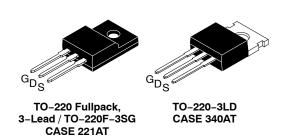
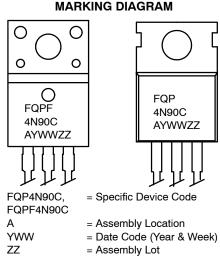
Onsemí

MOSFET – N-Channel, QFET

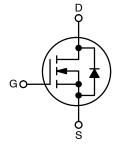
900 V, 4.0 A, 4.2 Ω

FQP4N90C, FQPF4N90C


Description


This N-Channel enhancement mode power MOSFET is produced using **onsemi**'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features


- 4.0 A, 900 V, $R_{DS(on)}$ = 4.2 Ω (Max.) @ V_{GS} = 10 V, I_D = 2.0 A
- Low Gate Charge (Typ. 17 nC)
- Low Crss (Typ. 5.6 pF)
- 100% Avalanche Tested

V _{DSS}	R _{DS(on)} MAX	I _D MAX
900 V	4.2 Ω @ 10 V	4.0 A

ORDERING INFORMATION

Part Number	Package	Shipping
FQP4N90C	TO-220	1000 Units / Tube
FQPF4N90C	TO-220F	1000 Units / Tube

Symbol	Parameter		FQP4N90C	FQPF4N90C	Unit
V _{DSS}	Drain-Source Voltage		900		V
I _D	Drain Current	– Continuous (T _C = 25°C)	4	4*	А
		– Continuous (T _C = 100°C)	2.3	2.3*	1
I _{DM}	Drain Current	– Pulsed (Note 1)	16	16*	А
V_{GSS}	Gate-Source Voltage		±	30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		570		mJ
I _{AR}	Avalanche Current (Note 1)		4		А
E _{AR}	Repetitive Avalanche Energy (Note 1)		14		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4	.5	V/ns
P _D P	Power Dissipation	(T _C = 25°C)	140	47	W
		– Derate above 25°C	1.12	0.38	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		–55 t	o +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		3	00	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

*Drain current limited by maximum junction temperature. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. L = 67 mH, I_{AS} = 4 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} ≤ 4 A, di/dt ≤ 200 A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FQP4N90C	FQPF4N90C	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.89	2.66	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Max.	0.5	-	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W

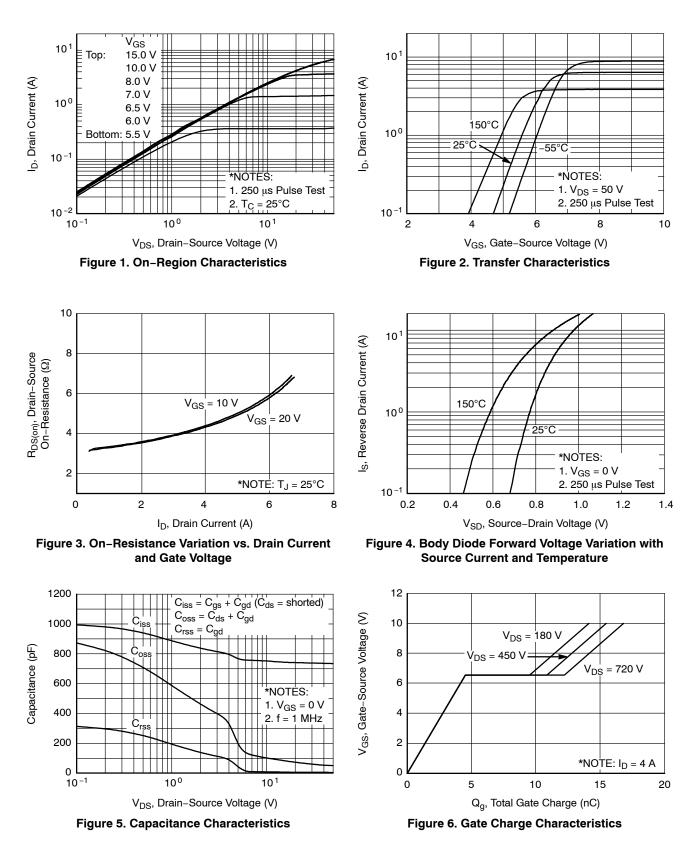
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•		•		
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250 μ A	900	-	-	V
${\Delta {\rm BV}_{\rm DSS} \over \Delta {\rm T}_{\rm J}}/$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	-	1.05	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 900 V, V _{GS} = 0 V	-	-	10	μΑ
		$V_{DS} = 720 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$	-	-	100	
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	-100	nA
ON CHARA	CTERISTICS	·				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3.0	-	5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2 \text{ A}$	-	3.5	4.2	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 2 \text{ A}$	-	5	-	S
DYNAMIC C	CHARACTERISTICS	·				
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	740	960	pF
C _{oss}	Output Capacitance		-	65	85	pF
C _{rss}	Reverse Transfer Capacitance	1	-	5.6	7.3	pF
SWITCHING	G CHARACTERISTICS					-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 450 \text{ V}, \text{ I}_{D} = 4 \text{ A}, \text{ R}_{G} = 25 \Omega$	-	25	60	ns
t _r	Turn–On Rise Time	(Note 4)	-	50	110	ns
t _{d(off)}	Turn-Off Delay Time	1	-	40	90	ns
t _f	Turn–Off Fall Time	1	-	35	80	ns
Qg	Total Gate Charge	$V_{DS} = 720 \text{ V}, \text{ I}_{D} = 4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	17	22	nC
Q _{gs}	Gate-Source Charge	(Note 4)	-	4.5	-	nC
Q _{gd}	Gate-Drain Charge	1	-	7.5	-	nC
DRAIN-SO	URCE DIODE CHARACTERISTICS AND N	MAXIMUM RATINGS		•		
I _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	4	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	-	16	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{SD} = 4 A$	-	-	1.4	V
t _{rr}	Reverse Recovery Time	V_{GS} = 0 V, I_{SD} = 4 A, dI_F/dt = 100 A/µs	-	450	-	ns

