Port$^{(12)}$</td>
<td>[11, 8, 6, 4] ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
9. Output rise and fall times guaranteed by design simulation and characterization; not production tested.
10. V_{CCO} is the V_{CC} associated with the output side.
11. See Figure 11.
12. See Figure 12.

Maximum Data Rate$^{(13)}$
Output load: $C_L = 50\,\text{pF}$, $R_{PU} = 2.2\,\text{k}\Omega$, push-pull driver, and $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.

<table>
<thead>
<tr>
<th>V_{CCA}</th>
<th>Direction</th>
<th>V_{CCB}</th>
<th>4.5 to 5.5V</th>
<th>3.0 to 3.6V</th>
<th>2.3 to 2.7V</th>
<th>1.65 to 1.95V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5V to 5.5V</td>
<td>A to B</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>3.0V to 3.6V</td>
<td>A to B</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>2.3V to 2.7V</td>
<td>A to B</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>1.65V to 1.95V</td>
<td>A to B</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>9</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

Note:
13. F-toggle guaranteed by design simulation; not production tested.
AC Characteristics

Output Load: \(C_L = 50\, \text{pF}, R_{PS} = 2.2\, \text{kΩ} \), and \(T_A = -40°C \) to \(+85°C \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCB})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5 to 5.5V</td>
<td>3.0 to 3.6V</td>
</tr>
<tr>
<td>(V_{CCA}) = 4.5 to 5.5V</td>
<td>(t_{PLH})</td>
<td>A to B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PHL})</td>
<td>A to B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PZL})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PLZ})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(t_{skew}) A Port, B Port(^{(14)})</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\(V_{CCA} \) = 3.0 to 3.6V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCB})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5 to 5.5V</td>
<td>3.0 to 3.6V</td>
</tr>
<tr>
<td>(V_{CCA}) = 3.0 to 3.6V</td>
<td>(t_{PLH})</td>
<td>A to B</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PHL})</td>
<td>A to B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PZL})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PLZ})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(t_{skew}) A Port, B Port(^{(14)})</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\(V_{CCA} \) = 2.3 to 2.7V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCB})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5 to 5.5V</td>
<td>3.0 to 3.6V</td>
</tr>
<tr>
<td>(V_{CCA}) = 2.3 to 2.7V</td>
<td>(t_{PLH})</td>
<td>A to B</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PHL})</td>
<td>A to B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PZL})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PLZ})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>(t_{skew}) A Port, B Port(^{(14)})</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\(V_{CCA} \) = 1.65 to 1.95V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCB})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5 to 5.5V</td>
<td>3.0 to 3.6V</td>
</tr>
<tr>
<td>(V_{CCA}) = 1.65 to 1.95V</td>
<td>(t_{PLH})</td>
<td>A to B</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PHL})</td>
<td>A to B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B to A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PZL})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PLZ})</td>
<td>OE to A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE to B</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>(t_{skew}) A Port, B Port(^{(14)})</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note:

14. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (\(A_n \) or \(B_n \)) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 14). Skew is guaranteed, but not tested.

15. AC Characteristic is guaranteed by Design and Characterization.
Capacitance

\(T_A = +25^\circ C. \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{IN}})</td>
<td>Input Capacitance Control Pin (OE)</td>
<td>(V_{\text{CCA}} = V_{\text{CCB}} = \text{GND})</td>
<td>2.2</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{\text{I/O}})</td>
<td>Input / Output Capacitance, (A_n, B_n)</td>
<td>(V_{\text{CCA}} = V_{\text{CCB}} = 5.0V, \text{OE} = \text{GND})</td>
<td>13.0</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{\text{PD}})</td>
<td>Power Dissipation Capacitance</td>
<td>(V_{\text{CCA}} = V_{\text{CCB}} = 5.0V, V_{\text{IN}} = 0V) or (V_{\text{CC}}, f = 400\text{KHz})</td>
<td>13.5</td>
<td>pF</td>
</tr>
</tbody>
</table>

![Figure 7. AC Test Circuit](image)

Table 1. Propagation Delay Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Input Signal</th>
<th>Output Enable Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{PLH}}, t_{\text{PHL}})</td>
<td>Data Pulses</td>
<td>(V_{\text{CCA}})</td>
</tr>
<tr>
<td>(t_{\text{PZL}}) (OE to (A_n, B_n))</td>
<td>0V</td>
<td>LOW to HIGH Switch</td>
</tr>
<tr>
<td>(t_{\text{PLZ}}) (OE to (A_n, B_n))</td>
<td>0V</td>
<td>HIGH to LOW Switch</td>
</tr>
</tbody>
</table>

Table 2. AC Load Table

<table>
<thead>
<tr>
<th>(V_{\text{CCO}})</th>
<th>(C_L)</th>
<th>(R_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 ± 0.15V</td>
<td>50pF</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>2.5 ± 0.2V</td>
<td>50pF</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>3.3 ± 0.3V</td>
<td>50pF</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>5.0 ± 0.5V</td>
<td>50pF</td>
<td>2.2kΩ</td>
</tr>
</tbody>
</table>
Timing Diagrams

Figure 8. Waveform for Inverting and Non-Inverting Functions

Figure 9. 3-STATE Output Low Enable Time

Figure 10. 3-STATE Output High Enable Time

Figure 11. Active Output Rise Time

Figure 12. Active Output Fall Time

Figure 13. F-Toggle Rate

Figure 14. Output Skew Time

Notes:
16. Input \(t_R = t_F = 2.0 \text{ns}, 10\% \text{ to } 90\% \text{ at } V_{IN} = 1.65V \text{ to } 1.95V; \)
Input \(t_R = t_F = 2.0 \text{ns}, 10\% \text{ to } 90\% \text{ at } V_{IN} = 2.3 \text{ to } 2.7V; \)
Input \(t_R = t_F = 2.5\text{ns}, 10\% \text{ to } 90\% , \text{ at } V_{IN} = 3.0V \text{ to } 3.6V \text{ only}; \)
Input \(t_R = t_F = 2.5\text{ns}, 10\% \text{ to } 90\% , \text{ at } V_{IN} = 4.5V \text{ to } 5.5 \text{ only.} \)
17. \(V_{CCI} = V_{CCA} \text{ for control pin OE or } V_{mi} = (V_{CCA} / 2). \)
Physical Dimensions

Figure 15. 12-Lead Ultrathin MLP, 1.8mm x 1.8mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- 2Cool™
- AccuPower™
- AX-CA™
- BitSIC™
- Build it Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- EcoSPARK™
- EfficientMax™
- ESBC™
- Fairchild®
- Fairchild Semiconductor®
- FACT Quiet Series™
- FACT™
- FAST™
- FastMCore™
- FETBench™
- FlashWriter™
- FPS™
- F-IPS™
- FRFET™
- Global Power Resource™
- GreenBridge™
- Green FPS™
- Green FPS® e-Series™
- Gmax™
- GST™
- IntelliMAX™
- ISOLANAR™
- Making Small Speakers Sound Louder and Better™
- MegaBuck™
- MICROCOUPLER™
- MicroFET™
- MicroPark™
- MicroPark2™
- MillerDrive™
- MotionMax™
- mWSaver™
- OptoPET™
- OPTOLOGIC®
- OPTOPLANAR®
- SYSTEM GENERAL™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPRESSLY LIMITED THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage, and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not in Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

© 2011 Fairchild Semiconductor Corporation
www.fairchildsemi.com