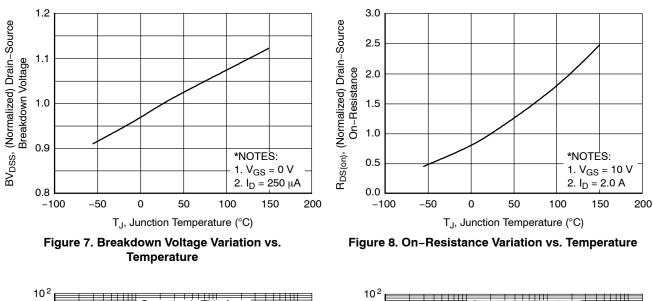
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

_

3.5


μC

4. Essentially independent of operating temperature.


Reverse Recovery Charge

Q_{rr}

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (CONTINUED)

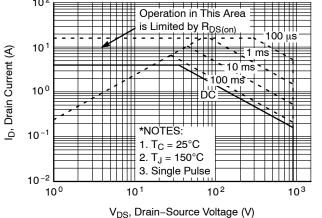
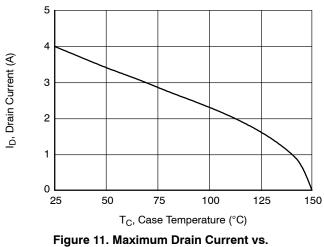



Figure 9. Maximum Safe Operating Area for FQP4N90C

Case Temperature

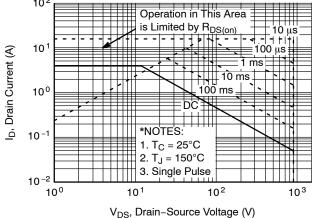


Figure 10. Maximum Safe Operating Area for FQPF4N90C

TYPICAL CHARACTERISTICS (CONTINUED)

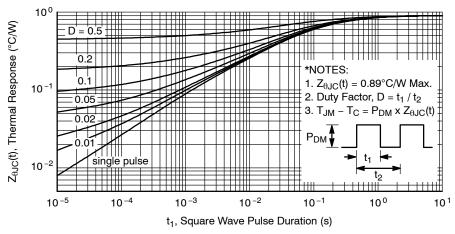


Figure 12. Transient Thermal Response Curve for FQP4N90C

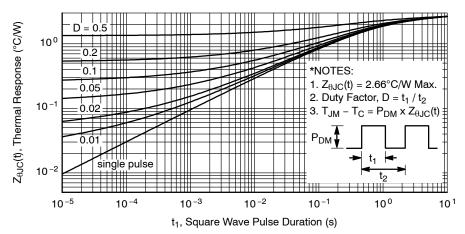


Figure 13. Transient Thermal Response Curve for FQPF4N90C

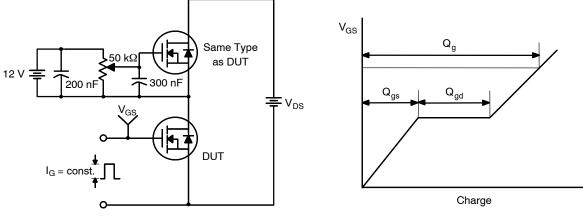


Figure 14. Gate Charge Test Circuit & Waveform

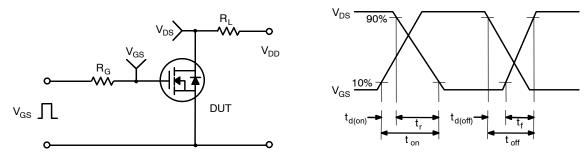
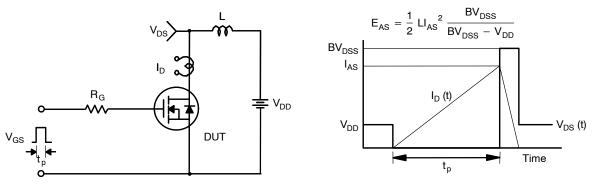



Figure 15. Resistive Switching Test Circuit & Waveforms

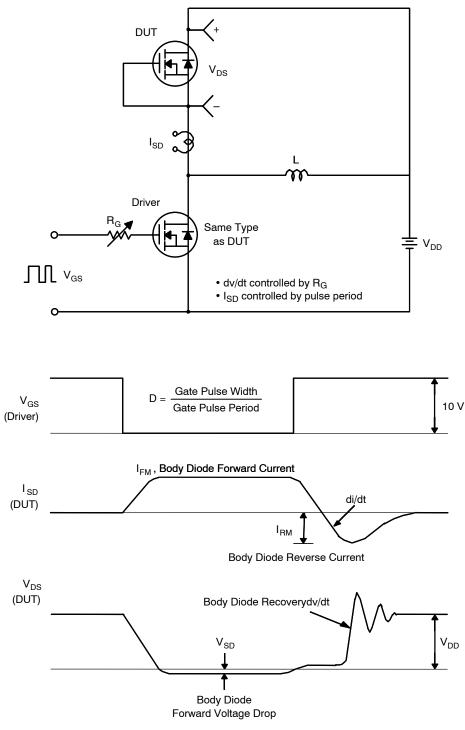
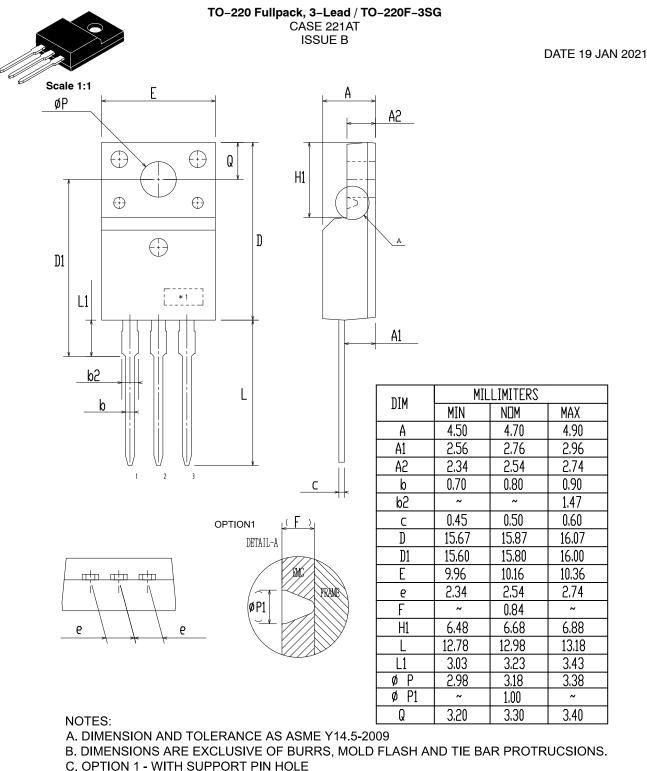
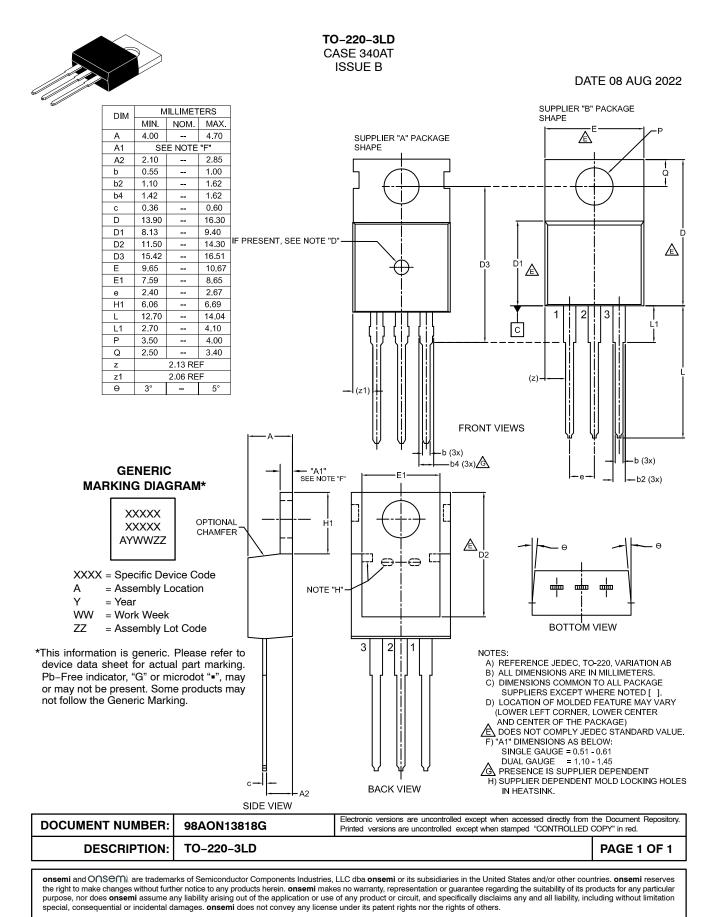



Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

onsemi



OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER:	98AON67439E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220 FULLPACK, 3-LEAD / TO-220F-3SG		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>